Bespoke Massey triple products

Laurence R. Taylor

University of Notre Dame

International Conference on Manifolds Groups and Homotopy Sabhal Mòr Ostaig, Isle of Skye, Scotland

June 21

Outline

Basic setup and notation

Definition/Recall of the products

Discussion of the products

Symmetry

The Jacobite diversion

Pairings

Duality

Examples

Because of visibility problems at the back of the room there is a large amount of space at the bottom of many slides.

Basic setup and notation

Fix a set with four elements $\{0, 1, 2, 3\}$ and a PID Λ . Let \mathbf{R} denote the following basic data. There is a \mathbb{Z} -graded cochain complex R of Λ modules with differential d of degree +1. Require an associative multiplication and a \cup_1 product satisfying Hirsch's formula. For each subset $K \subset \{0, 1, 2, 3\}$ there is to be a subcomplex R_K such that each R_K is a two sided ideal for the product and the \cup_1 product. Require $R_{\emptyset} = R$ and $R_{K_1 \cup K_2} = R_{K_1} \cap R_{K_2}$. Write HR_K for the cohomology of R_K .

Cochains in R_K will always be homogeneous. Write |x| for the grading of x in R (and hence in any R_K) and write $x \in HR_K^{|x|}$. Given two sets of cohomology classes $\{x_1, \dots, x_k\}$, $x_i \in HR_{K_i}^{|x_i|}$, and $\{y_1, \dots, y_\ell\}$, $y_i \in HR_{L_i}^{|y_i|}$, write $\{x_1, \dots, x_k\} \cup \{y_1, \dots, y_\ell\} = 0$ if all the $x_i \cup y_j = 0 \in HR_{K_i \cup L_i}^{|x_i|+|y_j|}$.

Definition/Recall of the products

To define a Massey triple product start with elements $x_i \in HR_{\mathbf{i}}^{|x_i|}$, $i \in \{1, 2, 3\}$ such that $\{x_2\} \cup \{x_1, x_3\} = 0$. Pick representative cocycles $\hat{x}_i \in R_{\mathbf{i}}$ and cochains $X_{12} \in R_{12}$ and $X_{23} \in R_{23}$ such that $dX_{ij} = \hat{x}_i \cup \hat{x}_j$. Let $m = |x_1| + |x_2| + |x_3| - 1$. Check

$$X_{12} \cup \hat{x}_3 + (-1)^{|x_1|+1} \hat{x}_1 \cup X_{23}$$

is a cocycle in R_{123}^m . The Massey triple product $\langle x_1, x_2, x_3 \rangle \subset HR_{123}^m$ consists of all elements arising from this construction. It is a coset of the submodule $\mathcal{J}_{x_1,x_3}^m = x_1 \cup HR_{23}^{m-|x_1|} + HR_{12}^{m-|x_3|} \cup x_3$.

To define the four-fold product start with elements $x_i \in HR_i^{|x_i|}$, $i \in \{0, 1, 2, 3\}$ such that $\{x_0, x_2\} \cup \{x_1, x_3\} = 0$. Define

$$[x_0, x_1, x_2, x_3] = x_0 \cup \langle x_1, x_2, x_3 \rangle \in HR_{0123}^{m+|x_0|}$$

Note that $[x_0, x_1, x_2, x_3]$ is a single element.

Discussion of the products

- Say $\langle x_1, x_2, x_3 \rangle$ and $[x_0, x_1, x_2, x_3]$ are *defined* if the requisite cup products are 0.
- Say ⟨x₁, x₂, x₃⟩ is the triple product associated to the four-fold product [x₀, x₁, x₂, x₃].
- Theorem. If $[x_0, x_1, x_2, x_3] \neq 0$ then $\langle x_1, x_2, x_3 \rangle \neq 0$.
- Say x₀ is an *alibi witness* for the associated triple product if [x₀, x₁, x₂, x₃] is defined and not 0.
- Alibis often exist. In a compact manifold, oriented for a field Λ, any non-trivial triple product has an alibi x₀ so that [x₀, x₁, x₂, x₃] lands in the top dimension. Not immediately obvious but more later.

Naturality. If $f^* \colon \mathbf{R} \to \mathbf{S}$ is a map of basic data, then

(1)
$$f^*(\langle x_1, x_2, x_3 \rangle) \subset \langle f^*(x_1), f^*(x_2), f^*(x_3) \rangle$$

(2)
$$f^*([x_0, x_1, x_2, x_3]) = [f^*(x_0), f^*(x_1), f^*(x_2), f^*(x_3)]$$

Symmetry

The symmetric group on $\{0, 1, 2, 3\}$ acts on basic data sets. For $\sigma \in S_4$, let \mathbf{R}^{σ} have the same R_{\emptyset} as \mathbf{R} . Let $\mathbf{R}^{\sigma}_{\mathbf{i}} = \mathbf{R}_{(\mathbf{i})\sigma}$. If [a, b, c, d] and $\sigma \in S_4$ define $[a, b, c, d]_{\sigma}$ by writing $a = x_0$, $b = x_1$, $c = x_2$, $d = x_3$ and defining

$$[a,b,c,d]_{\sigma} = \left[x_{(\mathbf{0})\sigma}, x_{(\mathbf{1})\sigma}, x_{(\mathbf{2})\sigma}, x_{(\mathbf{3})\sigma} \right]$$

The elements (0123) and (13) generate a dihedral subgroup \mathcal{D}_8 of \mathcal{S}_4 such that, if $\sigma \in \mathcal{D}_8$ then $[x_0, x_1, x_2, x_3]_{\sigma}$ is defined if and only if $[x_0, x_1, x_2, x_3]$ is defined.

Definition. Given an ordered set of four integers, e_0 , e_1 , e_2 and e_3 , each e_i determines a parity $p_i \in \{0, 1\}$. These four parities can be arranged in a *parity vector*, $p_0p_1p_2p_3$ which can be read as a binary integer between 0 and 15. Conveniently these numbers are represented by a single hex digit between 0 and F. Let H denote the set of single hex digits. It is a four dimensional $\mathbb{Z}/2\mathbb{Z}$ vector space with addition given by bitwise-exclusive-or.

Define the parity vector function, $\mathfrak{p}(e_0, e_1, e_2, e_3) \in \mathbf{H}$ to be the single hex digit just described. Given four cohomology classes x_i , $i \in \{0, 1, 2, 3\}$ define

$$\mathfrak{p}(x_0, x_1, x_2, x_3) \in \mathbf{H} \qquad \text{using } e_{\mathbf{i}} = |x_i|$$

Theorem 1. There is a function $s: \mathcal{D}_8 \times \mathbf{H} \to \{0, 1\}$

 $[x_0, x_1, x_2, x_3]_{\sigma} = (-1)^{s_{\sigma}(\mathfrak{p}(x_0, x_1, x_2, x_3))} [x_0, x_1, x_2, x_3]$

If \mathcal{D}_8 acts on **H** by permuting the binary digits, s is an example of a crossed-homomorphism.

h^{σ}	()	(0123)	(02)(13)	(0321)	(13)	(03)(12)	(02)	(01)(23)
0	0	1	0	1	1	0	1	0
1	0	0	0	1	1	1	1	0
2	0	1	1	1	1	0	0	0
3	0	1	1	1	0	0	0	1
4	0	1	0	0	1	0	1	1
5	0	1	1	0	0	0	1	1
6	0	1	0	0	0	1	1	1
7	0	0	1	0	0	0	1	0
8	0	0	1	0	1	1	0	1
9	0	0	0	1	1	1	0	1
Α	0	0	1	1	1	0	0	1
В	0	1	0	0	0	1	0	0
C	0	0	1	0	1	0	1	1
D	0	1	1	1	0	1	1	1
E	0	0	0	1	0	0	0	1
F	0	0	0	0	0	0	0	0

Table 1. $s_{\sigma}(\mathbf{h})$

$$[x_0, x_1, x_2, x_3]_{\sigma} = (-1)^{s_{\sigma}(\mathfrak{p}(x_0, x_1, x_2, x_3))} [x_0, x_1, x_2, x_3]$$

Note that the triple products associated to these permutations of $[x_0, x_1, x_2, x_3]$ are often different so if one four-fold product is non-zero several different triple products will be non-zero. Since there exist elements of \mathcal{D}_8 which move position $\mathbf{i}, i \in \{1, 2, 3\}$ to $\mathbf{0}$, other consequences include the following.

Theorem 2. $[x_0, x_1, x_2, x_3]$ is linear in each variable separately.

Theorem 3. Suppose given $v_i \in HR_i$, $i \in \{0, 1, 2, 3\}$. Let the parity vectors be $P_x = \mathfrak{p}(x_0, x_1, x_2, x_3)$ and $P_v = \mathfrak{p}(v_0, v_1, v_2, v_3)$. Then there is a function $\varepsilon = \varepsilon(P_v, P_x) : \mathbf{H} \times \mathbf{H} \to \{0, 1\}$ such that

h_x h_v	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F
0;8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1; 9	1	1	0	0	0	0	1	1	0	0	1	1	1	1	0	0
2; A	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1
3; B	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
4; C	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
5; D	0	0	1	1	1	1	0	0	0	0	1	1	1	1	0	0
6; E	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
7;F	1	1	0	0	1	1	0	0	0	0	1	1	0	0	1	1

TABLE 2. $\varepsilon(\mathbf{h}_{\mathbf{v}}, \mathbf{h}_{\mathbf{x}})$

Jacking up Massey products. Let M and N be a Λ -oriented, closed, compact, manifolds of dimensions m and n respectively. Suppose given classes v_i , $i \in \{0, 1, 2, 3\}$ with

$$v_0 \cup v_1 \cup v_2 \cup v_3 = u \in H^n(N; \Lambda)$$

Then, if $[x_0, x_1, x_2, x_3] \in H^k(M; \Lambda)$ is defined, $[v_0 \cup x_0, v_1 \cup x_1, v_2 \cup x_2, v_3 \cup x_3] \in H^{n+k}(N \times M; \Lambda)$ is defined. Moreover, under the split injection $H^k(M; \Lambda) = H^n(N; \Lambda) \otimes H^k(M; \Lambda) \rightarrow H^{n+k}(N \times M; \Lambda),$ $u \otimes [x_0, x_1, x_2, x_3] = \pm [v_0 \cup x_0, v_1 \cup x_1, v_2 \cup x_2, v_3 \cup x_3]$

The Jacobite diversion

If all three triple products below are defined they fit into a Jacobi relation $\pm \langle x_1, x_2, x_3 \rangle \pm \langle x_1, x_2, x_3 \rangle_{(123)} \pm \langle x_1, x_2, x_3 \rangle_{(132)} = 0$. If the three corresponding four-fold products are defined, they fit into a Jacobi relation. Additionally, under these hypotheses, the action of any $\sigma \in S_4$ on a defined $[x_0, x_1, x_2, x_3]$ is defined. There are four subgroups of order 3 in $\sigma \in S_4$ determined by which position is fixed. This gives rise to four Jacobi relations. For each Jacobi relation there is a choice of 3-cycle τ_i and three functions, $j_{i,k} \colon \mathbf{H} \to \{0,1\}$ which, when evaluated on the parity vector $\mathfrak{p}(x_0, x_1, x_2, x_3)$ satisfy

$$\begin{aligned} & (-1)^{\mathbf{j}_{\mathbf{i},0}(\mathbf{\mathfrak{p}}(x_0,x_1,x_2,x_3))} \left[x_0, x_1, x_2, x_3 \right] & + \\ & (-1)^{\mathbf{j}_{\mathbf{i},1}(\mathbf{\mathfrak{p}}(x_0,x_1,x_2,x_3))} \left[x_0, x_1, x_2, x_3 \right]_{\tau_{\mathbf{i}}} + \\ & (-1)^{\mathbf{j}_{\mathbf{i},2}(\mathbf{\mathfrak{p}}(x_0,x_1,x_2,x_3))} \left[x_0, x_1, x_2, x_3 \right]_{\tau_{\mathbf{i}}^2} = 0 \end{aligned}$$

TABLE 3. JACOBI RELATIONS

	0	1	2	3	4	5	6	7
0	0,0,0	0, 0, 0	0, 0, 0	0, 0, 1	0, 0, 0	1, 0, 0	0, 1, 0	1, 1, 1
1	0,0,0	0, 1, 1	0, 1, 1	0, 0, 1	0, 0, 0	1, 0, 0	0, 1, 1	1, 1, 0
2	0,0,0	0, 0, 0	0, 0, 0	0, 0, 0	0, 0, 1	1, 0, 0	0, 1, 0	1, 1, 1
3	0,0,0	0, 0, 0	0, 1, 1	0, 0, 0	0, 1, 1	1, 1, 1	0, 1, 0	1, 0, 1
	8	9	Α	В	С	D	Е	F
0	0,0,0	0, 0, 0	0, 0, 0	0, 0, 1	0, 0, 0	1, 0, 0	0, 1, 0	1, 1, 1
1	0,0,0	0, 1, 0	0, 0, 0	0, 1, 1	0, 1, 1	1, 1, 0	0, 1, 1	1, 1, 1
2	0, 0, 1	0, 0, 0	0, 0, 0	0, 0, 1	0, 0, 1	1, 0, 1	0, 1, 1	1, 1, 1
3	0,0,0	0, 1, 1	0, 1, 1	0, 1, 1	0, 1, 0	1, 0, 1	0, 1, 1	1, 1, 1

If $x^2 = 0$ then $\langle x, x, x \rangle$ is defined and $3 \langle x, x, x \rangle = 0$. (If $\Lambda = \mathbb{Z}/3\mathbb{Z}$, Kraines identifies $\langle x, x, x \rangle$ as a Steenrod operation.) Symmetry then implies the next result.

Theorem 4. If $[x_0, x_1, x_2, x_3]$ is defined and if any three of the x_i are equal, then $3[x_0, x_1, x_2, x_3] = 0$.

Pairings

Fix x_1 and x_3 and define a submodule of HR_2^k by

 $x_2 \in A^k_{x_1,x_3}(R_2)$ if and only if $\{x_2\} \cup \{x_1,x_3\} = 0.$

$$x_2 \in A_{x_1,x_3}^k(R_2)$$
 if and only if $\{x_2\} \cup \{x_1,x_3\} = 0$.

Similarly x_1 and x_3 show up in

$$\mathcal{J}_{x_1,x_3}^k(R_{123}) = x_1 \cup HR_{23}^{k-|x_1|} + x_3 \cup HR_{12}^{k-|x_3|} \subset HR_{123}^k$$

 $x_2 \in A_{x_1,x_3}^k(R_2)$ if and only if $\{x_2\} \cup \{x_1,x_3\} = 0$.

$$\mathcal{J}_{x_1,x_3}^k(R_{123}) = x_1 \cup HR_{23}^{k-|x_1|} + x_3 \cup HR_{12}^{k-|x_3|} \subset HR_{123}^k$$

Massey triple products are then single-valued in the quotient group $HR_{123}^k/\mathcal{J}_{x_1,x_3}^k(R_{123})$. Define

$$\mathcal{M}^k_{x_1,x_3}(R_{123}) \subset HR^k_{123}/\mathcal{J}^k_{x_1,x_3}(R_{123})$$

to be the submodule of all Massey products.

There are similar definitions with 2 replaced by 0.

 $A^k_{x_1,x_3}(R_{f 2})$ plays two roles. The map

$$x_{2} \in A_{x_{1},x_{3}}^{k}(R_{2}) \mapsto \langle x_{1}, x_{2}, x_{3} \rangle$$
$$A_{x_{1},x_{3}}^{k}(R_{2}) \to \mathcal{M}_{x_{1},x_{3}}^{k+|x_{1}|+|x_{3}|-1}(R_{123})$$

is a surjective homomorphism so $A_{x_1,x_3}^k(R_2)$ creates Massey products.

The map

$$\begin{aligned} x_2 \in A_{x_1,x_3}^k(R_2), \langle x_1, x_0, x_3 \rangle \in \mathcal{M}_{x_1,x_3}^\ell(R_{\mathbf{013}}) \\ & (x_2, \langle x_1, x_0, x_3 \rangle) \mapsto [x_2, x_1, x_0, x_3] \\ A_{x_1,x_3}^k(R_2) \times \mathcal{M}_{x_1,x_3}^\ell(R_{\mathbf{013}}) \to HR_{\mathbf{0123}}^{k+\ell} \end{aligned}$$

is bilinear and *alibis* Massey products.

Duality

Say that the basic data is *n*-dually paired if there exists a homomorphism $\omega \colon HR_{0123}^n \to \Lambda$ such that, for any partition K_1 , K_2 of $\{0, 1, 2, 3\}$ which separates 0 from 2 and any k, the products $HR_{K_1}^{n-k} \otimes HR_{K_2}^k \to HR_{0123}^n \to \Lambda$ are non-degenerate pairings.

Closed compact manifolds which are $\Lambda\text{-orientable}$ have such a pairing with all the R_K being the singular cochains.

Compact manifolds with boundary which are Λ -orientable have such a pairing as well whenever exactly one of the R_i is the relative cochain complex and the other three are absolute.

If the basic data is n-dually paired, then

$$A^{n-k}(R_{0})_{x_{1},x_{3}} = \left(\mathcal{J}^{k}_{x_{1},x_{3}}(R_{123})\right)^{\perp}$$

$$A^{n-k}(R_2)_{x_1,x_3} = \left(\mathcal{J}^k_{x_1,x_3}(R_{013})\right)^{\perp}$$

Theorem 5. There are non-degenerate pairings

$$A^{n-k}(R_{\mathbf{0}})_{x_{1},x_{3}} \otimes \left(HR_{\mathbf{123}}^{k}/\mathcal{J}_{x_{1},x_{3}}^{k}(R_{\mathbf{123}})\right) \to \Lambda$$
$$A^{n-k}(R_{\mathbf{2}})_{x_{1},x_{3}} \otimes \left(HR_{\mathbf{013}}^{k}/\mathcal{J}_{x_{1},x_{3}}^{k}(R_{\mathbf{013}})\right) \to \Lambda$$

induced by the cup product. Restricted to the submodule of Massey products, the pairings are given by four-fold products.

There are two sorts of "useless" elements in $A^{n-k}(R_0)_{x_1,x_3}$: some give the trivial Massey product; some never alibi anyone. It turns out these two subgroups are the same so ...

Suppose the basic data is *n*-dually paired and let $m = n + |x_1| + |x_3| - 1$. Then there is a non-degenerate pairing

$$\mathcal{M}^{m-k}_{x_1,x_3}(HR_{\mathbf{013}})\otimes \mathcal{M}^k_{x_1,x_3}(HR_{\mathbf{123}}) o \Lambda$$

The pairing sends $\langle x_1, x_0, x_3 \rangle \otimes \langle x_1, x_2, x_3 \rangle$ to $[x_0, x_1, x_2, x_3]$.

It is occasionally useful to identify "useless" elements in an $A^*(R_i)_{x_1,x_3}$. If $x_2 = u \cup v$ with $x_1 \cup u = 0$ and $x_3 \cup v = 0$ then $\langle x_1, u \cup v, x_3 \rangle = 0$. Symmetry implies

Theorem 6. $[x_0, x_1, x_2, x_3] = 0$ whenever it is defined and, with indices mod 4, $x_i = u \cup v$ and $x_{i-1} \cup u = 0 = x_{i+1} \cup v$.

Examples

Theorem 7. Let W be a Λ -oriented, compact bordism between two connected n-dimensional manifolds. Assume $H_1(W, \partial W; \mathbb{Z}) \cong \mathbb{Z}$. Let $\iota_{\pm} : \partial_{\pm} W \to W$ denote the inclusions. Then $H^n(W; \mathbb{Z}) \cong \mathbb{Z}$. The two boundary components can be oriented so that if $[w_0, w_1, w_2, w_3] \in H^n(W)$ then

 $\left[\iota_{-}^{*}(w_{0}),\iota_{-}^{*}(w_{1}),\iota_{-}^{*}(w_{2}),\iota_{-}^{*}(w_{3})\right] = \left[\iota_{+}^{*}(w_{0}),\iota_{+}^{*}(w_{1}),\iota_{+}^{*}(w_{2}),\iota_{+}^{*}(w_{3})\right]$

It turns out to be relatively easy to understand Massey products of three classes of degree 1 since these only depend on the fundamental group. A good source of examples are 3-manifolds. Perhaps the most famous example is Massey's proof that the triple product can be used to show that the Borromean rings are linked.

A second famous example is the Heisenberg manifold, M: real upper 3×3 triangular matrices modulo the subgroup of integer ones. The integral cohomology is torsion-free and H^1 is generated by two classes

 x_1, x_2 which are dual to the loops $t \mapsto \begin{pmatrix} 1 & t & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ or

 $\left(\begin{array}{rrrr} 1 & 0 & 0 \\ 0 & 1 & t \\ 0 & 0 & 1 \end{array}\right).$

Then $\langle x_1, x_1, x_2 \rangle$ is indivisible in H^2 . By Theorem 4

 $[x_1,x_1,x_1,x_2]=0 \quad \text{and by duality} \quad [x_2,x_1,x_1,x_2]=\pm 1$ Symmetry forces

 $[x_1,x_1,x_2,x_2]=[x_2,x_1,x_1,x_2] \quad \text{and by duality} \quad [x_2,x_1,x_2,x_2]=0$ so with the correct choice of orientation,

 $\langle x_1, x_1, x_2 \rangle = x_2^*$ and $\langle x_1, x_2, x_2 \rangle = x_1^*$.

A theorem of T. Miller says that a closed, compact, (k-1)-connected manifold of dimension less than 4k-1 is formal.

Many people produced examples at the boundary, (k-1)-connected manifold of dimension 4k-1 which are not formal. M. Katz requested examples of such manifolds with all products from H^k being zero and all of H^{3k-1} spanned by Massey products. He also wanted certain cohomology groups to be torsion-free. Dranishnikov and Rudyak produced such examples in many dimensions. Here is a different construction which gives examples in all dimensions.

Start with $T^4 \times M$. Let $H^1(T^4)$ be generated by t_0 , t_1 , t_2 and t_3 , the pull-backs of a generator of $H^1(S^1)$ under the four projections. Let $z_0 = t_0 \cup x_2$, $z_1 = t_1 \cup x_1$, $z_2 = t_2 \cup x_1$ and $z_3 = t_3 \cup x_2$. Note $[z_0, z_1, z_2, z_3] = 1$ and $[z_i, z_1, z_2, z_3] = 0$, $i \in \{1, 2, 3\}$.

Do surgery to kill π_1 and all of H^2 except for a \mathbb{Z}^4 . If W is the trace of the surgery this can be done so there are classes $w_i \in H^2(W)$ so that $[w_i, w_1, w_2, w_3]$ is defined and the w_i map to the z_i . Let K^7 denote the other end of the trace of the surgery and let $\hat{z}_i \in H^2(K)$ denote the image of w_i . Check that the w_i span $H^2(W; \mathbb{Z})$ and $w_i \cup w_j = 0$ for all $i, j \in \{0, 1, 2, 3\}$. Furthermore the $[\hat{z}_i, \hat{z}_1, \hat{z}_2, \hat{z}_3]$ are defined and have the same values as the unhatted versions. (Theorem 7).

Apply symmetry to produce four Massey products which form the dual basis to the \hat{z}_i . The manifold K^7 satisfies all of Katz's requirements.

The above construction using $S^{k-1} \times S^{k-1} \times S^{k-1} \times S^{k-1}$ in place of T^4 produces examples in all dimensions.