Bespoke Massey triple products

Laurence R. Taylor

University of Notre Dame

International Conference on Manifolds Groups and Homotopy

Outline

Basic setup and notation
Definition/Recall of the products
Discussion of the products
Symmetry
The Jacobite diversion

Pairings
Duality
Examples

Because of visibility problems at the back of the room there is a large amount of space at the bottom of many slides.

Basic setup and notation

Fix a set with four elements $\{\mathbf{0}, \mathbf{1}, \mathbf{2}, \mathbf{3}\}$ and a PID Λ. Let \mathbf{R} denote the following basic data. There is a \mathbb{Z}-graded cochain complex R of Λ modules with differential d of degree +1 . Require an associative multiplication and a \cup_{1} product satisfying Hirsch's formula. For each subset $K \subset\{\mathbf{0}, \mathbf{1}, \mathbf{2}, \mathbf{3}\}$ there is to be a subcomplex R_{K} such that each R_{K} is a two sided ideal for the product and the \cup_{1} product. Require $R_{\emptyset}=R$ and $R_{K_{1} \cup K_{2}}=R_{K_{1}} \cap R_{K_{2}}$. Write $H R_{K}$ for the cohomology of R_{K}.

Cochains in R_{K} will always be homogeneous. Write $|x|$ for the grading of x in R (and hence in any R_{K}) and write $x \in H R_{K}^{|x|}$. Given two sets of cohomology classes $\left\{x_{1}, \cdots, x_{k}\right\}, x_{i} \in H R_{K_{i}}^{\left|x_{i}\right|}$, and $\left\{y_{1}, \cdots, y_{\ell}\right\}, y_{i} \in H R_{L_{i}}^{\left|y_{i}\right|}$, write $\left\{x_{1}, \cdots, x_{k}\right\} \cup\left\{y_{1}, \cdots, y_{\ell}\right\}=0$ if all the $x_{i} \cup y_{j}=0 \in H R_{K_{i} \cup L_{j}}^{\left|x_{i}\right|+\left|y_{j}\right|}$.

Definition/Recall of the products

To define a Massey triple product start with elements $x_{i} \in H R_{\mathrm{i}}^{\left|x_{i}\right|}$, $i \in\{1,2,3\}$ such that $\left\{x_{2}\right\} \cup\left\{x_{1}, x_{3}\right\}=0$. Pick representative cocycles $\hat{x}_{i} \in R_{\mathrm{i}}$ and cochains $X_{12} \in R_{12}$ and $X_{23} \in R_{23}$ such that $d X_{i j}=\hat{x}_{i} \cup \hat{x}_{j}$. Let $m=\left|x_{1}\right|+\left|x_{2}\right|+\left|x_{3}\right|-1$. Check

$$
X_{12} \cup \hat{x}_{3}+(-1)^{\left|x_{1}\right|+1} \hat{x}_{1} \cup X_{23}
$$

is a cocycle in R_{123}^{m}. The Massey triple product $\left\langle x_{1}, x_{2}, x_{3}\right\rangle \subset H R_{123}^{m}$ consists of all elements arising from this construction. It is a coset of the submodule $\mathcal{J}_{x_{1}, x_{3}}^{m}=x_{1} \cup H R_{23}^{m-\left|x_{1}\right|}+H R_{12}^{m-\left|x_{3}\right|} \cup x_{3}$.

To define the four-fold product start with elements $x_{i} \in H R_{i}^{\left|x_{i}\right|}$, $i \in\{0,1,2,3\}$ such that $\left\{x_{0}, x_{2}\right\} \cup\left\{x_{1}, x_{3}\right\}=0$. Define

$$
\left[x_{0}, x_{1}, x_{2}, x_{3}\right]=x_{0} \cup\left\langle x_{1}, x_{2}, x_{3}\right\rangle \in H R_{0123}^{m+\left|x_{0}\right|}
$$

Note that $\left[x_{0}, x_{1}, x_{2}, x_{3}\right]$ is a single element.

Discussion of the products

- Say $\left\langle x_{1}, x_{2}, x_{3}\right\rangle$ and $\left[x_{0}, x_{1}, x_{2}, x_{3}\right]$ are defined if the requisite cup products are 0 .
- Say $\left\langle x_{1}, x_{2}, x_{3}\right\rangle$ is the triple product associated to the four-fold product $\left[x_{0}, x_{1}, x_{2}, x_{3}\right]$.
- Theorem. If $\left[x_{0}, x_{1}, x_{2}, x_{3}\right] \neq 0$ then $\left\langle x_{1}, x_{2}, x_{3}\right\rangle \neq 0$.
- Say x_{0} is an alibi witness for the associated triple product if $\left[x_{0}, x_{1}, x_{2}, x_{3}\right]$ is defined and not 0 .
- Alibis often exist. In a compact manifold, oriented for a field Λ, any non-trivial triple product has an alibi x_{0} so that $\left[x_{0}, x_{1}, x_{2}, x_{3}\right]$ lands in the top dimension. Not immediately obvious but more later.

Naturality. If $f^{*}: \mathbf{R} \rightarrow \mathbf{S}$ is a map of basic data, then

$$
\begin{equation*}
f^{*}\left(\left\langle x_{1}, x_{2}, x_{3}\right\rangle\right) \subset\left\langle f^{*}\left(x_{1}\right), f^{*}\left(x_{2}\right), f^{*}\left(x_{3}\right)\right\rangle \tag{1}
\end{equation*}
$$

(2) $\quad f^{*}\left(\left[x_{0}, x_{1}, x_{2}, x_{3}\right]\right)=\left[f^{*}\left(x_{0}\right), f^{*}\left(x_{1}\right), f^{*}\left(x_{2}\right), f^{*}\left(x_{3}\right)\right]$

Symmetry

The symmetric group on $\{\mathbf{0}, \mathbf{1}, \mathbf{2}, \mathbf{3}\}$ acts on basic data sets. For $\sigma \in \mathcal{S}_{4}$, let \mathbf{R}^{σ} have the same R_{\emptyset} as \mathbf{R}. Let $\mathbf{R}_{\mathbf{i}}^{\sigma}=\mathbf{R}_{(\mathbf{i}) \sigma}$. If $[a, b, c, d]$ and $\sigma \in \mathcal{S}_{4}$ define $[a, b, c, d]_{\sigma}$ by writing $a=x_{\mathbf{0}}, b=x_{\mathbf{1}}, c=x_{\mathbf{2}}, d=x_{\mathbf{3}}$ and defining

$$
[a, b, c, d]_{\sigma}=\left[x_{(\mathbf{0}) \sigma}, x_{(\mathbf{1}) \sigma}, x_{(\mathbf{2}) \sigma}, x_{(\mathbf{3}) \sigma}\right]
$$

The elements (0123) and (13) generate a dihedral subgroup \mathcal{D}_{8} of \mathcal{S}_{4} such that, if $\sigma \in \mathcal{D}_{8}$ then $\left[x_{0}, x_{1}, x_{2}, x_{3}\right]_{\sigma}$ is defined if and only if $\left[x_{0}, x_{1}, x_{2}, x_{3}\right]$ is defined.

Definition. Given an ordered set of four integers, $e_{\mathbf{0}}, e_{\mathbf{1}}, e_{\mathbf{2}}$ and $e_{\mathbf{3}}$, each $e_{\mathbf{i}}$ determines a parity $p_{\mathbf{i}} \in\{0,1\}$. These four parities can be arranged in a parity vector, $p_{0} p_{1} p_{2} p_{3}$ which can be read as a binary integer between 0 and 15 . Conveniently these numbers are represented by a single hex digit between 0 and F . Let \mathbf{H} denote the set of single hex digits. It is a four dimensional $\mathbb{Z} / 2 \mathbb{Z}$ vector space with addition given by bitwise-exclusive-or.
Define the parity vector function, $\mathfrak{p}\left(e_{\mathbf{0}}, e_{\mathbf{1}}, e_{\mathbf{2}}, e_{\mathbf{3}}\right) \in \mathbf{H}$ to be the single hex digit just described. Given four cohomology classes x_{i}, $i \in\{0,1,2,3\}$ define

$$
\mathfrak{p}\left(x_{0}, x_{1}, x_{2}, x_{3}\right) \in \mathbf{H} \quad \text { using } e_{\mathbf{i}}=\left|x_{i}\right|
$$

Theorem 1. There is a function $s: \mathcal{D}_{8} \times \mathbf{H} \rightarrow\{0,1\}$

$$
\left[x_{0}, x_{1}, x_{2}, x_{3}\right]_{\sigma}=(-1)^{s_{\sigma}\left(\mathfrak{p}\left(x_{0}, x_{1}, x_{2}, x_{3}\right)\right)}\left[x_{0}, x_{1}, x_{2}, x_{3}\right]
$$

If \mathcal{D}_{8} acts on \mathbf{H} by permuting the binary digits, s is an example of a crossed-homomorphism.

Table 1. $s_{\sigma}(\mathbf{h})$

\mathbf{h}	()	(0123)	$(02)(13)$	(0321)	(13)	$(03)(12)$	(02)	$(01)(23)$
0	0	1	0	1	1	0	1	0
1	0	0	0	1	1	1	1	0
2	0	1	1	1	1	0	0	0
3	0	1	1	1	0	0	0	1
4	0	1	0	0	1	0	1	1
5	0	1	1	0	0	0	1	1
6	0	1	0	0	0	1	1	1
7	0	0	1	0	0	0	1	0
8	0	0	1	0	1	1	0	1
9	0	0	0	1	1	1	0	1
A	0	0	1	1	1	0	0	1
B	0	1	0	0	0	1	0	0
C	0	0	1	0	1	0	1	1
D	0	1	1	1	0	1	1	1
E	0	0	0	1	0	0	0	1
F	0	0	0	0	0	0	0	0

$$
\left[x_{0}, x_{1}, x_{2}, x_{3}\right]_{\sigma}=(-1)^{s_{\sigma}\left(\mathfrak{p}\left(x_{0}, x_{1}, x_{2}, x_{3}\right)\right)}\left[x_{0}, x_{1}, x_{2}, x_{3}\right]
$$

Note that the triple products associated to these permutations of [$x_{0}, x_{1}, x_{2}, x_{3}$] are often different so if one four-fold product is non-zero several different triple products will be non-zero. Since there exist elements of \mathcal{D}_{8} which move position $\mathbf{i}, i \in\{1,2,3\}$ to $\mathbf{0}$, other consequences include the following.

Theorem 2. $\left[x_{0}, x_{1}, x_{2}, x_{3}\right]$ is linear in each variable separately.

Theorem 3. Suppose given $v_{i} \in H R_{\mathbf{i}}, i \in\{0,1,2,3\}$. Let the parity vectors be $P_{x}=\mathfrak{p}\left(x_{0}, x_{1}, x_{2}, x_{3}\right)$ and $P_{v}=\mathfrak{p}\left(v_{0}, v_{1}, v_{2}, v_{3}\right)$. Then there is a function $\varepsilon=\varepsilon\left(P_{v}, P_{x}\right): \mathbf{H} \times \mathbf{H} \rightarrow\{0,1\}$ such that

$$
\begin{aligned}
& v_{0} \cup v_{1} \cup v_{2} \cup v_{3} \cup\left[x_{0}, x_{1}, x_{2}, x_{3}\right]= \\
& \\
& (-1)^{\varepsilon}\left[v_{0} \cup x_{0}, v_{1} \cup x_{1}, v_{2} \cup x_{2}, v_{3} \cup x_{3}\right]
\end{aligned}
$$

TABLE 2. $\varepsilon\left(\mathbf{h}_{\mathbf{v}}, \mathbf{h}_{\mathbf{x}}\right)$

$\mathbf{h}_{\mathbf{v}} \mathbf{h}_{\mathbf{x}}$	0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F
$0 ; 8$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$1 ; 9$	1	1	0	0	0	0	1	1	0	0	1	1	1	1	0	0
$2 ; \mathrm{A}$	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1
$3 ; \mathrm{B}$	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
$4 ; \mathrm{C}$	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
$5 ; \mathrm{D}$	0	0	1	1	1	1	0	0	0	0	1	1	1	1	0	0
$6 ; \mathrm{E}$	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
$7 ; \mathrm{F}$	1	1	0	0	1	1	0	0	0	0	1	1	0	0	1	1

Jacking up Massey products. Let M and N be a Λ-oriented, closed, compact, manifolds of dimensions m and n respectively. Suppose given classes $v_{i}, i \in\{0,1,2,3\}$ with

$$
v_{0} \cup v_{1} \cup v_{2} \cup v_{3}=u \in H^{n}(N ; \Lambda)
$$

Then, if $\left[x_{0}, x_{1}, x_{2}, x_{3}\right] \in H^{k}(M ; \Lambda)$ is defined, $\left[v_{0} \cup x_{0}, v_{1} \cup x_{1}, v_{2} \cup x_{2}, v_{3} \cup x_{3}\right] \in H^{n+k}(N \times M ; \Lambda)$ is defined. Moreover, under the split injection $H^{k}(M ; \Lambda)=H^{n}(N ; \Lambda) \otimes H^{k}(M ; \Lambda) \rightarrow H^{n+k}(N \times M ; \Lambda)$,

$$
u \otimes\left[x_{0}, x_{1}, x_{2}, x_{3}\right]= \pm\left[v_{0} \cup x_{0}, v_{1} \cup x_{1}, v_{2} \cup x_{2}, v_{3} \cup x_{3}\right]
$$

The Jacobite diversion

If all three triple products below are defined they fit into a Jacobi relation $\pm\left\langle x_{1}, x_{2}, x_{3}\right\rangle \pm\left\langle x_{1}, x_{2}, x_{3}\right\rangle_{(123)} \pm\left\langle x_{1}, x_{2}, x_{3}\right\rangle_{(132)}=0$. If the three corresponding four-fold products are defined, they fit into a Jacobi relation. Additionally, under these hypotheses, the action of any $\sigma \in \mathcal{S}_{4}$ on a defined $\left[x_{0}, x_{1}, x_{2}, x_{3}\right]$ is defined. There are four subgroups of order 3 in $\sigma \in \mathcal{S}_{4}$ determined by which position is fixed. This gives rise to four Jacobi relations.

For each Jacobi relation there is a choice of 3-cycle $\tau_{\mathbf{i}}$ and three functions, $\mathfrak{j}_{\mathbf{i}, k}: \mathbf{H} \rightarrow\{0,1\}$ which, when evaluated on the parity vector $\mathfrak{p}\left(x_{0}, x_{1}, x_{2}, x_{3}\right)$ satisfy

$$
\begin{aligned}
& (-1)^{\mathfrak{j}_{\mathbf{i}, 0}\left(\mathfrak{p}\left(x_{0}, x_{1}, x_{2}, x_{3}\right)\right)}\left[x_{0}, x_{1}, x_{2}, x_{3}\right]+ \\
& (-1)^{\mathfrak{j}_{\mathbf{i}, 1}\left(\mathfrak{p}\left(x_{0}, x_{1}, x_{2}, x_{3}\right)\right)}\left[x_{0}, x_{1}, x_{2}, x_{3}\right]_{\tau_{\mathbf{i}}}+ \\
& (-1)^{\mathfrak{i}_{\mathbf{i}, 2}\left(\mathfrak{p}\left(x_{0}, x_{1}, x_{2}, x_{3}\right)\right)}\left[x_{0}, x_{1}, x_{2}, x_{3}\right]_{\tau_{\mathbf{i}}^{2}}=0
\end{aligned}
$$

Table 3. Jacobi relations

	0	1	2	3	4	5	6	7
$\mathbf{0}$	$0,0,0$	$0,0,0$	$0,0,0$	$0,0,1$	$0,0,0$	$1,0,0$	$0,1,0$	$1,1,1$
$\mathbf{1}$	$0,0,0$	$0,1,1$	$0,1,1$	$0,0,1$	$0,0,0$	$1,0,0$	$0,1,1$	$1,1,0$
$\mathbf{2}$	$0,0,0$	$0,0,0$	$0,0,0$	$0,0,0$	$0,0,1$	$1,0,0$	$0,1,0$	$1,1,1$
$\mathbf{3}$	$0,0,0$	$0,0,0$	$0,1,1$	$0,0,0$	$0,1,1$	$1,1,1$	$0,1,0$	$1,0,1$
	8	9	A	B	C	D	E	F
$\mathbf{0}$	$0,0,0$	$0,0,0$	$0,0,0$	$0,0,1$	$0,0,0$	$1,0,0$	$0,1,0$	$1,1,1$
$\mathbf{1}$	$0,0,0$	$0,1,0$	$0,0,0$	$0,1,1$	$0,1,1$	$1,1,0$	$0,1,1$	$1,1,1$
$\mathbf{2}$	$0,0,1$	$0,0,0$	$0,0,0$	$0,0,1$	$0,0,1$	$1,0,1$	$0,1,1$	$1,1,1$
$\mathbf{3}$	$0,0,0$	$0,1,1$	$0,1,1$	$0,1,1$	$0,1,0$	$1,0,1$	$0,1,1$	$1,1,1$

If $x^{2}=0$ then $\langle x, x, x\rangle$ is defined and $3\langle x, x, x\rangle=0$. (If $\Lambda=\mathbb{Z} / 3 \mathbb{Z}$, Kraines identifies $\langle x, x, x\rangle$ as a Steenrod operation.) Symmetry then implies the next result.

Theorem 4. If $\left[x_{0}, x_{1}, x_{2}, x_{3}\right]$ is defined and if any three of the x_{i} are equal, then $3\left[x_{0}, x_{1}, x_{2}, x_{3}\right]=0$.

Pairings

Fix x_{1} and x_{3} and define a submodule of $H R_{2}^{k}$ by

$$
x_{2} \in A_{x_{1}, x_{3}}^{k}\left(R_{\mathbf{2}}\right) \text { if and only if }\left\{x_{2}\right\} \cup\left\{x_{1}, x_{3}\right\}=0
$$

$$
x_{2} \in A_{x_{1}, x_{3}}^{k}\left(R_{\mathbf{2}}\right) \text { if and only if }\left\{x_{2}\right\} \cup\left\{x_{1}, x_{3}\right\}=0 .
$$

Similarly x_{1} and x_{3} show up in

$$
\mathcal{J}_{x_{1}, x_{3}}^{k}\left(R_{\mathbf{1 2 3}}\right)=x_{1} \cup H R_{\mathbf{2 3}}^{k-\left|x_{1}\right|}+x_{3} \cup H R_{\mathbf{1 2}}^{k-\left|x_{3}\right|} \subset H R_{\mathbf{1 2 3}}^{k}
$$

$$
x_{2} \in A_{x_{1}, x_{3}}^{k}\left(R_{\mathbf{2}}\right) \text { if and only if }\left\{x_{2}\right\} \cup\left\{x_{1}, x_{3}\right\}=0 .
$$

$$
\mathcal{J}_{x_{1}, x_{3}}^{k}\left(R_{\mathbf{1 2 3}}\right)=x_{1} \cup H R_{\mathbf{2 3}}^{k-\left|x_{1}\right|}+x_{3} \cup H R_{\mathbf{1 2}}^{k-\left|x_{3}\right|} \subset H R_{\mathbf{1 2 3}}^{k}
$$

Massey triple products are then single-valued in the quotient group $H R_{123}^{k} / \mathcal{J}_{x_{1}, x_{3}}^{k}\left(R_{\mathbf{1 2 3}}\right)$. Define

$$
\mathcal{M}_{x_{1}, x_{3}}^{k}\left(R_{\mathbf{1 2 3}}\right) \subset H R_{\mathbf{1 2 3}}^{k} / \mathcal{J}_{x_{1}, x_{3}}^{k}\left(R_{\mathbf{1 2 3}}\right)
$$

to be the submodule of all Massey products.
There are similar definitions with $\mathbf{2}$ replaced by $\mathbf{0}$.
$A_{x_{1}, x_{3}}^{k}\left(R_{2}\right)$ plays two roles. The map

$$
\begin{aligned}
x_{2} \in A_{x_{1}, x_{3}}^{k}\left(R_{\mathbf{2}}\right) & \mapsto\left\langle x_{1}, x_{2}, x_{3}\right\rangle \\
A_{x_{1}, x_{3}}^{k}\left(R_{\mathbf{2}}\right) & \rightarrow \mathcal{M}_{x_{1}, x_{3}}^{k+\left|x_{1}\right|+\left|x_{3}\right|-1}\left(R_{\mathbf{1 2 3}}\right)
\end{aligned}
$$

is a surjective homomorphism so $A_{x_{1}, x_{3}}^{k}\left(R_{2}\right)$ creates Massey products.

The map

$$
\begin{aligned}
& x_{2} \in A_{x_{1}, x_{3}}^{k}\left(R_{\mathbf{2}}\right),\left\langle x_{1}, x_{0}, x_{3}\right\rangle \in \mathcal{M}_{x_{1}, x_{3}}^{\ell}\left(R_{\mathbf{0 1 3}}\right) \\
&\left(x_{2},\left\langle x_{1}, x_{0}, x_{3}\right\rangle\right) \mapsto\left[x_{2}, x_{1}, x_{0}, x_{3}\right] \\
& A_{x_{1}, x_{3}}^{k}\left(R_{\mathbf{2}}\right) \times \mathcal{M}_{x_{1}, x_{3}}^{\ell}\left(R_{\mathbf{0 1 3}}\right) \rightarrow H R_{\mathbf{0 1 2 3}}^{k+\ell}
\end{aligned}
$$

is bilinear and alibis Massey products.

Duality

Say that the basic data is n-dually paired if there exists a homomorphism $\omega: H R_{0123}^{n} \rightarrow \Lambda$ such that, for any partition K_{1}, K_{2} of $\{\mathbf{0}, \mathbf{1}, \mathbf{2}, \mathbf{3}\}$ which separates $\mathbf{0}$ from $\mathbf{2}$ and any k, the products $H R_{K_{1}}^{n-k} \otimes H R_{K_{2}}^{k} \rightarrow H R_{0123}^{n} \rightarrow \Lambda$ are non-degenerate pairings.

Closed compact manifolds which are Λ-orientable have such a pairing with all the R_{K} being the singular cochains.

Compact manifolds with boundary which are Λ-orientable have such a pairing as well whenever exactly one of the $R_{\mathbf{i}}$ is the relative cochain complex and the other three are absolute.

If the basic data is n-dually paired, then

$$
\begin{aligned}
& A^{n-k}\left(R_{\mathbf{0}}\right)_{x_{1}, x_{3}}=\left(\mathcal{J}_{x_{1}, x_{3}}^{k}\left(R_{\mathbf{1 2 3}}\right)\right)^{\perp} \\
& A^{n-k}\left(R_{\mathbf{2}}\right)_{x_{1}, x_{3}}=\left(\mathcal{J}_{x_{1}, x_{3}}^{k}\left(R_{\mathbf{0 1 3}}\right)\right)^{\perp}
\end{aligned}
$$

Theorem 5. There are non-degenerate pairings

$$
\begin{aligned}
& A^{n-k}\left(R_{\mathbf{0}}\right)_{x_{1}, x_{3}} \otimes\left(H R_{\mathbf{1 2 3}}^{k} / \mathcal{J}_{x_{1}, x_{3}}^{k}\left(R_{\mathbf{1 2 3}}\right)\right) \rightarrow \Lambda \\
& A^{n-k}\left(R_{\mathbf{2}}\right)_{x_{1}, x_{3}} \otimes\left(H R_{\mathbf{0 1 3}}^{k} / \mathcal{J}_{x_{1}, x_{3}}^{k}\left(R_{\mathbf{0 1 3}}\right)\right) \rightarrow \Lambda
\end{aligned}
$$

induced by the cup product. Restricted to the submodule of Massey products, the pairings are given by four-fold products.

There are two sorts of "useless" elements in $A^{n-k}\left(R_{\mathbf{0}}\right)_{x_{1}, x_{3}}$: some give the trivial Massey product; some never alibi anyone. It turns out these two subgroups are the same so ...

Suppose the basic data is n-dually paired and let $m=n+\left|x_{1}\right|+\left|x_{3}\right|-1$. Then there is a non-degenerate pairing

$$
\mathcal{M}_{x_{1}, x_{3}}^{m-k}\left(H R_{\mathbf{0 1 3}}\right) \otimes \mathcal{M}_{x_{1}, x_{3}}^{k}\left(H R_{\mathbf{1 2 3}}\right) \rightarrow \Lambda
$$

The pairing sends $\left\langle x_{1}, x_{0}, x_{3}\right\rangle \otimes\left\langle x_{1}, x_{2}, x_{3}\right\rangle$ to $\left[x_{0}, x_{1}, x_{2}, x_{3}\right]$.

It is occasionally useful to identify "useless" elements in an $A^{*}\left(R_{\mathbf{i}}\right)_{x_{1}, x_{3}}$.
If $x_{2}=u \cup v$ with $x_{1} \cup u=0$ and $x_{3} \cup v=0$ then $\left\langle x_{1}, u \cup v, x_{3}\right\rangle=0$. Symmetry implies

Theorem 6. $\left[x_{0}, x_{1}, x_{2}, x_{3}\right]=0$ whenever it is defined and, with indices $\bmod 4, x_{i}=u \cup v$ and $x_{i-1} \cup u=0=x_{i+1} \cup v$.

Examples

Theorem 7. Let W be a Λ-oriented, compact bordism between two connected n-dimensional manifolds. Assume $H_{1}(W, \partial W ; \mathbb{Z}) \cong \mathbb{Z}$. Let $\iota_{ \pm}: \partial_{ \pm} W \rightarrow W$ denote the inclusions. Then $H^{n}(W ; \mathbb{Z}) \cong \mathbb{Z}$. The two boundary components can be oriented so that if $\left[w_{0}, w_{1}, w_{2}, w_{3}\right] \in H^{n}(W)$ then

$$
\left[\iota_{-}^{*}\left(w_{0}\right), \iota_{-}^{*}\left(w_{1}\right), \iota_{-}^{*}\left(w_{2}\right), \iota_{-}^{*}\left(w_{3}\right)\right]=\left[\iota_{+}^{*}\left(w_{0}\right), \iota_{+}^{*}\left(w_{1}\right), \iota_{+}^{*}\left(w_{2}\right), \iota_{+}^{*}\left(w_{3}\right)\right]
$$

It turns out to be relatively easy to understand Massey products of three classes of degree 1 since these only depend on the fundamental group. A good source of examples are 3-manifolds. Perhaps the most famous example is Massey's proof that the triple product can be used to show that the Borromean rings are linked.

A second famous example is the Heisenberg manifold, M : real upper 3×3 triangular matrices modulo the subgroup of integer ones. The integral cohomology is torsion-free and H^{1} is generated by two classes x_{1}, x_{2} which are dual to the loops $t \mapsto\left(\begin{array}{ccc}1 & t & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$ or $\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & t \\ 0 & 0 & 1\end{array}\right)$.

Then $\left\langle x_{1}, x_{1}, x_{2}\right\rangle$ is indivisible in H^{2}. By Theorem 4

$$
\left[x_{1}, x_{1}, x_{1}, x_{2}\right]=0 \quad \text { and by duality } \quad\left[x_{2}, x_{1}, x_{1}, x_{2}\right]= \pm 1
$$

Symmetry forces

$$
\left[x_{1}, x_{1}, x_{2}, x_{2}\right]=\left[x_{2}, x_{1}, x_{1}, x_{2}\right] \quad \text { and by duality } \quad\left[x_{2}, x_{1}, x_{2}, x_{2}\right]=0
$$

so with the correct choice of orientation,

$$
\left\langle x_{1}, x_{1}, x_{2}\right\rangle=x_{2}^{*} \quad \text { and } \quad\left\langle x_{1}, x_{2}, x_{2}\right\rangle=x_{1}^{*} .
$$

A theorem of T . Miller says that a closed, compact, $(k-1)$-connected manifold of dimension less than $4 k-1$ is formal.

Many people produced examples at the boundary, $(k-1)$-connected manifold of dimension $4 k-1$ which are not formal. M. Katz requested examples of such manifolds with all products from H^{k} being zero and all of $H^{3 k-1}$ spanned by Massey products. He also wanted certain cohomology groups to be torsion-free. Dranishnikov and Rudyak produced such examples in many dimensions. Here is a different construction which gives examples in all dimensions.

Start with $T^{4} \times M$. Let $H^{1}\left(T^{4}\right)$ be generated by t_{0}, t_{1}, t_{2} and t_{3}, the pull-backs of a generator of $H^{1}\left(S^{1}\right)$ under the four projections. Let $z_{0}=t_{0} \cup x_{2}, z_{1}=t_{1} \cup x_{1}, z_{2}=t_{2} \cup x_{1}$ and $z_{3}=t_{3} \cup x_{2}$. Note $\left[z_{0}, z_{1}, z_{2}, z_{3}\right]=1$ and $\left[z_{i}, z_{1}, z_{2}, z_{3}\right]=0, i \in\{1,2,3\}$.

Do surgery to kill π_{1} and all of H^{2} except for a \mathbb{Z}^{4}. If W is the trace of the surgery this can be done so there are classes $w_{i} \in H^{2}(W)$ so that [$\left.w_{i}, w_{1}, w_{2}, w_{3}\right]$ is defined and the w_{i} map to the z_{i}. Let K^{7} denote the other end of the trace of the surgery and let $\hat{z}_{i} \in H^{2}(K)$ denote the image of w_{i}. Check that the w_{i} span $H^{2}(W ; \mathbb{Z})$ and $w_{i} \cup w_{j}=0$ for all $i, j \in\{0,1,2,3\}$. Furthermore the $\left[\hat{z}_{i}, \hat{z}_{1}, \hat{z}_{2}, \hat{z}_{3}\right]$ are defined and have the same values as the unhatted versions. (Theorem 7).

Apply symmetry to produce four Massey products which form the dual basis to the \hat{z}_{i}. The manifold K^{7} satisfies all of Katz's requirements.

The above construction using $S^{k-1} \times S^{k-1} \times S^{k-1} \times S^{k-1}$ in place of T^{4} produces examples in all dimensions.

