

Even Manifolds

Laurence R. Taylor
University of Notre Dame

November 19, 2005

1 A modest answer

There is a similar definition using $\mathbb{Z} / 2 \mathbb{Z}$ coefficients and in this case, Wu gave a very nice criterion in terms of the tangent bundle of M of this mod 2 intersection form to be even. Wu phrased his answer in terms of the stable tangent bundle, $\tau_{M}: M \rightarrow B O$, and what are now called the Wu classes $v_{\ell} \in H^{\ell}(B O ; \mathbb{Z} / 2 \mathbb{Z})$:

Theorem $1.1(\mathrm{Wu})$. The mod 2 intersection form of $M^{4 k}$ is even if and only if $\tau_{M}^{*}\left(v_{2 k}\right)=0$.

Christan Bohr, Ronnie Lee and T. J. Li answered the question in terms of the evaluation homomorphism in the Universal Coefficients Theorem,

$$
\mathrm{ev}: H^{\ell}(M ; \mathbb{Z} / 2 \mathbb{Z}) \rightarrow \operatorname{Hom}\left(H_{\ell}(M ; \mathbb{Z}), \mathbb{Z} / 2 \mathbb{Z}\right)
$$

as follows:
Theorem 1.2. $M^{4 k}$ is even if and only if $\operatorname{ev}\left(\tau_{M}^{*}\left(v_{2 k}\right)\right)=0$.
There is an inclusion $\iota: \mathbb{Z} / 2 \mathbb{Z} \rightarrow \mathbb{Z} / 2^{\infty}$ and an induced map on cohomology.
Theorem 1.3. $M^{4 k}$ is even if and only if $\iota_{*}\left(\tau_{M}^{*}\left(v_{2 k}\right)\right)=0$.

There is an inclusion $\iota: \mathbb{Z} / 2 \mathbb{Z} \rightarrow \mathbb{Z} / 2^{\infty}$ and an induced map on cohomology.
Theorem 1.3. $M^{4 k}$ is even if and only if $\iota_{*}\left(\tau_{M}^{*}\left(v_{2 k}\right)\right)=0$.
Proof.

I_{*} is injective.

$$
\operatorname{Ext}\left(H_{2 k-1}(M ; \mathbb{Z}), \mathbb{Z} / 2^{\infty}\right)=0
$$

$$
\text { Let } v_{\ell}\left(2^{\infty}\right)=\iota_{*}\left(v_{\ell}\right) \in H^{\ell}\left(B S O ; \mathbb{Z} / 2^{\infty}\right)
$$

Theorem 1.4. $M^{4 k}$ is even if and only if $\tau_{M}^{*}\left(v_{2 k}\left(2^{\infty}\right)\right)=0$.
Remark 1.5. This characterizes evenness as the vanishing of a universal characteristic class and suggests the following shift of viewpoint, going back at least to Lashof.

Let $B S O\left\langle v_{\ell}\left(2^{\infty}\right)\right\rangle$ denote the homotopy fibre of the map $B S O \xrightarrow{v_{\ell}\left(2^{\infty}\right)} K\left(\mathbb{Z} / 2^{\infty} ; \ell\right)$ and let $\mathfrak{p}_{2}: B S O\left\langle v_{\ell}\left(2^{\infty}\right)\right\rangle \rightarrow B S O$ be the inclusion made into a fibration. Then

Definition 1.6. A $v_{2 k}\left(2^{\infty}\right)$-structure on a bundle $\xi: X \rightarrow B O$ is a lift of ξ to $B S O\left\langle v_{2 k}\left(2^{\infty}\right)\right\rangle$.

Remark 1.7. The fibration is principal so the set of lifts is an $H^{2 k-1}\left(X ; \mathbb{Z} / 2^{\infty}\right)$ torsor.

2 Related structures

One can also kill $v_{2 k}$ or $\delta v_{2 k}$, where δ is the integral Bockstein, to get principal fibrations

$$
\begin{aligned}
& B S O\left\langle v_{2 k}\right\rangle \xrightarrow{\mathfrak{p}_{1}} B S O \xrightarrow{v_{2 k}} K(\mathbb{Z} / 2 \mathbb{Z}, 2 k) \\
& B S O\left\langle\delta v_{2 k}\right\rangle \xrightarrow{\mathfrak{p}_{3}} B S O \xrightarrow{\delta v_{2 k}} K(\mathbb{Z}, 2 k+1)
\end{aligned}
$$

There are also $v_{2 k}$-structures and $\delta v_{2 k}$-structures on a bundle, defined as lifts. And the set of lifts are torsors.
Any $v_{2 k}$-structure induces a canonical $v_{2 k}\left(2^{\infty}\right)$-structure. Since

$$
\begin{aligned}
0 \rightarrow & \mathbb{Z} \xrightarrow{x_{2}} \mathbb{Z} \rightarrow \mathbb{Z} / 2 \mathbb{Z} \rightarrow 0 \\
& \| \\
& \downarrow \\
& \iota \downarrow \\
0 & \rightarrow \mathbb{Z} \longrightarrow \mathbb{Z}\left[\frac{1}{2}\right] \rightarrow \mathbb{Z} / 2^{\infty} \rightarrow 0
\end{aligned}
$$

commutes, any $v_{2 k}\left(2^{\infty}\right)$-structure induces a canonical $\delta v_{2 k}$-structure.
Let δ_{∞} denote the Bockstein associated to the bottom exact sequence: δ denotes the Bockstein associated to the top exact sequence.

3 Algebraic Topology

To amplify the last remark, note there are lifts

From the Serre spectral sequence, there exists classes $V_{2 k} \in H^{2 k}\left(B S O\left\langle\delta v_{2 k}\right\rangle ; \mathbb{Z}\right)$ and $\psi_{2 k} \in H^{2 k-1}\left(B S O\left\langle v_{2 k}\left(2^{\infty}\right)\right\rangle ; \mathbb{Z} / 2^{\infty}\right)$.

Lemma 3.1. $\delta_{\infty}\left(\psi_{2 k}\right)=\mathfrak{l}_{2 \rightarrow 3}^{*}\left(V_{2 k}\right) ; \mathfrak{l}_{1 \rightarrow 2}^{*}\left(\psi_{2 k}\right)=0 ; \delta_{2}\left(\psi_{2 k}\right)$ is the Wu class $\mathfrak{p}_{2}^{*}\left(v_{2 k}\right) \in H^{2 k}\left(B S O\left\langle v_{2 k}\left(2^{\infty}\right)\right\rangle ; \mathbb{Z} / 2 \mathbb{Z}\right)$. The following diagram commutes

$$
\begin{array}{ccc}
H_{2 k}\left(B S O\left\langle v_{2 k}\left(2^{\infty}\right)\right\rangle ; \mathbb{Z} / 2 \mathbb{Z}\right) & \xrightarrow{v_{2 k}} & \mathbb{Z} / 2 \mathbb{Z} \\
\delta \downarrow & & \iota \downarrow \\
H_{2 k-1}\left(B S O\left\langle v_{2 k}\left(2^{\infty}\right)\right\rangle ; \mathbb{Z}\right) & \xrightarrow{\psi_{2 k}} & \mathbb{Z} / 2^{\infty}
\end{array}
$$

Another way to think about even structures is that a bundle $\xi: X \rightarrow B S O$ has a $v_{2 k}\left(2^{\infty}\right)$-structure provided there is a homomorphism h making

commute. If there is such an h, there are even structures such that $h=\psi_{2 k}$. Even structures are a $H^{2 k-1}\left(X ; \mathbb{Z} / 2^{\infty}\right)$-torsor: even structures with a fixed h are a ${ }_{2} H^{2 k-1}\left(X ; \mathbb{Z} / 2^{\infty}\right)$-torsor. These remarks follow from the action of the fibre of the total space of the principal fibration.

Silly Remark 3.2. A bundle ξ has $v_{2 k}(\xi)=0$ if and only if h can be taken to be trivial if and only if h restricted to ${ }_{2} H_{2 k-1}(X ; \mathbb{Z})$ is trivial.

4 4-dimensional manifolds

In dimension four, $v_{2}=w_{2}$, so $B S O\left\langle v_{2}\right\rangle=B S$ pin and $B S O\left\langle\delta v_{2}\right\rangle=B S_{\text {pin }}{ }^{c}$. The map $\psi_{2}: \pi_{1}\left(B S O\left\langle v_{2}\left(2^{\infty}\right)\right\rangle\right) \rightarrow \mathbb{Z} / 2^{\infty}$ is an isomorphism:

$$
B S p i n \rightarrow B S O\left\langle v_{2}\left(2^{\infty}\right)\right\rangle \xrightarrow{\psi_{2}} B \mathbb{Z} / 2^{\infty}
$$

displays the universal cover.
It follows from Silly Remark 3.2 that
Theorem 4.1 (Bohr and Lee \& Li). Every even, compact 4 manifold M has a cyclic cover which is Spin: in particular, the cover corresponding to the kernel of $\psi_{2}: \pi_{1}(M) \rightarrow \mathbb{Z} / 2^{\infty}$ is Spin.
and that
Theorem 4.2. If M is an even 4 manifold, the cover corresponding to a subgroup $\Gamma \subset \pi_{1}(M)$ is Spin if and only if the composition

$$
{ }_{2} H_{1}(\Gamma ; \mathbb{Z}) \rightarrow{ }_{2} H_{1}\left(\pi_{1}(M) ; \mathbb{Z}\right) \rightarrow \mathbb{Z} / 2^{\infty}
$$

is trivial.
Less silly but still true

Theorem 4.3. Let π be any finitely present group and let $h: \pi \rightarrow \mathbb{Z} / 2^{\infty}$ be any homomorphism. Then there exist even, compact 4 manifolds with $\pi_{1}(M)=\pi$ and with ψ_{2} for that even structure being h.
Since the universal cover of an even 4 manifold is Spin, Hopf shows that v_{2} comes from $H^{2}(\pi ; \mathbb{Z} / 2 \mathbb{Z})$. Take $v \in H^{2}(\pi ; \mathbb{Z} / 2 \mathbb{Z})$ to be the composition

$$
H_{2}(\pi ; \mathbb{Z} / 2 \mathbb{Z}) \xrightarrow{\delta} H_{1}(\pi ; \mathbb{Z}) \xrightarrow{h} \mathbb{Z} / 2^{\infty}
$$

and results in Teichner's thesis construct an M with the desired properties.
Both Bohr and Lee \& Li construct examples of even 4 manifolds for which the cover corresponding to the kernel of ψ_{2} is the minimal cyclic cover which is Spin.

For completeness, note that the semi-dihedral group of order 16 has $H_{1}\left(S D_{16} ; \mathbb{Z}\right) \cong$ $\mathbb{Z} / 4 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}$ and one can find examples for which ψ_{2} is the projection onto $\mathbb{Z} / 4 \mathbb{Z}$. The evident 4 -fold cover is certainly Spin, but so is the 2 -fold sub-cover with group $\mathbb{Z} / 8 \mathbb{Z} \subset S D_{16}$. In fact, given any even 4 manifold with $\pi_{1} \cong S D_{16}$, the double cover with fundamental group $\mathbb{Z} / 8 \mathbb{Z}$ is Spin.

What can one say about the converse to the Bohr, Lee \& Li result?
If M^{4} has a cyclic Spin cover, must M be even?

To begin more generally, suppose $\widetilde{M} \rightarrow M^{4} \rightarrow B \pi$ is a cover and that \widetilde{M} is Spin. Consider the Serre spectral sequence with $\mathbb{Z} / 2 \mathbb{Z}$ coefficients.

$$
\begin{array}{cccc}
H^{0}\left(B \pi ; H^{2}(\widetilde{M} ; \mathbb{Z} / 2 \mathbb{Z})\right) & \cdot & \cdot \\
H^{0}\left(B \pi ; H^{1}(\widetilde{M} ; \mathbb{Z} / 2 \mathbb{Z})\right) & H^{1}\left(B \pi ; H^{1}(\widetilde{M} ; \mathbb{Z} / 2 \mathbb{Z})\right) & \cdot & \cdot \\
H^{0}(B \pi ; \mathbb{Z} / 2 \mathbb{Z}) & H^{1}(B \pi ; \mathbb{Z} / 2 \mathbb{Z}) & H^{2}(B \pi ; \mathbb{Z} / 2 \mathbb{Z}) & H^{3}(B \pi ; \mathbb{Z} / 2 \mathbb{Z})
\end{array}
$$

The total degree two line is in red.
Compare this spectral sequence to the one with $\mathbb{Z} / 2^{\infty}$ coefficients.
Lemma 4.4. If $H_{2}(B \pi ; \mathbb{Z})$ is odd torsion, $H^{2}\left(B \pi ; \mathbb{Z} / 2^{\infty}\right)=0$.
EG 4.5. $H^{2}\left(B \pi ; \mathbb{Z} / 2^{\infty}\right)=0$ for $\pi=\mathbb{Z} / 2^{r} \mathbb{Z}, D_{2^{r+2}}, Q_{2^{r+2}}$ and $S D_{2^{r+3}}$.
If $H_{1}(\widetilde{M} ; \mathbb{Z})$ has no 2-torsion, then $H^{1}\left(\widetilde{M} ; \mathbb{Z} / 2^{\infty}\right)$ is 2-divisible and hence $H^{1}\left(B \pi ; H^{1}\left(\widetilde{M} ; \mathbb{Z} / 2^{\infty}\right)\right)=0$ if π is a finite 2-group.

Theorem 4.6. If $\widetilde{M} \rightarrow M \rightarrow B \pi$ is a cover with \widetilde{M} Spin, and if $H_{1}(\widetilde{M} ; \mathbb{Z})$ has no 2-torsion and if π is a finite 2 -group with $H^{2}\left(B \pi ; \mathbb{Z} / 2^{\infty}\right)=0$, then M is even.

To construct examples for which M is not even, note
Theorem 4.7. If $\widetilde{M} \rightarrow M \rightarrow B \pi$ is a cover with $\widetilde{M} \operatorname{Spin}$, if $H_{1}(\widetilde{M} ; \mathbb{Z})=$ $\underset{r}{\oplus} \mathbb{Z} / 2 \mathbb{Z}$ and if $v_{2}(M)$ is non-zero in $E_{\infty}^{1,1}$, then M is not even.

This follows since $H_{1}(\widetilde{M} ; \mathbb{Z})=\underset{r}{\oplus} \mathbb{Z} / 2 \mathbb{Z}$ implies $H^{1}(\widetilde{M} ; \mathbb{Z} / 2 \mathbb{Z}) \rightarrow H^{1}\left(\widetilde{M} ; \mathbb{Z} / 2^{\infty}\right)$ is an isomorphism.
EG 4.8. Use results in Teichner's thesis to construct an M^{4} with $\pi_{1}=\mathbb{Z} / 2 \mathbb{Z} \oplus$ $\mathbb{Z} / 2 \mathbb{Z}$ and $v_{2}=x \cup y$ where $x, y \in H^{1}(B \pi ; \mathbb{Z} / 2 \mathbb{Z})$ are a basis. Then M is not even but it has a Spin double cover.

One can repackage these results as results on free actions of finite groups on Spin 4 manifolds.

5 Group actions on Spin 4 manifolds

Throughout this section, let M^{4} be a compact, closed, Spin 4 manifold and let G be a finite group acting freely on M.

If G has odd order, M / G is Spin so $16 \cdot|G|$ divides $\sigma(M)$ by Rochlin's Theorem.
Theorem 5.1. Let $\sigma(M)$ denote the signature of M. If $H_{1}(M ; \mathbb{Z})$ has no 2 -torsion and if $H_{2}(B G ; \mathbb{Z})=0$, then $8 \cdot|G|$ divides $\sigma(M)$.

Some hypotheses were omitted in the lecture for the next three results.

Theorem 5.2. Let $\sigma(M)$ denote the signature of M. If the 2-Sylow subgroup of G is $\mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}$ and if $H_{1}(M ; \mathbb{Z})$ has no 2-torsion then $4 \cdot|G|$ divides $\sigma(M)$.

Theorem 5.3. Assume the hypotheses of 5.2. Further assume

$$
\sigma(M) \equiv 4 \cdot|G| \quad \bmod \quad 8 \cdot|G|
$$

then M / G is odd. If $v_{2}(M / G) \in H^{2}(B G ; \mathbb{Z} / 2 \mathbb{Z})$ and if $\iota: \mathbb{Z} / 2 \mathbb{Z} \subset G$ is any subgroup of order 2 , $\iota^{*}\left(v_{2}(M / G)\right) \neq 0$.

EG 5.4. Let K^{4} be a K3 surface, a simply-connected algebraic surface of signature 16. Habegger constructed free involutions on K as did Enriques. The quotient $K / \mathbb{Z} / 2 \mathbb{Z}$ is an even manifold of signature 8 as required by Theorem 5.1.

Hitchin constructed a free action of $G=\mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}$ on K so Theorem 5.2 is best possible. In order for Theorem 5.3 to hold, $v_{2}(K / G) \in H^{2}(G ; \mathbb{Z} / 2 \mathbb{Z})$ is $x^{2}+y^{2}+x y$.

The conditions in Theorem 5.3 are hard to achieve. If $G=\underset{3}{\oplus} \mathbb{Z} / 2 \mathbb{Z}$, then for any $\alpha \in H^{2}(B G ; \mathbb{Z} / 2 \mathbb{Z})$ there exists an $\iota: \mathbb{Z} / 2 \mathbb{Z} \subset G$ such that $\iota^{*}(\alpha)=0$.

Theorem 5.5. If $H_{1}(M ; \mathbb{Z})$ has no 2-torsion and if $\underset{3}{\oplus} \mathbb{Z} / 2 \mathbb{Z} \subset G$ is the 2Sylow subgroup then $8 \cdot|G|$ divides $\sigma(M)$.

8 Even bordism

In dimension $4 k$, even bordism consists of $4 k$ manifolds with a $v_{2 k}\left(2^{\infty}\right)$-structure modulo those which bound a $4 k+1$-manifold with a $v_{2 k}\left(2^{\infty}\right)$-structure which restricts. Even bordism is easy to relate to $\delta v_{2 k}$-bordism: there is a fibration

$$
B S O\left\langle v_{2 k}\left(2^{\infty}\right)\right\rangle \rightarrow B S O\left\langle\delta v_{2 k}\right\rangle \rightarrow K\left(\mathbb{Z}\left[\frac{1}{2}\right], 2 k\right)
$$

and a spectral sequence

$$
H_{p}\left(K\left(\mathbb{Z}\left[\frac{1}{2}\right], 2 k\right) ; M S O_{q}\left\langle v_{2 k}\left(2^{\infty}\right)\right\rangle\right) \Rightarrow M S O_{p+q}\left\langle\delta v_{2 k}\right\rangle
$$

By Serre mod-C theory $M S O_{*}\left\langle v_{2 k}\left(2^{\infty}\right)\right\rangle \rightarrow M S O_{*}$ is a rational isomorphism with kernel and cokernel 2-torsion; similarly, $M S O_{*}\left\langle\delta v_{2 k}\right\rangle \rightarrow M S O_{*}(K(\mathbb{Z}, 2 k))$ is a rational isomorphism with kernel and cokernel finitely-generated 2-torsion.
It follows from the spectral sequence that

$$
M S O_{4 k}\left\langle v_{2 k}\left(2^{\infty}\right)\right\rangle \rightarrow M S O_{4 k}\left\langle\delta v_{2 k}\right\rangle
$$

is injective.
In dimension 4 the calculation can be done in many ways.

Theorem 8.1. $\mathrm{MSO}_{4}\left\langle v_{2}\left(2^{\infty}\right)\right\rangle \cong \mathbb{Z}$ with the signature divided by 8 giving the isomorphism.

One can further check that $\operatorname{MSO}_{3}\left\langle v_{2}\left(2^{\infty}\right)\right\rangle \cong \mathbb{Z} / 2^{\infty}$ and $M S O_{5}\left\langle v_{2}\left(2^{\infty}\right)\right\rangle \cong$ $\mathbb{Z} / 2^{\infty} \oplus \mathbb{Z} / 2^{\infty}$.

References

[1] Christian Bohr, On the signatures of even 4-manifolds, available at arXiv:math.GT/0002151.
[2] R. Lashof, Poincaré duality and cobordism, Trans. Amer. Math. Soc. 109 (1963), 257-277.MR0156357 (27 \#6281)
[3] Nathan Habegger, Une variété de dimension 4 avec forme d'intersection paire et signature -8, Comment. Math. Helv. 57 (1982), no. 1, 22-24 (French).MR672843 (83k:57018)
[4] Nigel Hitchin, Compact four-dimensional Einstein manifolds, J. Differential Geometry 9 (1974), 435-441.MR0350657 (50 \#3149)
[5] Ronnie Lee and Tian-Jun Li, Intersection forms of non-spin four manifolds, Math. Ann. 319 (2001), no. 2, 311-318.MR1815113 (2001m:57027)
[6] F. van der Blij, An invariant of quadratic forms mod 8, Nederl. Akad. Wetensch. Proc. Ser. A 62 = Indag. Math. 21 (1959), 291-293.MR0108467 (21 \#7183)
[7] Peter Teichner, On the signature of four-manifolds with universal covering spin, Math. Ann. 295 (1993), no. 4, 745759.MR1214960 (94h:57042)

