Bilinear forms and Wu-like cosets.

Laurence R. Taylor

University of Notre Dame taylor.2@nd.edu https://www3.nd.edu/~taylor/talks/2015-11-15-Rutgers.pdf

AMS Regional Meeting Special Session on Geometric Topology: A Celebration of Jim West's 70th Birthday Rutgers University November 15, 2015

Introduction

The squaring map associated to a symmetric bilinear form over a field of characteristic 2 is a linear map. If the form is non-degenerate, there is characteristic class. The middle Wu class of an even dimensional manifold is an example and additional examples will be considered here.

- ▶ Bilinear forms
- ▶ Linked bilinear forms
- ► Left/right characteristic cosets
- ► Examples

Bilinear forms

Basic definitions

Let V and W be vector spaces over \mathbb{F}_2 . If finite dimension is required, it will be mentioned explicitly. A *bilinear form* is a function

$$\mu\colon V\times W\to \mathbb{F}_2$$

which is linear in each variable separately.

$$V^{\perp} \subset W = \left\{ w \in W \mid \mu(v, w) = 0 \text{ for all } v \in V \right\}$$

The subspace $W^{\perp} \subset V$ is defined similarly.

The form is W- surjective provided the composition

$$W \xrightarrow{\text{adjoint}} V^* \to \left(V/W^{\perp} \right)^*$$

is surjective.

Definitions

A linked bilinear form is a pair consisting of a bilinear form $\mu: V \times W \to \mathbb{F}_2$ and a linear map $\mathfrak{u}: V \to W$.

The associated bilinear form is the function

$$A_{\mu,\mathfrak{u}}(v_1,v_2) = \mu(v_1,\mathfrak{u}(v_2)) \colon V \times V \xrightarrow{1_V \times \mathfrak{u}} V \times W \xrightarrow{\mu} \mathbb{F}_2$$

A linked bilinear form is symmetric provided $A_{\mu,\mathfrak{u}}$ is symmetric.

If a group G acts on V and W, μ is *equivariant* provided $\mu(gv, gw) = \mu(v, w)$ for all $v \in V$, $w \in W$ and $g \in G$.

A linked form is *equivariant* provided μ and \mathfrak{u} are. It follows that $A_{\mu,\mathfrak{u}}$ is an equivariant form.

Remarks

Proposition

If (μ, \mathfrak{u}) is a symmetric linked bilinear form, then $\mathfrak{u}(W^{\perp}) \subset V^{\perp}$.

Proposition

If (μ, \mathfrak{u}) is a symmetric linked bilinear form, then $K = K_{\mu,\mathfrak{u}} = \mathfrak{u}^{-1}(V^{\perp})$ is the perpendicular subspace for V and the form $A_{\mu,\mathfrak{u}}$ on either side.

The subspace K is also called the annihilator of the form.

Isometries

An isometry of linked forms (μ_1, \mathfrak{u}_1) to (μ_2, \mathfrak{u}_2) is a pair of linear maps $\iota_V \colon V_1 \to V_2$ and $\iota_W \colon W_2 \to W_1$ such that

commute.

The map $\iota_V \colon V_1 \to V_2$ is an isometry from the associated form A_{μ_1,\mathfrak{u}_1} to A_{μ_2,\mathfrak{u}_2} .

Induced isometries

The right hand diagram on the previous page commutes if and only if

$$\mu_1(v_1, \iota_W(w_2)) = \mu_2(\iota_V(v_1), w_2) \text{ for all } (v_1, w_2) \in V_1 \times W_2$$

Let (ι_V, ι_W) be an isometry of linked forms (μ_1, \mathfrak{u}_1) to (μ_2, \mathfrak{u}_2) .

Theorem

 $\iota_W(V_2^{\perp}) \subset V_1^{\perp} \text{ and } \iota_V(W_1^{\perp}) \subset W_2^{\perp}.$

Left/right characteristic cosets Definitions

Let $f: V \to \mathbb{F}_2$ be a linear map and let (μ, \mathfrak{u}) be a symmetric linked form. The *right characteristic coset for* f, \mathcal{R}_f , is the set of all $w \in W$ such that $f(v) = \mu(v, w)$ for all $v \in V$. The name is a slight misnomer as \mathcal{R}_f may be empty, but if it is non-empty, it is a coset of $V^{\perp} \subset W$.

The left characteristic coset for f, \mathcal{L}_f , is the set of all $\ell \in V$ such that $f(v) = A_{\mu,\mathfrak{u}}(v,\ell)$ for all $v \in V$. Note the change in form. If \mathcal{L}_f is non-empty, then it is a coset of $K = \mathfrak{u}^{-1}(V^{\perp})$.

Left/right characteristic cosets Naturality

Theorem Let (ι_V, ι_W) be an isometry from $(\mu_1, \mathfrak{u}_1) \to (\mu_2, \mathfrak{u}_2)$. Let $f: V_2 \to \mathbb{F}_2$ be a linear map. Then

 $\iota_W(\mathcal{R}_f) \subset \mathcal{R}_{f \circ \iota_V}$

Proof.
Let
$$x \in \mathcal{R}_f$$
 so $f(v_2) = \mu_2(v_2, x)$ for all $v_2 \in V_2$. For $v_1 \in V_2$,
 $\iota_V(v_1) \in V_2$ so $f(\iota_V(v_1)) = \mu_2(\iota_V(v_1), x)$ for all $v_1 \in V_1$.
Then $(f \circ \iota_V)(v_1) = \mu_1(v_1, \iota_W(x))$ for all $v_1 \in V_1$, so
 $\iota_W(x) \in \mathcal{R}_{f \circ \iota_V}$.

Left/right characteristic cosets Additional properties

Theorem Let (μ, \mathfrak{u}) be a linked form and let $f: V \to \mathbb{F}_2$ be a linear map. Then $\mathfrak{u}(\mathcal{L}_f) \subset \mathcal{R}_f$.

A classic method of producing linear maps is to use the squaring map associated to a symmetric bilinear form.

Let (μ, \mathfrak{u}) be a symmetric linked form and let $\mathbf{S}_{\mu,\mathfrak{u},:} V \to \mathbb{F}_2$ be the squaring map for the associated form.

To simplify notation, define $\mathcal{L}_{\mu,\mathfrak{u}} = \mathcal{L}_{\mathbf{S}_{\mu,\mathfrak{u}}}$ and $\mathcal{R}_{\mu,\mathfrak{u}} = \mathcal{R}_{\mathbf{S}_{\mu,\mathfrak{u}}}$.

These will be called the *left/right characteristic cosets of* the symmetric linked form.

Left/right characteristic cosets Summary

For W-surjective, symmetric, linked bilinear forms, the following hold.

- $\mathcal{R}_{\mu,\mathfrak{u}}$ is always non-empty.
- If dim $V/K < \infty$, $\mathcal{L}_{\mu,\mathfrak{u}}$ is non-empty.
- $\mathfrak{u}(\mathcal{L}_{\mu,\mathfrak{u}}) \subset \mathcal{R}_{\mu,\mathfrak{u}}.$
- If there exists $x \in V$ such that $\mathfrak{u}(x) \in \mathcal{R}_{\mu,\mathfrak{u}}$, then $x \in \mathcal{L}_{\mu,\mathfrak{u}}$.
- If (ι_V, ι_W) is an isometry from (μ_1, \mathfrak{u}_1) to (μ_2, \mathfrak{u}_2) , $\iota_W(\mathcal{R}_{\mu_2, \mathfrak{u}_2}) \subset \mathcal{R}_{\mu_1, \mathfrak{u}_1}.$
- ► If dim $V/K < \infty$, $\mu(\mathcal{L}_{\mu,\mathfrak{u}}, \mathcal{R}_{\mu,\mathfrak{u}})$ is the dimension of $V/K \mod 2$.

Examples

Basic set up

Let M^n be a smooth, paracompact, Hausdorff manifold without boundary of dimension n. The examples here all start with the bilinear form, $V = H_c^k(M; \mathbb{F}_2)$, $W = H^{n-k}(M; \mathbb{F}_2)$ and μ is the cup product evaluated on the fundamental class. For $v \in V$ and $w \in W$, write $v \bullet w$ for $\mu(v, w)$.

The examples come from various choices of subspaces $V_M \subset H^k_c(M; \mathbb{F}_2)$ and linking map $\mathfrak{u} \colon V_M \to H^{n-k}(M; \mathbb{F}_2)$. Here the linking map is always of the form

 $V_M \xrightarrow{\hat{\mathfrak{u}}} H_c^{n-k}(M; \mathbb{F}_2) \xrightarrow{f} H_c^k(M; \mathbb{F}_2)$ where f forgets that the class has compact support. Since the manifold M will determine the linked form in each example write \mathcal{R}_M and \mathcal{L}_M for the right and left characteristic cosets.

Since this form is W-surjective, \mathcal{R}_M always exists.

Examples

Naturality

The tangent bundle map makes both $H^*(M; \mathbb{F}_2)$ and $H^*_c(M; \mathbb{F}_2)$ into $H^*(BO; \mathbb{F}_2)$ algebras.

If $\kappa: U \subset M$ is a codimension zero embedding, there are induced maps $\kappa^* \colon H^{n-k}(M; \mathbb{F}_2) \to H^{n-k}(U; \mathbb{F}_2)$ and $\kappa_1 \colon H^k_c(U; \mathbb{F}_2) \to H^k_c(M; \mathbb{F}_2).$ The pair (κ_1, κ^*) is an isometry and both κ_1 and κ^* are $H^*(BO; \mathbb{F}_2)$ module maps.

Suppose a linked form is defined for each object in some category of manifolds and codimension zero embeddings. The linked form is *natural for codimension zero embeddings* $V_U \xrightarrow{\kappa_!} V_M$ provided $\kappa_1(V_U) \subset V_M$ and $\begin{array}{c} \mathfrak{u}_{U} \\ \mathfrak{u}_{U} \\ H^{n-k}(U; \mathbb{F}_{2}) \xleftarrow{\mathfrak{u}_{N}} \\ \longleftarrow \\ \kappa^{*} \\ H^{n-k}(M; \mathbb{F}_{2}) \end{array}$

commutes.

Examples Wu's result

Suppose M has dimension n = 2k. Let $V = H_c^k(M; \mathbb{F}_2)$, $W = H^k(M; \mathbb{F}_2)$ and $\hat{\mathfrak{u}}$ is the identity. This is a natural family for all manifolds.

If M is compact, it is a classic result of Wu's that the right characteristic coset of this linked form is $v_k(M)$ where $v_k(M)$ is the k^{th} Wu class of the tangent bundle.

Examples

A general result on natural families

Fix some category of manifolds and codimension zero embeddings. Suppose that for every element $x \in H_{n-k}(M; \mathbb{F}_2)$ there exist codimension zero embeddings (in the category) $\kappa_x \colon U_x \subset M$ and $\kappa'_x \colon U_x \subset N$ with Ncompact such that there exists $y \in H_{n-k}(U_x; \mathbb{F}_2)$ with $(\kappa_x)_*(y) = x$. Call such a category compactly determined.

Suppose given two families of elements $a_M, b_M \in H^{n-k}(M; \mathbb{F}_2)$ which are natural for codimension zero embeddings in a compactly determined category of manifolds. If $a_M = b_M$ for all compact M then $a_M = b_M$ for all M.

Examples Wu's result

Returning to Wu's example, it follows from the previous slide that

- $\mathcal{R}_{\mu,\mathfrak{u}} = \mathbf{v}_k(M)$ for all paracompact manifolds M.
- If M is compact, $\mathcal{L}_{\mu,\mathfrak{u}} = \mathbf{v}_k(M)$.
- If the image of $H^k_c(M; \mathbb{F}_2)$ in $H^k(M; \mathbb{F}_2)$ has finite dimension ℓ then $\mathcal{L}_{\mu,\mathfrak{u}}$ is non-empty and $\mathcal{L}_{\mu,\mathfrak{u}} \bullet v_k$ is $\ell \mod 2$.
- If M is a countable connected sum of CP²'s, then *L*_{µ,u} is empty.

This example starts with M^n where n = 2k + 1; $V = H_c^k(M; \mathbb{F}_2), W = H^{k+1}(M; \mathbb{F}_2)$ and $\hat{\mathfrak{u}} = Sq^1 \colon H_c^k(M; \mathbb{F}_2) \to H_c^{k+1}(M; \mathbb{F}_2)$. The associated form is $A_{\mu,Sq^1}(v_1, v_2) = v_1 \bullet Sq^1(v_2)$. This linked form is not always symmetric but if M is orientable, it is. It is also natural for orientable manifolds and all codimension zero embeddings.

Lusztig, Milnor and Peterson showed that if $k = 2\ell$, and M is compact, $\mathcal{R}_M = Sq^1(\mathbf{v}_{2\ell})$. This follows from the formula $\beta \mathcal{P}_{2k}(x) = Sq^{2\ell}Sq^1(x) + x \cup Sq^1(x)$ where β is a Bockstein and \mathcal{P}_{2k} is the Pontryagin square. In the compact case it further follows that $\mathbf{v}_{2\ell} \in \mathcal{L}_M$.

In the case in which M is compact, the characteristic number $v_{2k}Sq^1(v_{2k})$ is the dimension mod 2 of the form on $H^k(M; \mathbb{F}_2)/Sq^1(H^{k-1}(M; \mathbb{F}_2))$. With more work Lusztig, Milnor and Peterson identify this with the de Rham invariant.

In case $k = 2\ell + 1$ Ed Miller observed, in the language here, that \mathcal{R}_M was a class which is natural for codimension zero embeddings. The example of \mathbb{RP}^3 shows that \mathcal{R}_M is not determined by the tangent bundle.

For non-orientable manifolds the Lusztig-Milnor-Peterson form need not be symmetric: for example $M = \mathbb{RP}^{2k} \times S^1$.

One way to restore symmetry is to take $W_M = H^{k+1}(M; \mathbb{F}_2)$ and $V_M = \{ v \in H^k_c(M; \mathbb{F}_2) \mid v \cup w_1(M) = 0 \in H^{k+1}_c(M; \mathbb{F}_2) \}$ where $w_1(M)$ is the first Stiefel-Whitney class. The associated form is symmetric.

However $V_M^{\perp} = (\mathbf{w}_1(M)) H^k(M; \mathbb{F}_2)$ so in general \mathcal{R}_M is a proper coset.

The coset \mathcal{R}_M is natural for codimension zero embeddings.

This gives a different partial answer to Ed Miller's question on the existence of natural characteristic classes which are not determined by the tangent bundle. The Lusztig-Milnor-Peterson coset is defined on all manifolds of odd dimension. In dimensions $4\ell + 3$ the coset is not determined by the tangent bundle.

A simple 3-manifold theorem

Let M^3 be a 3-manifold with $0 \in \mathcal{R}_M$ and let $e : \mathbb{RP}^2 \to M$ be an embedding. Then $e(\mathbb{RP}^2)$ is 2-sided.

Corollary

Let M^3 be an orientable 3-manifold with $0 = \mathcal{R}_M$. Then there is no embedding $e \colon \mathbb{RP}^2 \to M$.

Examples Landweber-Stong form

If M^n is a Spin manifold of dimension n = 2k + 2, Landweber and Stong observed that $\hat{\mathfrak{u}} = Sq^2 \colon H^k_c(M; \mathbb{F}_2) \to H^{k+2}_c(M; \mathbb{F}_2)$ gives a symmetric linked form.

In dimension 8k + 2 they show that the right characteristic element does not come from any element in $H^{4k+2}(BO; \mathbb{F}_2)$ but restricted to the kernel of Sq^1 , the right characteristic coset contains $Sq^2(v_{4k})$.

Restricting to the kernel of $\cup v_2$ and $\cup v_1$ extends the form to all manifolds and has appropriate characteristic cosets.

Examples Some remarks on $H^*(BO; \mathbb{F}_2)$

For each integer $k \ge 0$, there exists a linear transformation

$$\mathfrak{l}^k \colon H^\ell(BO; \mathbb{F}_2) \to H^{k+\ell}(BO; \mathbb{F}_2)$$

defined for any $\omega \in H^{\ell}(BO; \mathbb{F}_2)$ by

$$\mathbf{I}^{k}(\omega) = \sum_{i=0}^{k} \mathbf{v}_{i} \cup \, \chi(Sq^{k-i})(\omega)$$

Cultural remark: $l^k(\omega)$ vanishes for all M^n , $n < 2k + \ell$ by Brown and Peterson's work on vanishing characteristic classes.

Examples Wu shifted by Stiefel-Whitney

If M has dimension $n = 2k + \ell$ and if $\hat{\mathfrak{u}}(x) = x \cup \omega$

$$x \bullet (x \cup \omega) = x \bullet \mathfrak{l}^k(\omega)$$

Note $l^k(1) = v_k$ so this is a generalization of Wu's result.

Examples

Lusztig-Milnor-Peterson shifted by Stiefel-Whitney

Suppose the dimension of M is $n = 2k + \ell + 1$.

Note for any space X and class $x \in H^k(X; \mathbb{F}_2)$, $\mathfrak{l}^1(x) = (w_1 \cup x) + Sq^1(x)$ is Greenblatt's twisted Bockstein. Hence $\mathfrak{l}^1(\mathfrak{l}^1(x)) = 0$.

If
$$\mathfrak{l}^1(\omega) = 0$$
, $x \bullet (\omega \cup Sq^1(x))$ is symmetric.

Since $H^k(BO; \mathbb{Z}^{w_1})$ is a \mathbb{F}_2 vector space, $\mathfrak{l}^1(\omega) = 0$ if and only if there exist some class κ_{ω} such that $\mathfrak{l}^1(\kappa_{\omega}) = \omega$. Then

$$x \bullet (\omega \cup Sq^1(x)) = x \bullet \mathfrak{l}^1(\mathfrak{l}^{k+1}(\kappa_\omega))$$

Examples

Equivariant Wu

Suppose a finite 2 group G acts on a manifold M of dimension $n = 2k + \ell$. For any $x \in H^r(M; \mathbb{F}_2)$, define

$$\mathbf{N}(x) = \sum_{g \in G} g^*(x)$$

Fix $\omega \in H^{\ell}(BO; \mathbb{F}_2)$.

Theorem

Let G act freely on M. Let $K = \ker(\mathbf{N} \cup \omega) \colon H^k_c(M; \mathbb{F}_2) \to H^{k+\ell}_c(M; \mathbb{F}_2)$ and suppose $H^k_c(M; \mathbb{F}_2)/K$ has finite dimension. Then there exist $\eta \in H^k_c(M; \mathbb{F}_2)$ such that

$$\mathfrak{l}^k(\omega) = \mathbf{N}(\eta \cup \omega)$$

Corollary

Suppose given the hypotheses of the theorem. If $\mathfrak{l}^k(\omega) \neq 0 \in H^{k+\ell}(M; \mathbb{F}_2)$, $\mathbb{F}_2[G] \subset H^{k+\ell}(M; \mathbb{F}_2)$.

Examples Equivariant Wu

Let $M_1 = \mathbb{CP}^2 \# \overline{\mathbb{CP}}^2 \# (S^1 \times S^3) \# (S^1 \times S^3)$ and let $M_2 = S^2 \times S^1 \times S^1$. The manifolds M_1 and M_2 have the same homology and the same signatures. The manifold M_1 has a free $\mathbb{Z}/2\mathbb{Z}$ action and M_2 has free cyclic group actions for all orders. Since $v_2(M_1) \neq 0$, M_1 has no free action by any group of order 4. Examples Equivariant Wu

The proof of the theorem proceeds by considering the linking map

$$\hat{\mathfrak{u}} \colon H^k_c(M;\mathbb{F}_2) \xrightarrow{\mathbf{N}} H^k_c(M;\mathbb{F}_2) \xrightarrow{\cup \, \omega} H^{k+\ell}_c(M;\mathbb{F}_2)$$

It also uses a result of Bredon's that for free involutions τ and $x \in H_c^k(M; \mathbb{F}_2)$, $x \cup \tau^*(x) = p^*(y)$ for some $y \in H_c^{2k}(M/\tau; \mathbb{F}_2)$.

For η take any element in \mathcal{L}_M .