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For any space X , F (X, k) ⊂ Xk denotes k distinct points in X .

Theorem 1.1 (Fadell, Neuwirth 1962). For a manifold M without boundary

F (M −Qk) → F (M, k + !)
π−→ F (M, !)

is a fibration where π is the restriction of any projection from k + ! points to
! points and Qk is a subset of k distinct points in M .

Let M = Rm. Then F (Rm, 2) = Rm × (Rm − {0}). A21 ∈ Hm−1 (F (Rm, 2); Z).

Definition 1.2. Let π : {1, 2}→ {1, 2, · · · , k} be injective and use π to denote
the corresponding projection π : Mk → M 2. If i = π(2) and j = π(1), define

Aij = π∗A21

Remarks 1.3. A2
ij

= 0 and Aij = (−1)m−1Aji.
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Theorem 1.4 (Fred). H∗(F (Rm, k); Z
)

is the free abelian group generated
by the admissible monomials Ai1j1

· · · Airjr
where a monomial is admissible

provided is > js for 1 ! s ! r and i1 < · · · < ir.

When k = 3 the generators in degree 2(m − 1) are A21A31 and A21A32. What is
A31A32?

Observation 1.5 (Fred). There exists exactly one Σ3 invariant relation

A31A32 = A21A32 − A21A31 .

This is the famous three-term relation.

Theorem 1.6 (Fred). As an algebra H∗(F (Rm, k); Z
)

is the graded commu-
tative algebra on the

(k
2

)
-classes Aij, 1 ! j < i ! k of degree m− 1 subject to

the relations

1. A2
ij

= 0

2. ArtArs = AstArs − AstArt .
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Theorem 1.6 (Fred). As an algebra H∗(F (Rm, k); Z
)

is the graded commu-
tative algebra on the

(k
2

)
-classes Aij, 1 ! j < i ! k of degree m− 1 subject to

the relations

1. A2
ij

= 0

2. ArtArs = AstArs − AstArt .

The equivariant structure is given by

σ∗(Aij) =

{
Aσ−1(i)σ−1(j) if σ−1(i) > σ−1(j)

(−1)m−1Aσ−1(j)σ−1(i) if σ−1(i) < σ−1(j)

Remark 1.7. As equivariant algebras there are really only two cases, m even and
m odd. Let A(k) = H∗(F (R3, k); Z). Tensored with Z/2Z there is just one case.

Hereafter most of the discussion will be devoted to the
case A(k) with only occasional remarks about the case in
which m is even.
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To every monomial in the Aij associate a graph and vice versa as follows.

Example: Let k = 6 and consider A31A42A43A51A52.
Put down 6 vertices and add edges.

A31A42A43A51A52

1

2

3
4

5 6

To every graph Γ on vertex set {1, · · · , k}
associate the monomial AΓ ∈ A(k)

and vice-versa.
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Edges are naturally ordered:

A31A42A43A51A52

1

2

3
4

5 6

Observation 2.1. AΓ is admissible if and only if no vertex has more than one
incoming edge.

Theorem 2.2 (C-T 1993). AΓ = 0 if and only if H1(Γ; Z) != 0.

Remark 2.3. If Γ is admissible then H1(Γ; Z) = 0.
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What does multiplication look like graphically?
The simplest guess is correct - just take the collection of the edges.

Example:

∗ =

1

2

3
4

5 6

1

2

3
4

5 6

1

2

3
4

5 6

A product of two admissibles which vanishes.
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Examples:
1.

∗ =

1

2

3
4

5 6

1

2

3
4

5 6

1

2

3
4

5 6

A product of two admissibles which vanishes.

2.

∗ =

1

2

3
4

5 6

1

2

3
4

5 6

1

2

3
4

5 6

Observation 2.4. The monomial associated to any graph is a product of mono-
mials associated to maximal subgraphs each of which is maximal with respect to
the property that the union of the edges is connected.

298



Observation 2.4 suggests studying the graphs which are connected. The top group
of A(k) occurs in dimension 2(k − 1) and has a basis consisting of the monomials
associated to admissible graphs which are connected. It will be called the top
component representation and denoted A(k)top.

Remark 2.5. The top component is the dual to the representation often denote
Liek.

In [C-T 1992] the entire representation of Σk on H∗(F (Rm, k); Z
)

was built out
of the top component representations for ! ! k, tensor products and inductions
from certain subgroups called Young subgroups.

One can also prove results using induction from graphs on vertex set {1, · · · , k−1}
and some well-chosen maps.

1. ι0 : A(k − 1) → A(k) given by adding a disjoint vertex k

2. ιr : A(k − 1) → A(k) 1 ! r < k given by adding an edge from r to k

Theorem 2.6. Both maps below are isomorphisms

k−1
⊕
r=0

A(k − 1)
⊕ιr−−→ A(k)

k−1
⊕
r=1

A(k − 1)top
⊕ιr−−→ A(k)top
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What does a three-term relation look like graphically?
Look at a vertex and 2 edges with distinct initial points coming into it. Add a
triangle to get a complex K.

K

!

Γ
The three-term relation comes from working around the triangle.

+ − = 0

+ − = 0AΓ AΓ+ AΓ−
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Γ Γ+ Γ−

Theorem 2.7 (C-T 1993). H∗(Γ) = H∗(Γ+) = H∗(Γ−)

Proof. = H∗(K).
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Γ Γ+ Γ−

Theorem 2.7 (C-T 1993). H∗(Γ) = H∗(Γ+) = H∗(Γ−)

Define the incoming weight of Γ, ιin(Γ), to be the sum of the vertices of the ends
of all the edges: define the outgoing weight of Γ, ιout(Γ), to be the sum of the
vertices of the initial vertices of all the edges.

Example: Γ =

1

2

3
4

5 6

ιin(Γ) = 21 and ιout(Γ) = 9.
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Γ Γ+ Γ−

H∗(Γ) = H∗(Γ+) = H∗(Γ−)

ιin(Γ) > ιin(Γ+) = ιin(Γ−) > 0

ιout(Γ) = ιout(Γ−) > ιout(Γ+) > 0

This shows AΓ = 0 if and only if H1(Γ) #= 0.

Definition 2.8. For any graph Γ with H1(Γ) = 0, define the admissible expan-
sion for Γ to be the unique formula in A(k)

AΓ =
∑

Λ

αΛ(Γ) AΛ

where the sum runs over all admissible graphs.
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Given σ ∈ Σk and a graph Γ define σ∗(Γ) to be the graph where the vertices are
relabeled so that the new vertices are related to the old by σ(vnew) = vold.

Let σ = (23)(156) ∈ Σ6.

1

2

3

4

5 6

6

3

2

4

1 5

Γ σ∗(Γ)

One edge has its orientation reversed so Aσ∗(Γ) = (−1) σ∗
(
AΓ

)
.

In general, if r(σ, Γ) edges have their orientations reversed,

Aσ∗(Γ) = (−1)r(σ,Γ) σ∗
(
AΓ

)
.
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In general, σ∗(Γ) is not admissible even if Γ is, so understanding the Σk action is
more or less equivalent to understanding the admissible expansion.

Theorem 2.9. Each coefficient in the admissible expansion of Γ is either 0
or ±1.

Remark 2.10. In the admissible basis, the matrix for σ∗ has all entries 0 or ±1.

To prove this result, several formulae involving the expansion of Akj1
· · ·Akjr

in
terms of admissible monomials, where j1 < · · · < jr < k, are needed.

To describe the first formula, let P =
{
"1, · · · , "t

}
⊂

{
2, · · · , r

}
. Define

AP =
(
Aj2j1

Aj3j1
· · ·Aj!1j1

)
·
(
Aj!1+1j!1

· · ·Aj!2j!1

)
· · ·

(
Aj!t+1j!t

· · ·Ajrj!t

)

and define ΛP to be the corresponding graph.
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P =
{
!1, · · · , !t

}
⊂

{
2, · · · , r

}

AP =
(
Aj2j1

Aj3j1
· · · Aj!1j1

)
·
(
Aj!1+1j!1

· · · Aj!2j!1

)
· · ·

(
Aj!t+1j!t

· · · Ajrj!t

)

ΛP =

j1

j2 j!1

j
!1+1 j!2

j
!2+1 j!3

The following is immediate.

Lemma 2.11. For any P as above

1. ΛP is admissible and connected;

2. AP comes from the image of A(k − 1).
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Definition 2.12. For each r ! 1 and each !, 1 " ! " r define a collection of
subsets of {2, · · · , r} inductively as follows: P1(1) = {∅} and inductively Pr(!) =
Pr−1(!) for ! < r and

Pr(r) =
r−1
∪
!=1

∪
P∈Pr−1(!)

{
P ∪ {r}

}

Example 2.13. For example Pr(1) = {∅} for r ! 1; Pr(2) =
{
{2}

}
for r ! 2;

Pr(3) =
{
{3}, {2, 3}

}
for r ! 3; Pr(4) =

{
{4}, {2, 4}, {3, 4}, {2, 3, 4}

}
for r ! 4;

etc. Note that for ! ! 2, Pr(!) has 2!−2 elements.

Proposition 2.14.

(∗) Akj1
· · ·Akjr

=
r∑

!=1

( ∑

P∈Pr(!)

(−1)
r−1+|P |

AP

)
Akj!

where Pr(!) is defined in 2.12. Each APAkj!
is admissible so up to distribu-

tivity this is the admissible expansion.

Remark 2.15. The coefficient of Akj1
is ±AΛ∅, a single graph.
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Here is another way to describe Akj1
· · ·Akjr

:

Proposition 2.16. Let τ" = (j"j1) be the indicated transposition. Then

Akj1
· · ·Akjr

=
r∑

"=1

± Aτ∗"(Λ∅) Akj"
.

Λ∅ =

j1

j2 jr

Theorem 2.9 can now be proved inductively.
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A further result on the structure of the admissible expansion is

Theorem 2.17. The sum of the coefficients in the admissible expansion for
any graph Γ is either 0 or 1 and it is 1 if and only if Γ is admissible.
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Given any vector bundle ξ over a space X form the fiberwise configuration spaces:
the bundle with base X and fibre F (Rm, k).

F (Rm, k)→ F (ξ, k)→ X

The spectral sequence to calculate the cohomology of the total space behaves
similarly to the spectral sequence used to calculate the cohomology of the sphere
bundle.

A useful example is to let X = CP∞ and to let ξ = H ⊕ ε1, where H is the Hopf
line bundle and ε1 is a trivial real line bundle.

One sees the that spectral sequence collapses, so let

B(k) = H∗(F (H ⊕ ε1, k); Z) = A(k)[q]

be the answer where q is the polynomial class in degree 2 coming from CP∞.

The algebra and equivariant structure are not given by the trivial extension to the
polynomial algebra.
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Here are the relevant formulae for B(k).

1. σ∗(q) = q

2. A2
ij

= qAij

3. σ∗
(
Aij

)
=

{
Aσ−1(i)σ−1(j) if σ−1(i) > σ−1(j)

−Aσ−1(j)σ−1(i) + q if σ−1(i) < σ−1(j)

4. ArtArs = AstArs − AstArt + qArt for t < s < r.

Observation 2.18. If B(k) is filtered by powers of q, the associated graded is
A(k)⊗ Z[q] as an equivariant algebra.

Theorem 2.19. If ξ ⊕ ε1 is a vector bundle over X whose dimension is odd

then H∗(F (ξ ⊕ ε1, k); Z) is given by regrading B(k) so the Aji and the q have

degree the dimension of ξ; forming H∗(X ; Z)⊗B(k) and adding the relation

q equals the Euler class of ξ.

Remark 2.20. Something similar happens when m is even.
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The relation between monomials and graphs still holds and there is still an admis-
sible expansion, but now the coefficients αΛ(Γ) are polynomials in q with integer
coefficients.

1. For any graph Γ, AΓ != 0.

Homework: Show that the admissible expansion for the complete graph on k
vertices is a power of q times the graph with one edge from 1 to each of 2, . . . , k.
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The relation between monomials and graphs still holds and there is still an admis-
sible expansion, but now the coefficients αΛ(Γ) are polynomials in q with integer
coefficients.

1. For any graph Γ, AΓ != 0.

2. If H1(Γ) = Zb1(Γ) then qb1(Γ) divides AΓ and qb1(Γ)+1 does not.

Question: What interesting can you say about the highest power of q occurring
in the admissible expansion of Γ?
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The relation between monomials and graphs still holds and there is still an admis-
sible expansion, but now the coefficients αΛ(Γ) are polynomials in q with integer
coefficients.

1. For any graph Γ, AΓ != 0.

2. If H1(Γ) = Zb1(Γ) then qb1(Γ) divides AΓ and qb1(Γ)+1 does not.

3. The map B(k)→ A(k) is Σk equivariant but is not equivariantly split.
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