

Organizer / Organi

Octav Cornea (Université de Montréal)

Even Manifolds

Laurence R. Taylor University of Notre Dame November 19, 2005

1 A modest answer

There is a similar definition using $\mathbb{Z}/2\mathbb{Z}$ coefficients and in this case, Wu gave a very nice criterion in terms of the tangent bundle of M of this mod 2 intersection form to be even. Wu phrased his answer in terms of the stable tangent bundle, $\tau_M \colon M \to BO$, and what are now called the Wu classes $v_\ell \in H^\ell(BO; \mathbb{Z}/2\mathbb{Z})$:

Theorem 1.1 (Wu). The mod 2 intersection form of M^{4k} is even if and only if $\tau^*_M(v_{2k}) = 0$.

Christan Bohr, Ronnie Lee and T. J. Li answered the **question** in terms of the evaluation homomorphism in the Universal Coefficients Theorem,

ev:
$$H^{\ell}(M; \mathbb{Z}/2\mathbb{Z}) \to \operatorname{Hom}(H_{\ell}(M; \mathbb{Z}), \mathbb{Z}/2\mathbb{Z})$$

as follows:

Theorem 1.2.
$$M^{4k}$$
 is even if and only if $ev(\tau_M^*(v_{2k})) = 0$.

There is an inclusion $\iota \colon \mathbb{Z}/2\mathbb{Z} \to \mathbb{Z}/2^{\infty}$ and an induced map on cohomology. **Theorem 1.3.** M^{4k} is even if and only if $\iota_*(\tau_M^*(v_{2k})) = 0$. There is an inclusion $\iota \colon \mathbb{Z}/2\mathbb{Z} \to \mathbb{Z}/2^{\infty}$ and an induced map on cohomology. **Theorem 1.3.** M^{4k} is even if and only if $\iota_*(\tau_M^*(v_{2k})) = 0$.

Proof.

 I_* is injective.

$$\operatorname{Ext}(H_{2k-1}(M;\mathbb{Z}),\mathbb{Z}/2^{\infty})=0$$

Let
$$v_{\ell}(2^{\infty}) = \iota_*(v_{\ell}) \in H^{\ell}(BSO; \mathbb{Z}/2^{\infty}).$$

Theorem 1.4. M^{4k} is even if and only if $\tau^*_M(v_{2k}(2^\infty)) = 0$.

Remark 1.5. This characterizes evenness as the vanishing of a universal characteristic class and suggests the following shift of viewpoint, going back at least to Lashof.

Let $BSO\langle v_{\ell}(2^{\infty})\rangle$ denote the homotopy fibre of the map $BSO \xrightarrow{v_{\ell}(2^{\infty})} K(\mathbb{Z}/2^{\infty};\ell)$ and let $\mathfrak{p}_2: BSO\langle v_{\ell}(2^{\infty})\rangle \to BSO$ be the inclusion made into a fibration. Then

Definition 1.6. A $v_{2k}(2^{\infty})$ -structure on a bundle $\xi \colon X \to BO$ is a lift of ξ to $BSO\langle v_{2k}(2^{\infty}) \rangle$.

Remark 1.7. The fibration is principal so the set of lifts is an $H^{2k-1}(X; \mathbb{Z}/2^{\infty})$ -torsor.

2 Related structures

One can also kill v_{2k} or δv_{2k} , where δ is the integral Bockstein, to get principal fibrations

$$BSO\langle v_{2k} \rangle \xrightarrow{\mathfrak{p}_1} BSO \xrightarrow{v_{2k}} K(\mathbb{Z}/2\mathbb{Z},2k)$$

$$BSO\langle \delta v_{2k} \rangle \xrightarrow{\mathfrak{p}_3} BSO \xrightarrow{\delta v_{2k}} K(\mathbb{Z}, 2k+1)$$

There are also v_{2k} -structures and δv_{2k} -structures on a bundle, defined as lifts. And the set of lifts are torsors.

Any v_{2k} -structure induces a canonical $v_{2k}(2^{\infty})$ -structure. Since

commutes, any $v_{2k}(2^{\infty})$ -structure induces a canonical δv_{2k} -structure.

Let δ_{∞} denote the Bockstein associated to the bottom exact sequence: δ denotes the Bockstein associated to the top exact sequence.

3 Algebraic Topology

To amplify the last remark, note there are lifts

$$BSO\langle v_{2k} \rangle \xrightarrow{\mathfrak{l}_{1 \to 2}} BSO\langle v_{2k}(2^{\infty}) \rangle \xrightarrow{\mathfrak{l}_{2 \to 3}} BSO\langle \delta v_{2k} \rangle$$

$$\mathfrak{p}_{1} \qquad \mathfrak{p}_{2} \qquad \mathfrak{p}_{3} \qquad \mathfrak{p}_{4} \qquad \mathfrak$$

From the Serre spectral sequence, there exists classes $V_{2k} \in H^{2k}(BSO\langle \delta v_{2k} \rangle; \mathbb{Z})$ and $\psi_{2k} \in H^{2k-1}(BSO\langle v_{2k}(2^{\infty}) \rangle; \mathbb{Z}/2^{\infty}).$

Lemma 3.1. $\delta_{\infty}(\psi_{2k}) = \mathfrak{l}_{2\to 3}^{*}(V_{2k}); \ \mathfrak{l}_{1\to 2}^{*}(\psi_{2k}) = 0; \ \delta_{2}(\psi_{2k}) \text{ is the Wu class}$ $\mathfrak{p}_{2}^{*}(v_{2k}) \in H^{2k}(BSO\langle v_{2k}(2^{\infty})\rangle; \mathbb{Z}/2\mathbb{Z}).$ The following diagram commutes

$$\begin{array}{ccc} H_{2k}(BSO\langle v_{2k}(2^{\infty})\rangle; \mathbb{Z}/2\mathbb{Z}) & \xrightarrow{v_{2k}} & \mathbb{Z}/2\mathbb{Z} \\ & & & & \downarrow \\ & & & & \downarrow \\ H_{2k-1}(BSO\langle v_{2k}(2^{\infty})\rangle; \mathbb{Z}) & \xrightarrow{\psi_{2k}} & \mathbb{Z}/2^{\infty} \end{array}$$

Another way to think about even structures is that a bundle $\xi \colon X \to BSO$ has a $v_{2k}(2^{\infty})$ -structure provided there is a homomorphism h making

$$\begin{array}{cccc} H_{2k}(X; \mathbb{Z}/2\mathbb{Z}) & \xrightarrow{v_{2k}} & \mathbb{Z}/2\mathbb{Z} \\ & & \delta & & & \iota \\ & & & & \downarrow \\ H_{2k-1}(X; \mathbb{Z}) & \xrightarrow{h} & \mathbb{Z}/2^{\infty} \end{array}$$

commute. If there is such an h, there are even structures such that $h = \psi_{2k}$. Even structures are a $H^{2k-1}(X; \mathbb{Z}/2^{\infty})$ -torsor: even structures with a fixed h are a ${}_{2}H^{2k-1}(X; \mathbb{Z}/2^{\infty})$ -torsor. These remarks follow from the action of the fibre of the total space of the principal fibration.

Silly Remark 3.2. A bundle ξ has $v_{2k}(\xi) = 0$ if and only if h can be taken to be trivial if and only if h restricted to $_{2}H_{2k-1}(X;\mathbb{Z})$ is trivial.

4 4-dimensional manifolds

In dimension four, $v_2 = w_2$, so $BSO\langle v_2 \rangle = BSpin$ and $BSO\langle \delta v_2 \rangle = BSpin^c$. The map $\psi_2: \pi_1(BSO\langle v_2(2^\infty) \rangle) \to \mathbb{Z}/2^\infty$ is an isomorphism:

$$BSpin \to BSO\langle v_2(2^\infty) \rangle \xrightarrow{\psi_2} B\mathbb{Z}/2^\infty$$

displays the universal cover.

It follows from Silly Remark 3.2 that

Theorem 4.1 (Bohr and Lee & Li). Every even, compact 4 manifold M has a cyclic cover which is Spin: in particular, the cover corresponding to the kernel of $\psi_2: \pi_1(M) \to \mathbb{Z}/2^{\infty}$ is Spin.

and that

Theorem 4.2. If M is an even 4 manifold, the cover corresponding to a subgroup $\Gamma \subset \pi_1(M)$ is Spin if and only if the composition

$$_{2}H_{1}(\Gamma;\mathbb{Z}) \rightarrow _{2}H_{1}(\pi_{1}(M);\mathbb{Z}) \rightarrow \mathbb{Z}/2^{\infty}$$

is trivial.

Less silly but still true

Theorem 4.3. Let π be any finitely present group and let $h: \pi \to \mathbb{Z}/2^{\infty}$ be any homomorphism. Then there exist even, compact 4 manifolds with $\pi_1(M) = \pi$ and with ψ_2 for that even structure being h.

Since the universal cover of an even 4 manifold is Spin, Hopf shows that v_2 comes from $H^2(\pi; \mathbb{Z}/2\mathbb{Z})$. Take $v \in H^2(\pi; \mathbb{Z}/2\mathbb{Z})$ to be the composition

$$H_2(\pi; \mathbb{Z}/2\mathbb{Z}) \xrightarrow{\delta} H_1(\pi; \mathbb{Z}) \xrightarrow{h} \mathbb{Z}/2^\infty$$

and results in Teichner's thesis construct an M with the desired properties.

Both Bohr and Lee & Li construct examples of even 4 manifolds for which the cover corresponding to the kernel of ψ_2 is the minimal cyclic cover which is Spin.

For completeness, note that the semi-dihedral group of order 16 has $H_1(SD_{16}; \mathbb{Z}) \cong \mathbb{Z}/4\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$ and one can find examples for which ψ_2 is the projection onto $\mathbb{Z}/4\mathbb{Z}$. The evident 4-fold cover is certainly Spin, but so is the 2-fold sub-cover with group $\mathbb{Z}/8\mathbb{Z} \subset SD_{16}$. In fact, given any even 4 manifold with $\pi_1 \cong SD_{16}$, the double cover with fundamental group $\mathbb{Z}/8\mathbb{Z}$ is Spin.

What can one say about the converse to the Bohr, Lee & Li result? If M^4 has a cyclic Spin cover, must M be even?

To begin more generally, suppose $\widetilde{M} \to M^4 \to B\pi$ is a cover and that \widetilde{M} is Spin. Consider the Serre spectral sequence with $\mathbb{Z}/2\mathbb{Z}$ coefficients.

 $H^0(B\pi ; H^2(\widetilde{M} ; \mathbb{Z}/2\mathbb{Z}))$ $H^0(B\pi ; H^1(\widetilde{M} ; \mathbb{Z}/2\mathbb{Z})) H^1(B\pi ; H^1(\widetilde{M} ; \mathbb{Z}/2\mathbb{Z}))$ $H^0(B\pi ; \mathbb{Z}/2\mathbb{Z}) \qquad H^1(B\pi ; \mathbb{Z}/2\mathbb{Z}) \qquad H^2(B\pi ; \mathbb{Z}/2\mathbb{Z}) \qquad H^3(B\pi ; \mathbb{Z}/2\mathbb{Z})$ The total degree two line is in red. Compare this spectral sequence to the one with $\mathbb{Z}/2^{\infty}$ coefficients. **Lemma 4.4.** If $H_2(B\pi; \mathbb{Z})$ is odd torsion, $H^2(B\pi; \mathbb{Z}/2^{\infty}) = 0$. **EG 4.5.** $H^2(B\pi; \mathbb{Z}/2^{\infty}) = 0$ for $\pi = \mathbb{Z}/2^r \mathbb{Z}$, D_{2r+2} , Q_{2r+2} and SD_{2r+3} . If $H_1(M;\mathbb{Z})$ has no 2-torsion, then $H^1(M;\mathbb{Z}/2^\infty)$ is 2-divisible and hence $H^1(B\pi; H^1(M; \mathbb{Z}/2^\infty)) = 0$ if π is a finite 2-group.

Theorem 4.6. If $\widetilde{M} \to M \to B\pi$ is a cover with \widetilde{M} Spin, and if $H_1(\widetilde{M};\mathbb{Z})$ has no 2-torsion and if π is a finite 2-group with $H^2(B\pi;\mathbb{Z}/2^\infty) = 0$, then M is even.

To construct examples for which M is not even, note

Theorem 4.7. If $\widetilde{M} \to M \to B\pi$ is a cover with \widetilde{M} Spin, if $H_1(\widetilde{M};\mathbb{Z}) = \bigoplus_r \mathbb{Z}/2\mathbb{Z}$ and if $v_2(M)$ is non-zero in $E_{\infty}^{1,1}$, then M is not even.

This follows since $H_1(\widetilde{M}; \mathbb{Z}) = \bigoplus_r \mathbb{Z}/2\mathbb{Z}$ implies $H^1(\widetilde{M}; \mathbb{Z}/2\mathbb{Z}) \to H^1(\widetilde{M}; \mathbb{Z}/2^\infty)$ is an isomorphism.

EG 4.8. Use results in Teichner's thesis to construct an M^4 with $\pi_1 = \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$ and $v_2 = x \cup y$ where $x, y \in H^1(B\pi; \mathbb{Z}/2\mathbb{Z})$ are a basis. Then M is not even but it has a Spin double cover.

One can repackage these results as results on free actions of finite groups on Spin 4 manifolds.

5 Group actions on Spin 4 manifolds

Throughout this section, let M^4 be a compact, closed, Spin 4 manifold and let G be a finite group acting freely on M.

If G has odd order, M/G is Spin so $16 \cdot |G|$ divides $\sigma(M)$ by Rochlin's Theorem.

Theorem 5.1. Let $\sigma(M)$ denote the signature of M. If $H_1(M;\mathbb{Z})$ has no 2-torsion and if $H_2(BG;\mathbb{Z}) = 0$, then $8 \cdot |G|$ divides $\sigma(M)$.

Some hypotheses were omitted in the lecture for the next three results.

Theorem 5.2. Let $\sigma(M)$ denote the signature of M. If the 2-Sylow subgroup of G is $\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$ and if $H_1(M;\mathbb{Z})$ has no 2-torsion then $4 \cdot |G|$ divides $\sigma(M)$.

Theorem 5.3. Assume the hypotheses of 5.2. Further assume

 $\sigma(M) \equiv 4 \cdot |G| \mod 8 \cdot |G|$

then M/G is odd. If $v_2(M/G) \in H^2(BG; \mathbb{Z}/2\mathbb{Z})$ and if $\iota: \mathbb{Z}/2\mathbb{Z} \subset G$ is any subgroup of order 2, $\iota^*(v_2(M/G)) \neq 0$.

EG 5.4. Let K^4 be a K3 surface, a simply-connected algebraic surface of signature 16. Habegger constructed free involutions on K as did Enriques. The quotient $K/\mathbb{Z}/2\mathbb{Z}$ is an even manifold of signature 8 as required by Theorem 5.1.

Hitchin constructed a free action of $G = \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$ on K so Theorem 5.2 is best possible. In order for Theorem 5.3 to hold, $v_2(K/G) \in H^2(G; \mathbb{Z}/2\mathbb{Z})$ is $x^2 + y^2 + xy$.

The conditions in Theorem 5.3 are hard to achieve. If $G = \bigoplus_{3} \mathbb{Z}/2\mathbb{Z}$, then for any $\alpha \in H^2(BG; \mathbb{Z}/2\mathbb{Z})$ there exists an $\iota: \mathbb{Z}/2\mathbb{Z} \subset G$ such that $\iota^*(\alpha) = 0$.

Theorem 5.5. If $H_1(M;\mathbb{Z})$ has no 2-torsion and if $\bigoplus_3 \mathbb{Z}/2\mathbb{Z} \subset G$ is the 2-Sylow subgroup then $8 \cdot |G|$ divides $\sigma(M)$.

8 Even bordism

In dimension 4k, even bordism consists of 4k manifolds with a $v_{2k}(2^{\infty})$ -structure modulo those which bound a 4k + 1-manifold with a $v_{2k}(2^{\infty})$ -structure which restricts. Even bordism is easy to relate to δv_{2k} -bordism: there is a fibration

$$BSO\langle v_{2k}(2^{\infty})\rangle \to BSO\langle \delta v_{2k}\rangle \to K\left(\mathbb{Z}\left[\frac{1}{2}\right], 2k\right)$$

and a spectral sequence

$$H_p\left(K\left(\mathbb{Z}\left[\frac{1}{2}\right], 2k\right); MSO_q\langle v_{2k}(2^\infty)\rangle\right) \Rightarrow MSO_{p+q}\langle \delta v_{2k}\rangle$$

By Serre mod- \mathcal{C} theory $MSO_*\langle v_{2k}(2^\infty)\rangle \to MSO_*$ is a rational isomorphism with kernel and cokernel 2-torsion; similarly, $MSO_*\langle \delta v_{2k}\rangle \to MSO_*(K(\mathbb{Z}, 2k))$ is a rational isomorphism with kernel and cokernel finitely-generated 2-torsion.

It follows from the spectral sequence that

$$MSO_{4k}\langle v_{2k}(2^{\infty})\rangle \to MSO_{4k}\langle \delta v_{2k}\rangle$$

is injective.

In dimension 4 the calculation can be done in many ways.

Theorem 8.1. $MSO_4(v_2(2^\infty)) \cong \mathbb{Z}$ with the signature divided by 8 giving the isomorphism.

One can further check that $MSO_3\langle v_2(2^\infty)\rangle \cong \mathbb{Z}/2^\infty$ and $MSO_5\langle v_2(2^\infty)\rangle \cong \mathbb{Z}/2^\infty \oplus \mathbb{Z}/2^\infty$.

References

- [1] Christian Bohr, On the signatures of even 4-manifolds, available at arXiv:math.GT/0002151.
- [2] R. Lashof, *Poincaré duality and cobordism*, Trans. Amer. Math. Soc. **109** (1963), 257–277.MR0156357 (27 #6281)
- [3] Nathan Habegger, Une variété de dimension 4 avec forme d'intersection paire et signature -8, Comment. Math. Helv. 57 (1982), no. 1, 22-24 (French).MR672843 (83k:57018)
- [4] Nigel Hitchin, Compact four-dimensional Einstein manifolds, J. Differential Geometry 9 (1974), 435–441. MR0350657 (50 #3149)
- [5] Ronnie Lee and Tian-Jun Li, Intersection forms of non-spin four manifolds, Math. Ann. **319** (2001), no. 2, 311–318.MR1815113 (2001m:57027)
- [6] F. van der Blij, An invariant of quadratic forms mod 8, Nederl. Akad. Wetensch. Proc. Ser. A 62 = Indag. Math. **21** (1959), 291–293.MR0108467 (21 #7183)
- [7] Peter Teichner, On the signature of four-manifolds with universal covering spin, Math. Ann. **295** (1993), no. 4, 745–759.MR1214960 (94h:57042)