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Introduction

The squaring map associated to a symmetric bilinear form
over a field of characteristic 2 is a linear map. If the form is
non-degenerate, there is characteristic class. The middle
Wu class of an even dimensional manifold is an example
and additional examples will be considered here.

» Bilinear forms

» Linked bilinear forms

» Left/right characteristic cosets

» Examples



Bilinear forms

Basic definitions
Let V and W be vector spaces over Fy. If finite dimension
is required, it will be mentioned explicitly.
A bilinear form is a function

w:Vx W — F
which is linear in each variable separately.
VicW={wew } p(v,w) =0for all v e V}
The subspace W+ C V is defined similarly.

The form is W - surjective provided the composition

adjoint

W Ve (V/W)*

is surjective.



Linked bilinear forms

Definitions

A linked bilinear form is a pair consisting of a bilinear form
w:Vx W — Fy and a linear map u: V-— W.

The associated bilinear form is the function

Au,u(/UhUQ) = ,M(’Ul,u(?)g))i VxV ﬂ) V xW i) FQ

A linked bilinear form is symmetric provided A, is
symmetric.

If a group G acts on V and W, u is equivariant provided
wu(gu, gw) = p(v,w) for allv € V, w € W and g € G.

A linked form is equivariant provided p and u are. It
follows that A, is an equivariant form.



Linked bilinear forms

Remarks

Proposition

If (u,u) is a symmetric linked bilinear form, then
u(W) c v+,

Proposition

If (p,u) is a symmetric linked bilinear form, then

K = K, = u (V1) is the perpendicular subspace for V
and the form A, . on either side.

The subspace K is also called the annihilator of the form.



Linked bilinear forms

Isometries

An isometry of linked forms (pu1,u1) to (u2,u2) is a pair of
linear maps ¢y : Vi — V5 and vy : Wy — Wi such that

Vi x W
Vs W, / \
[+ ]
Vo —2 Wy
Lv><1W2

commute.

The map vy : Vi3 — V5 is an isometry from the associated
form A to A

H1,u1 H2,u2 -



Linked bilinear forms

Induced isometries

The right hand diagram on the previous page commutes if
and only if

f11 ('Ul,Lw(’LUg)) = [LQ(Lv<U1),UJ2) for all (vi,wy) € Vi x Wy

Let (v, tw) be an isometry of linked forms (uy,uy) to
(:U’27 u2) .

Theorem

ur(VsH) Cc Vit and vy (W) € Wit



Left /right characteristic cosets

Definitions

Let f: V — Fy be a linear map and let (i, u) be a
symmetric linked form. The right characteristic coset for f,
Ry, is the set of all w € W such that f(v) = p(v, w) for all
v € V. The name is a slight misnomer as R may be
empty, but if it is non-empty, it is a coset of V+ C W.

The left characteristic coset for f, L¢, is the set of all £ € V
such that f(v) = A, .(v,?) for allv € V.

Note the change in form. If £; is non-empty, then it is a
coset of K =u~}(V1).



Left /right characteristic cosets
Naturality

Theorem
Let (vy,tw) be an isometry from (py,u1) — (po, us). Let
f: Vo = Ty be a linear map. Then

W(Rf) - RfOLV

Proof.
Let x € Ry so f(vg) = pa(ve, x) for all vy € V5. For vy € V5,
ty(vy) € Vo so f(LV ) ug(av(vl) ) for all v; € V4.
Then (f oty)(v1) = g (vl, tw (z ) for all v; € V4, so

( ) € RfOLV [



Left /right characteristic cosets
Additional properties

Theorem
Let (p,u) be a linked form and let f:V — Fy be a linear
map. Then u(Ly) C Ry.

A classic method of producing linear maps is to use the
squaring map associated to a symmetric bilinear form.

Let (i, u) be a symmetric linked form and let S, .V — Fy
be the squaring map for the associated form.

To simplify notation, define £, = Lg,, and R, = Rs,,,

These will be called the left/right characteristic cosets of
the symmetric linked form.



Left /right characteristic cosets

Summary

For W-surjective, symmetric, linked bilinear forms, the
following hold.

>

>

>

R, is always non-empty.

If dimV/K < o0, L, is non-empty.

w(L,u) C Ry

If there exists x € V such that u(z) € R, then
r € Ly

If (vv,ew) is an isometry from (pg,uy) to (ug, us),
tw(Rupus) € Ry -

If dimV/K < oo, (L, 4, Ryu) is the dimension of
V/K mod 2.



Examples

Basic set up
Let M™ be a smooth, paracompact, Hausdorff manifold
without boundary of dimension n. The examples here all
start with the bilinear form, V = H¥(M;Fy),
W = H"*(M;F;) and p is the cup product evaluated on
the fundamental class. For v € V and w € W, write v e w
for p(v,w).

The examples come from various choices of subspaces

Vir C HF(M;Fy) and linking map u: Vi, — H"%(M;Fy).
Here the linking map is always of the form

Vi —2— H™*(M; Fy) ER HF(M;F;) where f forgets that
the class has compact support. Since the manifold M will
determine the linked form in each example write Rj; and
Ly for the right and left characteristic cosets.

Since this form is W-surjective, R, always exists.



Examples
Naturality

The tangent bundle map makes both H*(M;Fs) and
H}(M;F,) into H*(BO;F,) algebras.

If k: U C M is a codimension zero embedding, there are
induced maps k*: H" *(M;Fy) — H" *(U;F,) and

k12 HF(U;Fy) — HF(M;Fy). The pair (i, *) is an
isometry and both xy and k* are H*(BO;Fy) module maps.

Suppose a linked form is defined for each object in some
category of manifolds and codimension zero embeddings.
The linked form is natural for codimension zero embeddings

provided (Vi) C Vi and Vi > Vi

commutes. H"‘k(U;FQ) ¢ — H”_k(M;IFz)




Examples

Wu's result

Suppose M has dimension n = 2k. Let V = H¥(M;TF,),
W = H*(M;Fy) and 1 is the identity. This is a natural
family for all manifolds.

If M is compact, it is a classic result of Wu’s that the right
characteristic coset of this linked form is vi(M) where
vi(M) is the k™ Wu class of the tangent bundle.



Examples

A general result on natural families

Fix some category of manifolds and codimension zero
embeddings. Suppose that for every element

x € Hy,_(M;Fy) there exist codimension zero embeddings
(in the category) k,: U, C M and k,: U, C N with N
compact such that there exists y € H,_(U,;Fy) with
(Kz)«(y) = x. Call such a category compactly determined.

Suppose given two families of elements

anr, byr € H"%(M;Fy) which are natural for codimension
zero embeddings in a compactly determined category of
manifolds. If ay; = by for all compact M then ay; = by, for
all M.



Examples

Wu's result

Returning to Wu’s example, it follows from the previous
slide that

» Ry = vi(M) for all paracompact manifolds M.

» If M is compact, L, = vi(M).

» If the image of H*(M;F,) in H*(M;TF,) has finite
dimension ¢ then £, , is non-empty and L, , ® v is
¢ mod 2.

» If M is a countable connected sum of CP%’s, then
L, is empty.



Examples

Lusztig-Milnor-Peterson form

This example starts with M™ where n = 2k + 1;

V = HE(M;Fy), W = H1(M;F,) and

U= Sq': H*(M;Fy) — H*'(M;TF,). The associated form
is A, s41(v1,v9) = v1 © Sq'(vy). This linked form is not
always symmetric but if M is orientable, it is. It is also
natural for orientable manifolds and all codimension zero
embeddings.



Examples

Lusztig-Milnor-Peterson form

Lusztig, Milnor and Peterson showed that if £ = 2¢, and M
is compact, Ry = Sq'(vy). This follows from the formula
BPar(z) = Sq*Sq'(x) + 2 U Sq*(x) where 3 is a Bockstein
and Py, is the Pontryagin square. In the compact case it
further follows that voy € L.

In the case in which M is compact, the characteristic
number vy, 5¢* (vgy) is the dimension mod 2 of the form on
H*(M;Fy) /Sq" (H* 1 (M;Fy)).

With more work Lusztig, Milnor and Peterson identify this
with the de Rham invariant.



Examples

Lusztig-Milnor-Peterson form

In case k = 2¢ + 1 Ed Miller observed, in the language here,
that R s was a class which is natural for codimension zero
embeddings. The example of RP? shows that R is not
determined by the tangent bundle.



Examples

Lusztig-Milnor-Peterson form

For non-orientable manifolds the Lusztig-Milnor-Peterson
form need not be symmetric: for example M = RP?* x S'.

One way to restore symmetry is to take

Wy = H*Y(M;Fy) and

Vi = {v € HNM;Fy) | vUw (M) =0€ HY(M;F,)}
where wy (M) is the first Stiefel-Whitney class. The
associated form is symmetric.

However Vi = (w1 (M))H"(M;F5) so in general Ry is a
proper coset.

The coset Ry, is natural for codimension zero embeddings.



Examples

Lusztig-Milnor-Peterson form

This gives a different partial answer to Ed Miller’s question
on the existence of natural characteristic classes which are
not determined by the tangent bundle. The
Lusztig-Milnor-Peterson coset is defined on all manifolds of
odd dimension. In dimensions 4¢ + 3 the coset is not
determined by the tangent bundle.



Examples

Lusztig-Milnor-Peterson form

A simple 3-manifold theorem

Let M? be a 3-manifold with 0 € Ry and let e: RP? — M
be an embedding. Then e(RP?) is 2-sided.

Corollary

Let M3 be an orientable 3-manifold with 0 = Ry;. Then
there is no embedding e: RP* — M.



Examples

Landweber-Stong form

If M™ is a Spin manifold of dimension n = 2k + 2,
Landweber and Stong observed that

U= Sq?: H¥(M;Fy) — H¥2(M;TF,) gives a symmetric
linked form.

In dimension 8k + 2 they show that the right characteristic
element does not come from any element in H**2(BO;F,)
but restricted to the kernel of S¢', the right characteristic
coset contains Sq?(vay).

Restricting to the kernel of Uvy and Uv; extends the form
to all manifolds and has appropriate characteristic cosets.



Examples
Some remarks on H*(BO;Fs)

For each integer k > 0, there exists a linear transformation
(*: H(BO;Fy) — H"™(BO;TF,)

defined for any w € H(BO;F,) by
k .
Flw) = ViU x(S¢" ) (w)
=0

Cultural remark: [*(w) vanishes for all M™, n < 2k + ¢ by
Brown and Peterson’s work on vanishing characteristic
classes.



Examples
Wu shifted by Stiefel-Whitney

If M has dimension n = 2k + ¢ and if u(z) = x Uw
re(rUw)=uxel"(w)

Note [F(1) = v} so this is a generalization of Wu’s result.



Examples
Lusztig-Milnor-Peterson shifted by Stiefel-Whitney

Suppose the dimension of M is n =2k + ¢ + 1.

Note for any space X and class x € H*(X;Fy),
(*(z) = (w1 Ux) + S¢*(z) is Greenblatt’s twisted Bockstein.
Hence [' (I'(z)) = 0.

If M(w) =0, ze(wUSq¢'(z)) is symmetric.

Since H*(BO;Z"") is a Fy vector space, [*(w) = 0 if and
only if there exist some class x,, such that [*(x,) = w. Then

ze(wUSq (z)) =zel(IF(k,))



Examples
Equivariant Wu

Suppose a finite 2 group G acts on a manifold M of

dimension n = 2k + ¢. For any x € H"(M;F,), define
N(z) =) ¢'()

a

Fix w € HY(BO;F,). <
Theorem
Let G act freely on M. Let
K =ker(NUw): H¥(M;Fy) — H**(M;Fy) and suppose
HY(M;F,)/K has finite dimension. Then there exist
n € HE(M;Fy) such that

M(w) = N(nUw)
Corollary

Suppose given the hypotheses of the theorem.
If F(w) # 0 € HY(M;Fy), Fo[G] € H(M;TFy).



Examples

Equivariant Wu

Let M; = CP*#CP #(S' x S3)#(S x $?) and let

M, = 52 x S' x S'. The manifolds M; and M, have the
same homology and the same signatures. The manifold M;
has a free Z /27 action and M, has free cyclic group actions
for all orders. Since vo(M;) # 0, M; has no free action by
any group of order 4.



Examples

Equivariant Wu

The proof of the theorem proceeds by considering the
linking map

t: HE(M;Fo) = HFN(M;Fy) 225 HF (M Fy)

It also uses a result of Bredon’s that for free involutions 7
and x € H¥(M;Fy), x UT*(x) = p*(y) for some
Yy € Hgk(M/T;FQ).

For n take any element in L,;.



