## Bilinear forms and Wu-like cosets.

Laurence R. Taylor

University of Notre Dame
taylor.2@nd.edu
https://www3.nd.edu/~taylor/talks/2015-11-15-Rutgers.pdf
AMS Regional Meeting Special Session on Geometric Topology:
A Celebration of Jim West's $70^{\text {th }}$ Birthday
Rutgers University
November 15, 2015

## Introduction

The squaring map associated to a symmetric bilinear form over a field of characteristic 2 is a linear map. If the form is non-degenerate, there is characteristic class. The middle Wu class of an even dimensional manifold is an example and additional examples will be considered here.

- Bilinear forms
- Linked bilinear forms
- Left/right characteristic cosets
- Examples


## Bilinear forms

## Basic definitions

Let $V$ and $W$ be vector spaces over $\mathbb{F}_{2}$. If finite dimension is required, it will be mentioned explicitly.
A bilinear form is a function

$$
\mu: V \times W \rightarrow \mathbb{F}_{2}
$$

which is linear in each variable separately.

$$
V^{\perp} \subset W=\{w \in W \mid \mu(v, w)=0 \text { for all } v \in V\}
$$

The subspace $W^{\perp} \subset V$ is defined similarly.
The form is $W$ - surjective provided the composition

$$
W \xrightarrow{\text { adjoint }} V^{*} \rightarrow\left(V / W^{\perp}\right)^{*}
$$

is surjective.

## Linked bilinear forms

## Definitions

A linked bilinear form is a pair consisting of a bilinear form $\mu: V \times W \rightarrow \mathbb{F}_{2}$ and a linear map $\mathfrak{u}: V \rightarrow W$.

The associated bilinear form is the function

$$
A_{\mu, \mathfrak{u}}\left(v_{1}, v_{2}\right)=\mu\left(v_{1}, \mathfrak{u}\left(v_{2}\right)\right): V \times V \xrightarrow{1_{V} \times \mathfrak{u}} V \times W \xrightarrow{\mu} \mathbb{F}_{2}
$$

A linked bilinear form is symmetric provided $A_{\mu, \mathfrak{u}}$ is symmetric.

If a group $G$ acts on $V$ and $W, \mu$ is equivariant provided $\mu(g v, g w)=\mu(v, w)$ for all $v \in V, w \in W$ and $g \in G$.

A linked form is equivariant provided $\mu$ and $\mathfrak{u}$ are. It follows that $A_{\mu, \mathfrak{u}}$ is an equivariant form.

## Linked bilinear forms

Remarks

## Proposition

If $(\mu, \mathfrak{u})$ is a symmetric linked bilinear form, then
$\mathfrak{u}\left(W^{\perp}\right) \subset V^{\perp}$.
Proposition
If $(\mu, \mathfrak{u})$ is a symmetric linked bilinear form, then
$K=K_{\mu, \mathfrak{u}}=\mathfrak{u}^{-1}\left(V^{\perp}\right)$ is the perpendicular subspace for $V$
and the form $A_{\mu, \mathfrak{u}}$ on either side.
The subspace $K$ is also called the annihilator of the form.

## Linked bilinear forms

## Isometries

An isometry of linked forms $\left(\mu_{1}, \mathfrak{u}_{1}\right)$ to $\left(\mu_{2}, \mathfrak{u}_{2}\right)$ is a pair of linear maps $\iota_{V}: V_{1} \rightarrow V_{2}$ and $\iota_{W}: W_{2} \rightarrow W_{1}$ such that

commute.
The map $\iota_{V}: V_{1} \rightarrow V_{2}$ is an isometry from the associated form $A_{\mu_{1}, \boldsymbol{u}_{1}}$ to $A_{\mu_{2}, \boldsymbol{u}_{2}}$.

## Linked bilinear forms

Induced isometries

The right hand diagram on the previous page commutes if and only if

$$
\mu_{1}\left(v_{1}, \iota_{W}\left(w_{2}\right)\right)=\mu_{2}\left(\iota_{V}\left(v_{1}\right), w_{2}\right) \text { for all }\left(v_{1}, w_{2}\right) \in V_{1} \times W_{2}
$$

Let $\left(\iota_{V}, \iota_{W}\right)$ be an isometry of linked forms $\left(\mu_{1}, \mathfrak{u}_{1}\right)$ to $\left(\mu_{2}, \mathfrak{u}_{2}\right)$.
Theorem $\iota_{W}\left(V_{2}^{\perp}\right) \subset V_{1}^{\perp}$ and $\iota_{V}\left(W_{1}^{\perp}\right) \subset W_{2}^{\perp}$.

## Left/right characteristic cosets

## Definitions

Let $f: V \rightarrow \mathbb{F}_{2}$ be a linear map and let $(\mu, \mathfrak{u})$ be a symmetric linked form. The right characteristic coset for $f$, $\mathcal{R}_{f}$, is the set of all $w \in W$ such that $f(v)=\mu(v, w)$ for all $v \in V$. The name is a slight misnomer as $\mathcal{R}_{f}$ may be empty, but if it is non-empty, it is a coset of $V^{\perp} \subset W$.

The left characteristic coset for $f, \mathcal{L}_{f}$, is the set of all $\ell \in V$ such that $f(v)=A_{\mu, \mathfrak{u}}(v, \ell)$ for all $v \in V$.
Note the change in form. If $\mathcal{L}_{f}$ is non-empty, then it is a coset of $K=\mathfrak{u}^{-1}\left(V^{\perp}\right)$.

## Left/right characteristic cosets

Naturality

Theorem
Let $\left(\iota_{V}, \iota_{W}\right)$ be an isometry from $\left(\mu_{1}, \mathfrak{u}_{1}\right) \rightarrow\left(\mu_{2}, \mathfrak{u}_{2}\right)$. Let $f: V_{2} \rightarrow \mathbb{F}_{2}$ be a linear map. Then

$$
\iota_{W}\left(\mathcal{R}_{f}\right) \subset \mathcal{R}_{f \circ \iota_{V}}
$$

## Proof.

Let $x \in \mathcal{R}_{f}$ so $f\left(v_{2}\right)=\mu_{2}\left(v_{2}, x\right)$ for all $v_{2} \in V_{2}$. For $v_{1} \in V_{2}$, $\iota_{V}\left(v_{1}\right) \in V_{2}$ so $f\left(\iota_{V}\left(v_{1}\right)\right)=\mu_{2}\left(\iota_{V}\left(v_{1}\right), x\right)$ for all $v_{1} \in V_{1}$.
Then $\left(f \circ \iota_{V}\right)\left(v_{1}\right)=\mu_{1}\left(v_{1}, \iota_{W}(x)\right)$ for all $v_{1} \in V_{1}$, so $\iota_{W}(x) \in \mathcal{R}_{f \circ \iota_{V}}$.

## Left/right characteristic cosets

## Additional properties

Theorem
Let $(\mu, \mathfrak{u})$ be a linked form and let $f: V \rightarrow \mathbb{F}_{2}$ be a linear map. Then $\mathfrak{u}\left(\mathcal{L}_{f}\right) \subset \mathcal{R}_{f}$.

A classic method of producing linear maps is to use the squaring map associated to a symmetric bilinear form.

Let $(\mu, \mathfrak{u})$ be a symmetric linked form and let $\mathbf{S}_{\mu, \mathfrak{u},:} V \rightarrow \mathbb{F}_{2}$ be the squaring map for the associated form.

To simplify notation, define $\mathcal{L}_{\mu, u}=\mathcal{L}_{\mathbf{S}_{\mu, u}}$ and $\mathcal{R}_{\mu, u}=\mathcal{R}_{\mathbf{S}_{\mu, u}}$.
These will be called the left/right characteristic cosets of the symmetric linked form.

## Left/right characteristic cosets

## Summary

For $W$-surjective, symmetric, linked bilinear forms, the following hold.

- $\mathcal{R}_{\mu, \mathfrak{u}}$ is always non-empty.
- If $\operatorname{dim} V / K<\infty, \mathcal{L}_{\mu, \mathfrak{u}}$ is non-empty.
- $\mathfrak{u}\left(\mathcal{L}_{\mu, \mathfrak{u}}\right) \subset \mathcal{R}_{\mu, \mathfrak{u}}$.
- If there exists $x \in V$ such that $\mathfrak{u}(x) \in \mathcal{R}_{\mu, \mathfrak{u}}$, then $x \in \mathcal{L}_{\mu, \mathfrak{u}}$.
- If $\left(\iota_{V}, \iota_{W}\right)$ is an isometry from $\left(\mu_{1}, \mathfrak{u}_{1}\right)$ to $\left(\mu_{2}, \mathfrak{u}_{2}\right)$, $\iota_{W}\left(\mathcal{R}_{\mu_{2}, \mathfrak{u}_{2}}\right) \subset \mathcal{R}_{\mu_{1}, \mathfrak{u}_{1}}$.
- If $\operatorname{dim} V / K<\infty, \mu\left(\mathcal{L}_{\mu, \mathfrak{u}}, \mathcal{R}_{\mu, \mathfrak{u}}\right)$ is the dimension of $V / K \bmod 2$.


## Examples

## Basic set up

Let $M^{n}$ be a smooth, paracompact, Hausdorff manifold without boundary of dimension $n$. The examples here all start with the bilinear form, $V=H_{c}^{k}\left(M ; \mathbb{F}_{2}\right)$, $W=H^{n-k}\left(M ; \mathbb{F}_{2}\right)$ and $\mu$ is the cup product evaluated on the fundamental class. For $v \in V$ and $w \in W$, write $v \bullet w$ for $\mu(v, w)$.

The examples come from various choices of subspaces $V_{M} \subset H_{c}^{k}\left(M ; \mathbb{F}_{2}\right)$ and linking map $\mathfrak{u}: V_{M} \rightarrow H^{n-k}\left(M ; \mathbb{F}_{2}\right)$. Here the linking map is always of the form
$V_{M} \xrightarrow{\hat{\mathfrak{u}}} H_{c}^{n-k}\left(M ; \mathbb{F}_{2}\right) \xrightarrow{f} H_{c}^{k}\left(M ; \mathbb{F}_{2}\right)$ where $f$ forgets that the class has compact support. Since the manifold $M$ will determine the linked form in each example write $\mathcal{R}_{M}$ and $\mathcal{L}_{M}$ for the right and left characteristic cosets.

Since this form is $W$-surjective, $\mathcal{R}_{M}$ always exists.

## Examples

## Naturality

The tangent bundle map makes both $H^{*}\left(M ; \mathbb{F}_{2}\right)$ and $H_{c}^{*}\left(M ; \mathbb{F}_{2}\right)$ into $H^{*}\left(B O ; \mathbb{F}_{2}\right)$ algebras.

If $\kappa: U \subset M$ is a codimension zero embedding, there are induced maps $\kappa^{*}: H^{n-k}\left(M ; \mathbb{F}_{2}\right) \rightarrow H^{n-k}\left(U ; \mathbb{F}_{2}\right)$ and $\kappa_{!}: H_{c}^{k}\left(U ; \mathbb{F}_{2}\right) \rightarrow H_{c}^{k}\left(M ; \mathbb{F}_{2}\right)$. The pair $\left(\kappa_{!}, \kappa^{*}\right)$ is an isometry and both $\kappa_{!}$and $\kappa^{*}$ are $H^{*}\left(B O ; \mathbb{F}_{2}\right)$ module maps.

Suppose a linked form is defined for each object in some category of manifolds and codimension zero embeddings. The linked form is natural for codimension zero embeddings provided $\kappa_{!}\left(V_{U}\right) \subset V_{M}$ and
commutes.


## Examples

Wu's result

Suppose $M$ has dimension $n=2 k$. Let $V=H_{c}^{k}\left(M ; \mathbb{F}_{2}\right)$, $W=H^{k}\left(M ; \mathbb{F}_{2}\right)$ and $\hat{\mathfrak{u}}$ is the identity. This is a natural family for all manifolds.

If $M$ is compact, it is a classic result of Wu's that the right characteristic coset of this linked form is $\mathrm{v}_{k}(M)$ where $\mathrm{v}_{k}(M)$ is the $k^{\mathrm{th}} \mathrm{Wu}$ class of the tangent bundle.

## Examples

A general result on natural families

Fix some category of manifolds and codimension zero embeddings. Suppose that for every element $x \in H_{n-k}\left(M ; \mathbb{F}_{2}\right)$ there exist codimension zero embeddings (in the category) $\kappa_{x}: U_{x} \subset M$ and $\kappa_{x}^{\prime}: U_{x} \subset N$ with $N$ compact such that there exists $y \in H_{n-k}\left(U_{x} ; \mathbb{F}_{2}\right)$ with $\left(\kappa_{x}\right)_{*}(y)=x$. Call such a category compactly determined.

Suppose given two families of elements $a_{M}, b_{M} \in H^{n-k}\left(M ; \mathbb{F}_{2}\right)$ which are natural for codimension zero embeddings in a compactly determined category of manifolds. If $a_{M}=b_{M}$ for all compact $M$ then $a_{M}=b_{M}$ for all $M$.

## Examples

Wu's result

Returning to Wu's example, it follows from the previous slide that

- $\mathcal{R}_{\mu, \mathfrak{u}}=\mathrm{v}_{k}(M)$ for all paracompact manifolds $M$.
- If $M$ is compact, $\mathcal{L}_{\mu, \mathfrak{u}}=\mathrm{v}_{k}(M)$.
- If the image of $H_{c}^{k}\left(M ; \mathbb{F}_{2}\right)$ in $H^{k}\left(M ; \mathbb{F}_{2}\right)$ has finite dimension $\ell$ then $\mathcal{L}_{\mu, \mathfrak{u}}$ is non-empty and $\mathcal{L}_{\mu, \mathfrak{u}} \bullet \mathrm{v}_{k}$ is $\ell \bmod 2$.
- If $M$ is a countable connected sum of $\mathbb{C P}^{2}$,s, then $\mathcal{L}_{\mu, u}$ is empty.


## Examples

Lusztig-Milnor-Peterson form

This example starts with $M^{n}$ where $n=2 k+1$; $V=H_{c}^{k}\left(M ; \mathbb{F}_{2}\right), W=H^{k+1}\left(M ; \mathbb{F}_{2}\right)$ and
$\hat{\mathfrak{u}}=S q^{1}: H_{c}^{k}\left(M ; \mathbb{F}_{2}\right) \rightarrow H_{c}^{k+1}\left(M ; \mathbb{F}_{2}\right)$. The associated form is $A_{\mu, S q^{1}}\left(v_{1}, v_{2}\right)=v_{1} \bullet S q^{1}\left(v_{2}\right)$. This linked form is not always symmetric but if $M$ is orientable, it is. It is also natural for orientable manifolds and all codimension zero embeddings.

## Examples

Lusztig-Milnor-Peterson form

Lusztig, Milnor and Peterson showed that if $k=2 \ell$, and $M$ is compact, $\mathcal{R}_{M}=S q^{1}\left(\mathrm{v}_{2 \ell}\right)$. This follows from the formula $\beta \mathcal{P}_{2 k}(x)=S q^{2 \ell} S q^{1}(x)+x \cup S q^{1}(x)$ where $\beta$ is a Bockstein and $\mathcal{P}_{2 k}$ is the Pontryagin square. In the compact case it further follows that $\mathrm{v}_{2 \ell} \in \mathcal{L}_{M}$.

In the case in which $M$ is compact, the characteristic number $v_{2 k} S q^{1}\left(v_{2 k}\right)$ is the dimension $\bmod 2$ of the form on $H^{k}\left(M ; \mathbb{F}_{2}\right) / S q^{1}\left(H^{k-1}\left(M ; \mathbb{F}_{2}\right)\right)$.
With more work Lusztig, Milnor and Peterson identify this with the de Rham invariant.

## Examples

Lusztig-Milnor-Peterson form

In case $k=2 \ell+1$ Ed Miller observed, in the language here, that $\mathcal{R}_{M}$ was a class which is natural for codimension zero embeddings. The example of $\mathbb{R} \mathbb{P}^{3}$ shows that $\mathcal{R}_{M}$ is not determined by the tangent bundle.

## Examples

Lusztig-Milnor-Peterson form

For non-orientable manifolds the Lusztig-Milnor-Peterson form need not be symmetric: for example $M=\mathbb{R} \mathbb{P}^{2 k} \times S^{1}$.

One way to restore symmetry is to take $W_{M}=H^{k+1}\left(M ; \mathbb{F}_{2}\right)$ and $V_{M}=\left\{v \in H_{c}^{k}\left(M ; \mathbb{F}_{2}\right) \mid v \cup \mathrm{w}_{1}(M)=0 \in H_{c}^{k+1}\left(M ; \mathbb{F}_{2}\right)\right\}$ where $\mathrm{w}_{1}(M)$ is the first Stiefel-Whitney class. The associated form is symmetric.

However $V_{M}^{\perp}=\left(\mathrm{w}_{1}(M)\right) H^{k}\left(M ; \mathbb{F}_{2}\right)$ so in general $\mathcal{R}_{M}$ is a proper coset.

The coset $\mathcal{R}_{M}$ is natural for codimension zero embeddings.

## Examples

Lusztig-Milnor-Peterson form

This gives a different partial answer to Ed Miller's question on the existence of natural characteristic classes which are not determined by the tangent bundle. The
Lusztig-Milnor-Peterson coset is defined on all manifolds of odd dimension. In dimensions $4 \ell+3$ the coset is not determined by the tangent bundle.

## Examples

Lusztig-Milnor-Peterson form

# A simple 3-manifold theorem <br> Let $M^{3}$ be a 3 -manifold with $0 \in \mathcal{R}_{M}$ and let $e: \mathbb{R P}^{2} \rightarrow M$ be an embedding. Then $e\left(\mathbb{R P}^{2}\right)$ is 2 -sided. 

## Corollary

Let $M^{3}$ be an orientable 3 -manifold with $0=\mathcal{R}_{M}$. Then there is no embedding $e: \mathbb{R P}^{2} \rightarrow M$.

## Examples

Landweber-Stong form

If $M^{n}$ is a Spin manifold of dimension $n=2 k+2$,
Landweber and Stong observed that
$\hat{\mathfrak{u}}=S q^{2}: H_{c}^{k}\left(M ; \mathbb{F}_{2}\right) \rightarrow H_{c}^{k+2}\left(M ; \mathbb{F}_{2}\right)$ gives a symmetric
linked form.
In dimension $8 k+2$ they show that the right characteristic element does not come from any element in $H^{4 k+2}\left(B O ; \mathbb{F}_{2}\right)$ but restricted to the kernel of $S q^{1}$, the right characteristic coset contains $S q^{2}\left(v_{4 k}\right)$.
Restricting to the kernel of $\cup v_{2}$ and $\cup v_{1}$ extends the form to all manifolds and has appropriate characteristic cosets.

## Examples

Some remarks on $H^{*}\left(B O ; \mathbb{F}_{2}\right)$

For each integer $k \geqslant 0$, there exists a linear transformation

$$
\mathfrak{l}^{k}: H^{\ell}\left(B O ; \mathbb{F}_{2}\right) \rightarrow H^{k+\ell}\left(B O ; \mathbb{F}_{2}\right)
$$

defined for any $\omega \in H^{\ell}\left(B O ; \mathbb{F}_{2}\right)$ by

$$
\mathfrak{l}^{k}(\omega)=\sum_{i=0}^{k} \mathrm{v}_{i} \cup \chi\left(S q^{k-i}\right)(\omega)
$$

Cultural remark: $\mathfrak{l}^{k}(\omega)$ vanishes for all $M^{n}, n<2 k+\ell$ by Brown and Peterson's work on vanishing characteristic classes.

## Examples

Wu shifted by Stiefel-Whitney

If $M$ has dimension $n=2 k+\ell$ and if $\hat{\mathfrak{u}}(x)=x \cup \omega$

$$
x \bullet(x \cup \omega)=x \bullet \mathfrak{l}^{k}(\omega)
$$

Note $\mathfrak{l}^{k}(1)=\mathrm{v}_{k}$ so this is a generalization of Wu's result.

## Examples

Lusztig-Milnor-Peterson shifted by Stiefel-Whitney

Suppose the dimension of $M$ is $n=2 k+\ell+1$.
Note for any space $X$ and class $x \in H^{k}\left(X ; \mathbb{F}_{2}\right)$, $\mathfrak{l}^{1}(x)=\left(\mathrm{w}_{1} \cup x\right)+S q^{1}(x)$ is Greenblatt's twisted Bockstein. Hence $\mathfrak{l}^{1}\left(\mathfrak{l}^{1}(x)\right)=0$.

If $\mathfrak{l}^{1}(\omega)=0, x \bullet\left(\omega \cup S q^{1}(x)\right)$ is symmetric.
Since $H^{k}\left(B O ; \mathbb{Z}^{\mathbf{w}_{1}}\right)$ is a $\mathbb{F}_{2}$ vector space, $\mathfrak{l}^{1}(\omega)=0$ if and only if there exist some class $\kappa_{\omega}$ such that $\mathfrak{l}^{1}\left(\kappa_{\omega}\right)=\omega$. Then

$$
x \bullet\left(\omega \cup S q^{1}(x)\right)=x \bullet \mathfrak{l}^{1}\left(\mathfrak{l}^{k+1}\left(\kappa_{\omega}\right)\right)
$$

## Examples

Equivariant Wu
Suppose a finite 2 group $G$ acts on a manifold $M$ of dimension $n=2 k+\ell$. For any $x \in H^{r}\left(M ; \mathbb{F}_{2}\right)$, define

Fix $\omega \in H^{\ell}\left(B O ; \mathbb{F}_{2}\right)$.

$$
\mathbf{N}(x)=\sum_{g \in G} g^{*}(x)
$$

Theorem
Let $G$ act freely on $M$. Let $K=\operatorname{ker}(\mathbf{N} \cup \omega): H_{c}^{k}\left(M ; \mathbb{F}_{2}\right) \rightarrow H_{c}^{k+\ell}\left(M ; \mathbb{F}_{2}\right)$ and suppose $H_{c}^{k}\left(M ; \mathbb{F}_{2}\right) / K$ has finite dimension. Then there exist $\eta \in H_{c}^{k}\left(M ; \mathbb{F}_{2}\right)$ such that

$$
\mathfrak{l}^{k}(\omega)=\mathbf{N}(\eta \cup \omega)
$$

Corollary
Suppose given the hypotheses of the theorem.

$$
\text { If } \mathfrak{l}^{k}(\omega) \neq 0 \in H^{k+\ell}\left(M ; \mathbb{F}_{2}\right), \quad \mathbb{F}_{2}[G] \subset H^{k+\ell}\left(M ; \mathbb{F}_{2}\right)
$$

## Examples

Equivariant Wu

Let $M_{1}=\mathbb{C P}^{2} \# \overline{\mathbb{C P}}^{2} \#\left(S^{1} \times S^{3}\right) \#\left(S^{1} \times S^{3}\right)$ and let $M_{2}=S^{2} \times S^{1} \times S^{1}$. The manifolds $M_{1}$ and $M_{2}$ have the same homology and the same signatures. The manifold $M_{1}$ has a free $\mathbb{Z} / 2 \mathbb{Z}$ action and $M_{2}$ has free cyclic group actions for all orders. Since $\mathrm{v}_{2}\left(M_{1}\right) \neq 0, M_{1}$ has no free action by any group of order 4 .

## Examples

Equivariant Wu

The proof of the theorem proceeds by considering the linking map

$$
\hat{\mathfrak{u}}: H_{c}^{k}\left(M ; \mathbb{F}_{2}\right) \xrightarrow{\mathbf{N}} H_{c}^{k}\left(M ; \mathbb{F}_{2}\right) \xrightarrow{\cup \omega} H_{c}^{k+\ell}\left(M ; \mathbb{F}_{2}\right)
$$

It also uses a result of Bredon's that for free involutions $\tau$ and $x \in H_{c}^{k}\left(M ; \mathbb{F}_{2}\right), x \cup \tau^{*}(x)=p^{*}(y)$ for some $y \in H_{c}^{2 k}\left(M / \tau ; \mathbb{F}_{2}\right)$.

For $\eta$ take any element in $\mathcal{L}_{M}$.

