Exotic stratifications

Laurence R. Taylor University of Notre Dame June 19, 2008

Joint with: Bruce Williams, Shmuel Weinberger and Bruce Hughes. If (X, A) and (Y, B) are two pairs, then a map $f: (X, A) \to (Y, B)$ is said to be *strict*, or *stratum*preserving, if $f(X \setminus A) \subseteq Y \setminus B$ and $f(A) \subseteq B$. The subspace A of X is said to be forward tame if there exists a neighborhood N of A in X and a strict map $H: (N \times I, A \times I \cup N \times \{0\}) \to (X, A)$ such that H(x, t) = x for all $(x, t) \in A \times I$ and H(x, 1) = x for all $x \in N$.

Let $\operatorname{Map}_{s}((X, A), (Y, B))$ denote the space of strict maps with the compact-open topology. The *homo*topy link of A in X is

 $\begin{aligned} \operatorname{holink}(X,A) &= \operatorname{Map}_{\mathrm{s}}\big(([0,1],\{0\}),\ (X,A)\big) \ . \end{aligned}$ Evaluation at 0 defines a map $q \colon \operatorname{holink}(X,A) \to A$ which should be thought of as a model for a normal fibration of A in X.

The pair (X, A) is said to be a homotopically stratified pair if A is forward tame in X and if $q: \operatorname{holink}(X, A) \to A$ is a fibration. If in addition, the fiber of $q: \operatorname{holink}(X, A) \to A$ is finitely dominated, then (X, A) is said to be homotopically stratified with finitely dominated local holinks. If the strata A and $X \setminus A$ are manifolds (without boundary), X is a locally compact separable metric space, and (X, A) is homotopically stratified with finitely dominated local holinks, then (X, A) is a manifold stratified pair.

- (1) From a smooth embedding $B \to W$ we construct a vector bundle over B of dimension k, the codimension of the embedding.
- (2) Vector bundles over B of dimension k are classified by maps of B into a classifying space.
- (3) There is a smooth embedding of B into the total space of any vector bundle.
- (4) There is an embedding of the total space of the vector bundle into W which is unique up to isotopy.
- (5) All dimension k vector bundles over B occur as a normal bundle to some codimension k embedding.

Define a *controlled map* from $q: Y \to B$ to $p: X \to B$: $F: q \to p$ to be a level-preserving map $F: Y \times [0, 1) \to X \times [0, 1)$

such that the map

 $\hat{F}: Y \times [0,1] \to B \times [0,1]$

is continuous where

$$\hat{F}(y,t) = \left(p \times 1_{[0,1)}\right) \circ F(y,t)$$

if $0 \leq t < 1$ and

$$\hat{F}(y,1) = \left(q(y),1\right)$$

Define a *controlled map* from $q: Y \to B$ to $p: X \to B$: $F: q \to p$ to be a level-preserving map $F: Y \times [0, 1) \to X \times [0, 1)$

such that the map

 $\hat{F}: Y \times [0,1] \to B \times [0,1]$

is continuous where

$$\hat{F}(y,t) = \left(p \times 1_{[0,1)}\right) \circ F(y,t)$$

if $0 \leq t < 1$ and

$$\hat{F}(y,1) = (q(y),1)$$

An approximate fibration is a map $p: X \to B$ with the controlled homotopy lifting property. A manifold approximate fibration or **MAF** is a map $p: M \to B$ where M and B are paracompact Hausdorff manifolds without boundary, p is a proper map, and p is an approximate fibration. An approximate fibration is a map $p: X \to B$ with the controlled homotopy lifting property. A manifold approximate fibration or **MAF** is a map $p: M \to B$ where M and B are paracompact Hausdorff manifolds without boundary, p is a proper map, and p is an approximate fibration.

The *fibre germ* of a **MAF** $p: M \to B$ is the **MAF** given by restriction

$$\mathfrak{p}\colon p^{-1}(U)\to U$$

where $U \subset B$ is an open ball.

An approximate fibration is a map $p: X \to B$ with the controlled homotopy lifting property. A manifold approximate fibration or **MAF** is a map $p: M \to B$ where M and B are paracompact Hausdorff manifolds without boundary, p is a proper map, and p is an approximate fibration.

The *fibre germ* of a **MAF** $p: M \to B$ is the **MAF** given by restriction

$$\mathfrak{p}\colon p^{-1}(U)\to U$$

where $U \subset B$ is an open ball.

For a fixed fibre germ $\mathfrak{p}: V \to \mathbb{R}^i$, there is a classifying space $\mathbf{MAF}(\mathfrak{p})$ and a fibration

 $\mu\colon \mathbf{MAF}(\mathfrak{p})\to \mathbf{BTOP}(i)$

The fibre of μ is $\mathbf{BTOP}^c(V \to \mathbb{R}^i)$ The space of **MAF**'s over B with fibre germ \mathfrak{p} is homotopy equivalent to the space of lifts

 $\begin{array}{c} \mathbf{MAF}(\mathfrak{p}) \\ \swarrow \\ \mu \\ B \xrightarrow{\tau_B} \mathbf{BTOP}(i) \end{array}$

where τ_B classifies the tangent bundle to B provided dim $V \ge 6$.

Let $p: M \to B \times \mathbb{R}$ be a map. The *tear-drop* of p is the set $T(p) = M \perp \square B$ with the tear-drop topology. The tear-drop topology is the minimal topology such that $M \subset T(p)$ is an open embedding and the function $c: T(p) \to B \times (-\infty, \infty]$ is continuous where c(x) = p(x) for all $x \in M$ and $c(b) = (b, \infty)$ for all $b \in B$.

Theorem 4.1. The tear-drop T(p) is a manifold stratified space with two strata if and only if p is a **MAF**.

Theorem 4.2. If (X, B) is a manifold stratified space with two strata with dim $X \ge 6$, then there is a **MAF** $p: M \to B \times \mathbb{R}$ and an embedding $T(p) \subset X$ which is the identity on B and whose image contains a neighborhood of B.

Actually with more work, Hughes proved 4.1 and 4.2 without the two-strata hypothesis.

(5.3)
$$\begin{array}{ccc} \mathbf{MAF}(\mathfrak{p}) & \xrightarrow{\iota} & \mathbf{MAF}(\mathfrak{p} \times 1_{\mathbb{R}}) \\ \downarrow & & \downarrow \\ \mathbf{BTOP}(k) & \to & \mathbf{BTOP}(k+1) \end{array}$$

$$\mathbf{BTOP}^{c}(\mathfrak{p}) \to \mathbf{BTOP}^{c}(\mathfrak{p} \times 1_{\mathbb{R}}) \\
 \downarrow \qquad \qquad \downarrow \\
 \mathbf{MAF}(\mathfrak{p}) \to E(\mathfrak{p} \times 1_{\mathbb{R}}) \\
 \downarrow \qquad \qquad \downarrow \\
 \mathbf{BTOP}(k) = \mathbf{BTOP}(k)$$

Theorem 5.5. If $p: M \to B \times \mathbb{R}$ is a **MAF**, the tear-drop $T(p \times 1_{\mathbb{R}})$ has a mapping cylinder neighborhood.

Corollary 5.6. If (X, B) is a two-stratum manifold stratified space with tear-drop neighborhood T(p) then $(X \times \mathbb{R}, B \times \mathbb{R})$ is a two-stratum manifold stratified space with a mapping cylinder neighborhood. We say the fibre germ is *trivial* when it is of the form $\mathfrak{p}: V \times \mathbb{R}^i \to \mathbb{R}^i$ where V is some compact manifold without boundary.

We say the fibre germ is *trivial* when it is of the form $\mathfrak{p}: V \times \mathbb{R}^i \to \mathbb{R}^i$ where V is some compact manifold without boundary.

When the fibre germ is trivial, Anderson & Hsiang show that the fibre is the space of bounded concordances, $C^b(V \times \mathbb{R}^i \to \mathbb{R}^i)$ is the fibre of the stabilization map

 $\mathbf{MAF}(\mathfrak{p}) \to E(\mathfrak{p} \times 1_{\mathbb{R}})$

When the fibre germ is trivial, Anderson & Hsiang show that the fibre is the space of bounded concordances, $C^b(V \times \mathbb{R}^i \to \mathbb{R}^i)$ is the fibre of the stabilization map

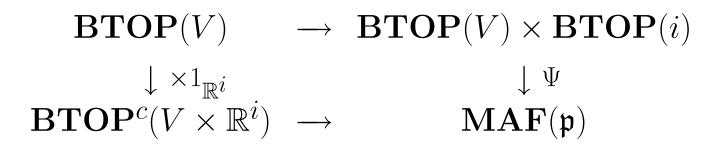
 $\mathbf{MAF}(\mathfrak{p}) \to E(\mathfrak{p} \times 1_{\mathbb{R}})$

Theorem 5.7. If i+dim $V \ge 6$, then there exists a group isomorphism

 $\alpha_k \colon \pi_k \big(C^b(V \times \mathbb{R}^i \to \mathbb{R}^i) \big) \longrightarrow$ $\begin{cases} \operatorname{Wh}_1(\mathbb{Z}\pi_1 F) & \text{if } k = i - 1 \\ \widetilde{K}_0(\mathbb{Z}\pi_1 F) & \text{if } k = i - 2 \\ K_{2+k-i}(\mathbb{Z}\pi_1 F) & \text{if } 0 \leqslant k < i - 2. \end{cases}$

Corollary 5.8. (Edwards) If $B \subset W$ is locallyflat and dimension $B \ge 5$ then the embedding has a mapping cylinder neighborhood.

$\begin{array}{cccc} \mathbf{BTOP}(V) & \longrightarrow & \mathbf{BTOP}(V) \times \mathbf{BTOP}(i) \\ & \downarrow \times 1_{\mathbb{R}^{i}} & & \downarrow \Psi \\ \mathbf{BTOP}^{c}(V \times \mathbb{R}^{i}) & \longrightarrow & \mathbf{MAF}(\mathfrak{p}) \end{array}$



Theorem 6.9. For each integer $m \ge 5$, there exists a closed compact m-manifold V and a **MAF** over $p: W \to S^1$ with fibre-germ $\mathfrak{p}: V \times \mathbb{R} \to \mathbb{R}$ such that the **MAF** over S^1 with fibre-germ $V \times \mathbb{R}^i \times \mathbb{R} \to \mathbb{R}^i \times \mathbb{R}$ is not controlled homeomorphic to a fibre bundle for any integer $i \ge 0$. A **MAF** $p: M \to S^1$ with trivial fibre-germ, is determined by an element $h: \pi_0(\mathbf{TOP}^b(V \times \mathbb{R}))$.

There exists a crossed homomorphism

 $\beta \colon \pi_0 \big(\mathbf{TOP}^b(V \times \mathbb{R}) \big) \to \mathrm{Wh}(\mathbb{Z}\pi_1 V)$ defined by using the bounded homeomorphism to

construct an inertial h-cobordism and then taking the torsion.

Theorem 7.10. Let $h \in \pi_0(\mathbf{TOP}^b(V \times \mathbb{R}))$ and let $p: M \to S^1$ be the associated **MAF** with dim $M \ge 6$.

(1) The following are equivalent.

(a) p is controlled homeomorphic to a fibre bundle projection with fibre V.
(b) β(h) = 0 ∈ Wh(Zπ₁V).

(2) The following are equivalent.
(a) p × 1_ℝ is controlled homeomorphic to a fibre bundle projection with fibre V.

(b) $\beta(h) \in Im N \subset Wh(\mathbb{Z}\pi_1 V)$.

(3) There exists a subgroup G of $K_0(\mathbb{Z}\pi_1 V)$ and a function

 $N_0: G \to \operatorname{Wh}(\mathbb{Z}\pi_1 V) / \operatorname{Im} N$

such that the following are equivalent. (a) $p \times 1_{\mathbb{R}^2}$ is controlled homeomorphic to a fibre bundle projection with fibre V. (b) $\beta(h) \in Wh(\mathbb{Z}\pi_1 V)/ImN$ is in $N_0(G)$. **Theorem 8.11.** Let $h \in \pi_0(\mathbf{TOP}^b(V \times \mathbb{R}))$ and let $p: M \to S^1$ be the associated **MAF** with dim $M \ge 6$.

- (1) The following are equivalent.
 - (a) *p* is controlled homeomorphic to a fibre bundle projection.
 - (b) $\beta(h) \in Im(1-h_*) \subset Wh(\mathbb{Z}\pi_1 V).$
- (2) The following are equivalent.
 (a) p × 1_ℝ is controlled homeomorphic to a fibre bundle projection.

(b) $\beta(h) \in Im N + Im (1 - h_*) \subset Wh(\mathbb{Z}\pi_1 V).$

- (3) If $K_k(\mathbb{Z}\pi_1 V) = 0$ for $k \leq 0$ then the following are equivalent.
 - (a) $p \times 1_{\mathbb{R}^i}$ is controlled homeomorphic to a fibre bundle projection.
 - (b) $\beta(h) \in Im N + Im (1 h_*) \subset Wh(\mathbb{Z}\pi_1 V).$