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Introduction

The squaring map associated to a symmetric bilinear form
over a field of characteristic 2 is a linear map. If the form is
non-degenerate, there is characteristic class. The middle
Wu class of an even dimensional manifold is an example
and additional examples will be considered here.
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I Examples



Bilinear forms
Basic definitions

Let V and W be vector spaces over F2. If finite dimension
is required, it will be mentioned explicitly.
A bilinear form is a function

µ : V ×W → F2

which is linear in each variable separately.

V ⊥ ⊂ W =
{
w ∈ W

∣∣ µ(v, w) = 0 for all v ∈ V
}

The subspace W⊥ ⊂ V is defined similarly.

The form is W - surjective provided the composition

W
adjoint

// V ∗ //
(
V/W⊥)∗

is surjective.



Linked bilinear forms
Definitions

A linked bilinear form is a pair consisting of a bilinear form
µ : V ×W → F2 and a linear map u : V → W .

The associated bilinear form is the function

Aµ,u(v1, v2) = µ
(
v1, u(v2)

)
: V × V 1V ×u−−−−→ V ×W µ−→ F2

A linked bilinear form is symmetric provided Aµ,u is
symmetric.

If a group G acts on V and W , µ is equivariant provided
µ(gv, gw) = µ(v, w) for all v ∈ V , w ∈ W and g ∈ G.

A linked form is equivariant provided µ and u are. It
follows that Aµ,u is an equivariant form.



Linked bilinear forms
Remarks

Proposition
If (µ, u) is a symmetric linked bilinear form, then
u(W⊥) ⊂ V ⊥.

Proposition
If (µ, u) is a symmetric linked bilinear form, then
K = Kµ,u = u−1(V ⊥) is the perpendicular subspace for V
and the form Aµ,u on either side.

The subspace K is also called the annihilator of the form.



Linked bilinear forms
Isometries

An isometry of linked forms (µ1, u1) to (µ2, u2) is a pair of
linear maps ιV : V1 → V2 and ιW : W2 → W1 such that

V1
u1 //

ιV
��

W1

V2
u2 //W2

ιW

OO

V1 ×W1

µ1

$$
V1 ×W2

1V1×ιW
88

ιV ×1W2 &&

F2

V2 ×W2

µ2
::

commute.

The map ιV : V1 → V2 is an isometry from the associated
form Aµ1,u1 to Aµ2,u2 .



Linked bilinear forms
Induced isometries

The right hand diagram on the previous page commutes if
and only if

µ1

(
v1, ιW (w2)

)
= µ2

(
ιV (v1), w2

)
for all (v1, w2) ∈ V1 ×W2

Let (ιV , ιW ) be an isometry of linked forms (µ1, u1) to
(µ2, u2).

Theorem
ιW (V ⊥2 ) ⊂ V ⊥1 and ιV (W⊥

1 ) ⊂ W⊥
2 .



Left/right characteristic cosets
Definitions

Let f : V → F2 be a linear map and let (µ, u) be a
symmetric linked form. The right characteristic coset for f ,
Rf , is the set of all w ∈ W such that f(v) = µ(v, w) for all
v ∈ V . The name is a slight misnomer as Rf may be
empty, but if it is non-empty, it is a coset of V ⊥ ⊂ W .

The left characteristic coset for f , Lf , is the set of all ` ∈ V
such that f(v) = Aµ,u(v, `) for all v ∈ V .
Note the change in form. If Lf is non-empty, then it is a
coset of K = u−1(V ⊥).



Left/right characteristic cosets
Naturality

Theorem
Let (ιV , ιW ) be an isometry from (µ1, u1)→ (µ2, u2). Let
f : V2 → F2 be a linear map. Then

ιW (Rf ) ⊂ Rf◦ιV

Proof.
Let x ∈ Rf so f(v2) = µ2(v2, x) for all v2 ∈ V2. For v1 ∈ V2,
ιV (v1) ∈ V2 so f

(
ιV (v1)

)
= µ2

(
ιV (v1), x

)
for all v1 ∈ V1.

Then (f ◦ ιV )(v1) = µ1

(
v1, ιW (x)

)
for all v1 ∈ V1, so

ιW (x) ∈ Rf◦ιV .



Left/right characteristic cosets
Additional properties

Theorem
Let (µ, u) be a linked form and let f : V → F2 be a linear
map. Then u(Lf ) ⊂ Rf .

A classic method of producing linear maps is to use the
squaring map associated to a symmetric bilinear form.

Let (µ, u) be a symmetric linked form and let Sµ,u, : V → F2

be the squaring map for the associated form.

To simplify notation, define Lµ,u = LSµ,u and Rµ,u = RSµ,u .

These will be called the left/right characteristic cosets of
the symmetric linked form.



Left/right characteristic cosets
Summary

For W -surjective, symmetric, linked bilinear forms, the
following hold.

I Rµ,u is always non-empty.

I If dimV/K <∞, Lµ,u is non-empty.

I u(Lµ,u) ⊂ Rµ,u.

I If there exists x ∈ V such that u(x) ∈ Rµ,u, then
x ∈ Lµ,u.

I If (ιV , ιW ) is an isometry from (µ1, u1) to (µ2, u2),
ιW (Rµ2,u2) ⊂ Rµ1,u1 .

I If dimV/K <∞, µ(Lµ,u,Rµ,u) is the dimension of
V/K mod 2.



Examples
Basic set up

Let Mn be a smooth, paracompact, Hausdorff manifold
without boundary of dimension n. The examples here all
start with the bilinear form, V = Hk

c (M ;F2),
W = Hn−k(M ;F2) and µ is the cup product evaluated on
the fundamental class. For v ∈ V and w ∈ W , write v • w
for µ(v, w).

The examples come from various choices of subspaces
VM ⊂ Hk

c (M ;F2) and linking map u : VM → Hn−k(M ;F2).
Here the linking map is always of the form

VM
û // Hn−k

c (M ;F2)
f
// Hk

c (M ;F2) where f forgets that
the class has compact support. Since the manifold M will
determine the linked form in each example write RM and
LM for the right and left characteristic cosets.

Since this form is W -surjective, RM always exists.



Examples
Naturality

The tangent bundle map makes both H∗(M ;F2) and
H∗c (M ;F2) into H∗(BO;F2) algebras.

If κ : U ⊂M is a codimension zero embedding, there are
induced maps κ∗ : Hn−k(M ;F2)→ Hn−k(U ;F2) and
κ! : H

k
c (U ;F2)→ Hk

c (M ;F2). The pair (κ!, κ
∗) is an

isometry and both κ! and κ∗ are H∗(BO;F2) module maps.

Suppose a linked form is defined for each object in some
category of manifolds and codimension zero embeddings.
The linked form is natural for codimension zero embeddings

provided κ!(VU) ⊂ VM and VU
κ! //

uU
��

VM

uM
��

Hn−k(U ;F2) Hn−k(M ;F2)κ∗
oocommutes.



Examples
Wu’s result

Suppose M has dimension n = 2k. Let V = Hk
c (M ;F2),

W = Hk(M ;F2) and û is the identity. This is a natural
family for all manifolds.

If M is compact, it is a classic result of Wu’s that the right
characteristic coset of this linked form is vk(M) where
vk(M) is the kth Wu class of the tangent bundle.



Examples
A general result on natural families

Fix some category of manifolds and codimension zero
embeddings. Suppose that for every element
x ∈ Hn−k(M ;F2) there exist codimension zero embeddings
(in the category) κx : Ux ⊂M and κ′x : Ux ⊂ N with N
compact such that there exists y ∈ Hn−k(Ux;F2) with
(κx)∗(y) = x. Call such a category compactly determined.

Suppose given two families of elements
aM , bM ∈ Hn−k(M ;F2) which are natural for codimension
zero embeddings in a compactly determined category of
manifolds. If aM = bM for all compact M then aM = bM for
all M .



Examples
Wu’s result

Returning to Wu’s example, it follows from the previous
slide that

I Rµ,u = vk(M) for all paracompact manifolds M .

I If M is compact, Lµ,u = vk(M).

I If the image of Hk
c (M ;F2) in Hk(M ;F2) has finite

dimension ` then Lµ,u is non-empty and Lµ,u • vk is
` mod 2.

I If M is a countable connected sum of CP2’s, then
Lµ,u is empty.



Examples
Lusztig-Milnor-Peterson form

This example starts with Mn where n = 2k + 1;
V = Hk

c (M ;F2), W = Hk+1(M ;F2) and
û = Sq1 : Hk

c (M ;F2)→ Hk+1
c (M ;F2). The associated form

is Aµ,Sq1(v1, v2) = v1 • Sq1(v2). This linked form is not
always symmetric but if M is orientable, it is. It is also
natural for orientable manifolds and all codimension zero
embeddings.



Examples
Lusztig-Milnor-Peterson form

Lusztig, Milnor and Peterson showed that if k = 2`, and M
is compact, RM = Sq1(v2`). This follows from the formula
βP2k(x) = Sq2`Sq1(x) + x ∪ Sq1(x) where β is a Bockstein
and P2k is the Pontryagin square. In the compact case it
further follows that v2` ∈ LM .

In the case in which M is compact, the characteristic
number v2kSq

1(v2k) is the dimension mod 2 of the form on
Hk(M ;F2)

/
Sq1
(
Hk−1(M ;F2)

)
.

With more work Lusztig, Milnor and Peterson identify this
with the de Rham invariant.



Examples
Lusztig-Milnor-Peterson form

In case k = 2`+ 1 Ed Miller observed, in the language here,
that RM was a class which is natural for codimension zero
embeddings. The example of RP3 shows that RM is not
determined by the tangent bundle.



Examples
Lusztig-Milnor-Peterson form

For non-orientable manifolds the Lusztig-Milnor-Peterson
form need not be symmetric: for example M = RP2k × S1.

One way to restore symmetry is to take
WM = Hk+1(M ;F2) and
VM =

{
v ∈ Hk

c (M ;F2)
∣∣ v ∪ w1(M) = 0 ∈ Hk+1

c (M ;F2)
}

where w1(M) is the first Stiefel-Whitney class. The
associated form is symmetric.

However V ⊥M =
(
w1(M)

)
Hk(M ;F2) so in general RM is a

proper coset.

The coset RM is natural for codimension zero embeddings.



Examples
Lusztig-Milnor-Peterson form

This gives a different partial answer to Ed Miller’s question
on the existence of natural characteristic classes which are
not determined by the tangent bundle. The
Lusztig-Milnor-Peterson coset is defined on all manifolds of
odd dimension. In dimensions 4`+ 3 the coset is not
determined by the tangent bundle.



Examples
Lusztig-Milnor-Peterson form

A simple 3-manifold theorem
Let M3 be a 3-manifold with 0 ∈ RM and let e : RP2 →M
be an embedding. Then e(RP2) is 2-sided.

Corollary
Let M3 be an orientable 3-manifold with 0 = RM . Then
there is no embedding e : RP2 →M .



Examples
Landweber-Stong form

If Mn is a Spin manifold of dimension n = 2k + 2,
Landweber and Stong observed that
û = Sq2 : Hk

c (M ;F2)→ Hk+2
c (M ;F2) gives a symmetric

linked form.
In dimension 8k + 2 they show that the right characteristic
element does not come from any element in H4k+2(BO;F2)
but restricted to the kernel of Sq1, the right characteristic
coset contains Sq2(v4k).
Restricting to the kernel of ∪ v2 and ∪ v1 extends the form
to all manifolds and has appropriate characteristic cosets.



Examples
Some remarks on H∗(BO;F2)

For each integer k > 0, there exists a linear transformation

lk : H`(BO;F2)→ Hk+`(BO;F2)

defined for any ω ∈ H`(BO;F2) by

lk(ω) =
k∑
i=0

vi ∪ χ(Sqk−i)(ω)

Cultural remark: lk(ω) vanishes for all Mn, n < 2k + ` by
Brown and Peterson’s work on vanishing characteristic
classes.



Examples
Wu shifted by Stiefel-Whitney

If M has dimension n = 2k + ` and if û(x) = x ∪ ω

x • (x ∪ ω) = x • lk(ω)

Note lk(1) = vk so this is a generalization of Wu’s result.



Examples
Lusztig-Milnor-Peterson shifted by Stiefel-Whitney

Suppose the dimension of M is n = 2k + `+ 1.

Note for any space X and class x ∈ Hk(X;F2),
l1(x) = (w1 ∪ x) + Sq1(x) is Greenblatt’s twisted Bockstein.
Hence l1

(
l1(x)

)
= 0.

If l1(ω) = 0, x • (ω ∪ Sq1(x)) is symmetric.

Since Hk(BO;Zw1) is a F2 vector space, l1(ω) = 0 if and
only if there exist some class κω such that l1(κω) = ω. Then

x • (ω ∪ Sq1(x)) = x • l1
(
lk+1(κω)

)



Examples
Equivariant Wu

Suppose a finite 2 group G acts on a manifold M of
dimension n = 2k + `. For any x ∈ Hr(M ;F2), define

N(x) =
∑
g∈G

g∗(x)

Fix ω ∈ H`(BO;F2).

Theorem
Let G act freely on M . Let
K = ker(N ∪ ω) : Hk

c (M ;F2)→ Hk+`
c (M ;F2) and suppose

Hk
c (M ;F2)/K has finite dimension. Then there exist

η ∈ Hk
c (M ;F2) such that

lk(ω) = N(η ∪ ω)

Corollary
Suppose given the hypotheses of the theorem.

If lk(ω) 6= 0 ∈ Hk+`(M ;F2), F2[G] ⊂ Hk+`(M ;F2).



Examples
Equivariant Wu

Let M1 = CP2#CP2
#(S1 × S3)#(S1 × S3) and let

M2 = S2 × S1 × S1. The manifolds M1 and M2 have the
same homology and the same signatures. The manifold M1

has a free Z/2Z action and M2 has free cyclic group actions
for all orders. Since v2(M1) 6= 0, M1 has no free action by
any group of order 4.



Examples
Equivariant Wu

The proof of the theorem proceeds by considering the
linking map

û : Hk
c (M ;F2)

N // Hk
c (M ;F2)

∪ω // Hk+`
c (M ;F2)

It also uses a result of Bredon’s that for free involutions τ
and x ∈ Hk

c (M ;F2), x ∪ τ ∗(x) = p∗(y) for some
y ∈ H2k

c (M/τ ;F2).

For η take any element in LM .


