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The Rochlin invariant of a compact 3-manifold with a fixed spin structure can be regarded as
the signature (mod 16) of any solution to a certain surgery problem. This paper explores this
remark in some detail. The relative Rochlin invariants arise from consideration of other surgery
problems. We work out the general theory and apply it with RP? replacing S° to study free
involutions on 3-manifolds. The Morgan-Sullivan linking cycle theory gives new insight into the
relation between spin structures on the 3-manifold and how circles in the manifold link. From
the algebra which expresses this relation one can calculate the relative Rochlin invariants mod 8,
and can often recover the spin structure on the manifold.

AMS Subj. Class.: Primary 57 M99; Secondary 57 825

Rochlin invariants relative surgery invariant
Browder—Livesay invariant

Introduction

The Rochlin invariant of a compact, oriented, spin 3-manifold is usually defined
as the signature (mod 16) of an oriented spin 4-manifold which bounds the 3-
manifold. This definition can also be considered as a relative surgery invariant: it
is the signature of a normal bordism from the 3-manifold to S’ over S* X L This
point of view suggests that there is a formula for the Rochlin invariant mod 8, a
point we develop in Sections 3 and 4. It also suggests the generalization of replacing
S’ by other 3-manifolds.

In this paper we will develop the case where S° is replaced by RP? in some detail.
We will give the general definition in Section 1 and turn immediately to the RP®
case in Section 2 where we will use it to classify free involutions on $* and $°. This
has been done: indeed the point of view expounded here arose from our attempt
to understand the Fintushel and Stern proof that their involution is exotic [7] and
how that proof relates to the Cappell and Shaneson proof that their involution is
exotic [6]. However, our classification is in terms of invariant 3-manifolds and the
passage from this sort of information to the classification seems new.
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After we develop the relation between linking in the 3-manifold and these
invariants mod 8 in Sections 3 and 4, we will return to the RP? case in Section 5.
We will relate the Rochlin invariant of a Z/2Z—homology 3-sphere with a free
involution to its Browder—Livesay invariant, a problem of Neumann and Raymond
[19]. These two numbers were shown to be equal by Yoshida [26] for the case of
integral homology 3-spheres and we complete the story here.

The ideas for this paper arose during some very useful conversations with P.
Gilmer. The theorems were helped along by C. Livingston who supplied several
requested calculations. Finally, the University of California at Berkeley supplied a
very pleasant atmosphere while the theorems were actually proved. My thanks to
you all.

1. Conventions and the basic definition

Much of the ensuing discussion involves numbers such as linking numbers or
signatures which depend on orientation. Hence we explicitly make:

Orientation convention. If W is an oriented manifold, 6 W is oriented so that the
orientation for aW followed by the inward normal orients W.

It will also be useful to agree on a definition of spin structure. The most convenient
for our purposes is the formulation of M. Hirsch (see [15]).

Spin structure. Let » be an oriented bundle of dimension n, at least 2, and let Py
be the total space of the associated principal SO(n)-bundle. A spin structure on »
is a class ¢ € H'(P(v)3Z/2Z) which restricts non-zero on each fibre SO(n).

Let us now turn to the definition of relative Rochlin invariants. The definition
requires some initial data. We must first fix a reference manifold, Q°, which is to
be a compact, oriented 3-manifold without boundary. Normal bordism classes of
degree 1 normal maps to Q’ correspond to elements in H *(Q;Z/2Z). This remark
follows from Sullivan’s thesis, which identifies normal bordism classes with [Q, G/0]
and identifies [Q, G/PL] with H*(Q;Z/2Z), plus smoothing theory (including
Cerf’s I',=0) which identifies [Q, G/0] with [Q, G/ PL]. From Kirby-Siebenmann
[11] we may also identify smooth and TOP normal bordism for 3-manifolds.

For each x € HX(Q;Z/2Z) choose a representative in the corresponding normal
bordism class. This requires a choice of a manifold P? and a degree | map f,: P, > Q
together with a bundle map fx: vp_—> Vo covering f. Here and hereafter vy denotes
a bundle of dimension at least the dimension of W which is a normal bundle for
W. We can normalize our choices a bit. In odd dimensions one can always do
surgery to make ones map an H,(;Z) homology equivalence. For dimension at
least five one can quote Cappell-Shaneson [5] 2.1: for dimension three just note
that the proof continues to work. Hence we will assume all our f.: P~ Q are
H,(; Z)-equivalences.
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We will define a relative Rochlin invariant whenever we have an oriented 3-
manifold, M, without boundary; a spin structure, ¢, on vy, ; and a degree 1 map
f: M- Q.

To make the definition requires two preliminary results:

Lemma 1.1. Given a degree | map f: M - Q’ and spin structures ¢y on vy, and ¢
on v, there exists a bundle map f: vy > v covering f so that f*¢o = b

Lemma 1.2. Suppose given a degree | map f: M - Q® together with a spin structure
ba 0N vpr; two spin structures ¢, and ¢, on vo; and two bundle maps f,,fz: Vpm > Vo
covering f with f¥d;= b for i=1,2. Then there exists a bundle map h: Vo> Vo
covering the identity such that h Ofl =f2.

We defer the proofs a bit.

Given M, ¢, and f: M - Q as above, use lemma 1.1 to cover f with a bundle map
f by choosing any spin structure on »: since an oriented 3-manifold is parallelizable,
Vo has a spin structure. Lemma 1.2 shows that the resulting normal bordism class,
xe H*(Q;Z/22), is independent of all choices. Let W* denote the manifold which
gives the normal bordism from (M;f,f) to (P fs, f;).

Definition 1.3. The relative Rochlin invariant, denoted (M ; f, ¢), is defined by:
w(M;f,¢)=a(W) (modl6),

where W is oriented so that M receives its given orientation and o( W) denotes the
signature of W.

Remark 14. If Q= S’ fis unique up to homotopy. If we use the identity, S>> $°,
as the representative for 0 € H*(S>; Z/2Z) the relative Rochlin invariant is the usual
Rochlin invariant (except for [10] where they take the negative of this definition).
We use u(M; ¢) to denote the usual Rochlin invariant.

We conclude this section by showing u (M ; f, ¢) is well-defined and then proving
the lemmas.

To show u(M;f, ¢) is well-defined suppose we have two normal bordisms,
(F, ﬁ}): W,-» Q*x1I, i=1,2, between M and P,. We can glue W, to W, along the
two boundary components M and P, to get a 4-manifold V and a degree 1 map
G: V- Q*xS'. Moreover, o(V)=o(W,)—a(W,). Use Lemma 1.2 to construct a
bundle, &, over Q°>xS': ¥ in general will not be voxs' because Lemma 1.2 says we
must put in a twist by h. Still, we have a bundle map G: vy = ¥ covering G. The
theory of the Spivak normal fibration [23] shows that & has a spin structure and
hence so does ry. By Rochlin’s theorem [21], o(V)=0 (mod 16) so u(M; f, ¢) is
well defined.

To prove Lemma 1.1, we first observe that there are bundle maps g:vy = o
covering f since both bundles are trivial. Hence 1.1 will be shown if we can show
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Lemma 1.5. Let & be a trivial SO(n)}-bundle over X, X a CW complex of dimension
at most 3 with n=3. If ¢, and ¢, are spin structures on & there exists a bundle map
h: ¥ > & covering the identity on X with ﬁ*qbl = ..

Proof. Bundle maps covering the identity are given by [ X, SO(n)]. There is an exact
sequence

0->H'(X; Z/zz)i» H'(P¥,Z/2Z)-> H'(SO(n);Z/2Z)~ 0.

The map SO(n) SRP® which classifies the double cover gives a map
¢y :[X, SO(n)]-> H'(X;Z/22Z). Finally, if he[X, SO(n)] and ¢ € H'(PY;Z/27) is
a spin structure,

F*¢ = ¢ +p*c (o).

Hence 1.5 is equivalent to the claim that ¢, is onto. But [X, SO(n)]- H'(X;
Z/22)-[X, BSpin(n)] is exact and BSpin(n) is 3-connected for n=3, so [X,
BSpin(n)]==*. [

With 1.1 proved let us turn to 1.2. Use 1.5 to find A, : vo = vo With h¥d, = o If
we can find h2 Vo~ v so that h2<>(l1l f.) fz we are done so it is no loss of
generality to assume ¢1 o

One can always find g: vy, = vy, so that f, g= f2 Under our hypotheses, §*¢a =
O, 50 g €[ M, SO(n)] comes from g € [M, Spin(n}].

For any 3- complex X, [X, Spin(n)]= H3(X Z) if n =3 by a Postnikov argument.
Hence we can find h e [@Q, Spin(n)] so that f, =ho f1 We are done.

Remark 1.6. If we change our choice of surgery problems (=normal bordism classes)
o fx: P. - Q (still keeping the H ,(; Z)-equivalence property), the relative Rochlin
invariant can change by only 0 or 8 Hence the relative Rochlin invariant mod 8
only depends on M, f, and ¢, not on the choice of problems.

By taking connected sum with the Poincaré homology sphere one can effect this
change. The relative Rochlin invariant can only change by 0 or 8 because, if we
look at a normal bordism from P, to P. over Q X I, the signature of the bordism is
the signature of an even, symmetric, non-singular (over Z since the boundaries are
H (; Z)-equivalent) bilinear form.

2. Q =RP and free involutions
We wish to apply the theory in Section 1 to the case Q=RP’. In this case

H*(Q;Z/22)=7Z/2Z so we need to choose two surgery problems. For O¢
H?*(Q;Z/2Z) let us choose the identity both for the degree | map and for the bundle
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map. There are many choices for the non-zero element and the following lemma
will help us choose one.

Lemma 2.1. Let M* be an oriented 3-manifold without boundary. Then M has a degree
1 map to RP? iff there existsaclassx e H' (M ;Z/2Z) sothatx* # 0. If H' (M ; Z/2Z) =
Z/2Z then M, with either spin structure, is normally bordant to the identity surgery
problem iff H,(M : Z) has order congruent to +1 (modulo 8). (1\71 is the double cover
associated to x.)

Remark 2.2. From 2.1 we see that we can choose the degree | map L(6,1)> RP?
as a representative for the non-zero normal bordism class over RP°.

Proof of 2.1. The first part of 2.1 is follows easily from two facts: RP? is a 3-skeleton
for K(Z/2Z,1)= RP%; and S*- RP’ has degree 2, so odd degree maps can be
easily modified to get degree 1 maps.

The second part is more interesting. Under the hypotheses, the map f: M > RP’
induces a Z,,-homology isomorphism (easy) and f: M- RP? does the same (first
show f induces a Z/ 2Z-homology isomorphism via a spectral sequence argument).

A lemma of Wall’s (see p. 267-268 of [25] where the result is embedded in a
proof by contradiction) says that a symmetric non-singular matrix over Z,[Z/27]
has determinant a +bT with a or b odd and the other congruent to 0 mod 4.

Let W be a normal bordism from M to RP? and do surgery if necessary to insure
mW=2Z/2Z. Let W denote the non-trivial double cover. The order of the torsion
in H,(M;Z) is the absolute value of the determinant of the map H,(W;Z)-
Hy( W, aW;2) (where we base H,(W, 0 W) using the dual basis Hom( H5( W), Z)=
H*( W) =H,(W, 0o W)). Wall’s lemma applies; the determinant over Z is just a*— b?;
and hence we have that if M, f, f is normally bordant to the identity, then
|H\(M;Z)|=+1 (mod 8).

Notation. Hereafter, given any finite group, A, |A| denotes the number of elements
in A.

Since we have a degree | normal map L(6, 1)»> RP? with |H,(M;Z)|=3, this
normal map represents the non-zero element. If |H,(M;Z)|=+1 (mod 8) M can
not be normally bordant to the L(6, 1) problem by another application of Wall’s
lemma and so M, f, f must represent the zero element in H*(RP*;Z/2Z). O

With 2.1 proved, let us proceed to study free involutions on 3-manifolds, S*, and
S°.

Let us start with a connected, oriented, compact 3-manifold without boundary,
denoted M, and suppose M has a free, orientation preserving, involution 7. The
double cover M - M/ is classified by an element x€ H'(M/7; Z/2Z). The invol-
ution 7 induces an involution on H,(M ; Z/2Z) and we let H/ (M ;Z/2Z)" denote
the subspace of classes fixed by .
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Lemma 2.2. x> # 0 iff dimg,; H\(M;Z/2Z)" =5 dimz/,; H\(M;Z/2Z).

Proof. The dimension equality is equivalent to H*(Z/2Z; H'(M;Z/2Z))=0, for
«>0 which is a necessary condition for x” to survive to E, in the Serre spectral
sequence for the cover.

If H*(Z/2Z: H'(M;Z/2Z))=0 for x>0, but x* does not survive to E, then
there must be a non-zero d, from H(Z/2Z; H*(M ;Z/2Z) to x’ in order to get the
cup product structure right. But Sq'x* = x*, so S¢': H*(M; Z/2Z)> H*(M;Z/2Z)
must be non-zero, a contradiction. [

Remark. It is an easy Gysin sequence argument to show x> # 0 if H;(M;Z/2Z)=0.

Definition 2.3. Given a free involution, 7, on a connected, compact, oriented 3-
manifold, M, with r orientation preserving, and x> # 0, define

p(M, 7)eZ/32Z
by
p(M, 7)=0a(W)+e (mod32),

where W is the double cover of any normal bordism, W, from M/7 to RP? or
L(6, 1) and & =0 if M/ 7 is normally bordant over RP’ to RP* and & = 10 otherwise.

Remark 2.4. If H,(M;Z/2Z) =0, then x*# 0 and ¢ =0 iff |[H,(M; Z)| = £1 (mod 8).

The proof that p is well-defined is the same as the proof that the relative Rochlin
invariant is well-defined once we recall that for a closed manifold (such as the V
in the proof for the well-definedness of u(M; £, ¢)), o(V) =2a(V).

Remark 2.5. If we choose a spin structure on RP® we can use our normal maps to
induce a spin structure on M/, and hence a Rochlin invariant. This Rochlin
invariant, the Browder—Livesay invariant of 7, and p(M, 7) are all related.

Section 2 of [7] can be viewed as a calculation of p for M being the Brieskorn
variety (3, 5, 19) with 7(zq, z, 22} = (=20, —2;, —2,). We will give a different calcula-
tion of this example later.

Let us next discuss free involutions on $* and S°. The usual surgery calculations
show that there are four smooth conjugacy classes of smooth involutions on $°; on
S* there are at most two smooth h-cobordism classes of smooth involutions [13].
Fintushel and Stern [7] show that there really are the two classes. Siebenmann [11]
has shown the four classes on S° condense into two topological conjugacy classes,
while Freedman [8] has shown all smooth involutions on S* are topologically
conjugate.

Our aim is to describe this classification in terms of invariant 3-manifolds. Begin
by letting 7 denote a free involution on S* or S° and letting 3 = §” be a compact,
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connected, oriented submanifold which is invariant under 7. Assume 7 preserves
the orientation and that x*# 0.

For n=4 or 5, 2 bounds an oriented submanifold V < S". If n =4 this is obvious.
If n=5 it is an example of a general fact: a codimension 2-submanifold of a sphere
bounds orientably. Define o(X < §") as a(V) where we orient V so that 2 receives
its given orientation. Note that for n =4, o(2 < §")=0.

Definition 2.6. Define
85(8", 7)=p(3,7)-0(Z<=S") (mod32).

The surprise is that § does not depend on the choice of 2. We will show this
when n =35; the case n =4 is similar but easier.

Suppose that we have 3,, 3, < S°. Let P°= §°/7,and let f: P> > RP’ be a homotopy
equivalence. Since x* # 0, we can homotop f to f;: P> RP® with f;'(RR*) =X/,
i=0 and 1. Moreover we can make the homotopy transverse to RP* and we get a
normal bordism W - RP?x I between X,/ and X,/ .

Remark 2.7. Thus far we need only have assumed X, and X, are topological
locally-flat submanifolds. If we assume they are smoothly embedded, we can assume
W is smooth.

Hence p(Z,, 7)—p(2y, 7) = o( W) (W orients 2, correctly).

Let V;< S° have boundary 3, i=0, 1. Then V,u WU (—V,) is an oriented sub-
manifold of §° x I = §%; hence is a boundary; hence has 0 signature: i.e. o(Z,< §°) +
p(Z,, 7)—p(Zp, ) — (3, < §°)=0. Done.

We can now prove

Theorem 2.7. The class of 7 is determined by 6(S", 7), n=4 or 5: 6(S*, ) can be 0
or 16; 8(S°, 7) can be 0, 8, 16, or 24. The topological conjugacy class of T is determined
by 8(S", ) modulo 16.

Proof. We begin with n=35. First we produce a construction which adds 16 to .
Shaneson [22] (or even Browder [3]) has shown Ls(Z[Z]) =Z with the codimension
1 signature as the invariant. If K* is the Kummer surface, K*x8'> $§*x§"' is a
problem representing twice the generator. It is easily observed that we can do surgery
on this problem to f: W* > §*x §' with 7, W* = Z and f an homology isomorphism.
It is also easy to cut out a tube to get f: X° > D*x S' with f|3 a diffeomorphism.
Let X/7< §°/ 7 Pick a circle in $°/ 7 — X/ which maps to the circle in RP*— RP?
under £ Cut out a tubular neighborhood of this circle and glue in X. The double
cover is S°; it has a free involution, r;:X is still invariant in §° with 7,|Z still 7|X;
and g(& < 8’ for 7) +16 = ¢(Z < §° for 7). Since p does not change we have shown

8(S°, 7,)=46(S° r)+16.
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To finish the proof we discuss the Brieskorn involutions. If d is odd, {z(‘f +224 23+
z3=0}n S” =S, is the standard 5 sphere: 7(zo, 2y, 25, 23) = (20,21, — 22, —23) is a free
involution. Let 2; = S, be the set of all (z,, z,, z,, z3) € Sy with z; =0: X is invariant
and |H(2;;Z)|=4d.

Let us compute (2, < S;). First notice that if we embed S°in 87 as z;=0 we
have 3, = S°n S,. Moreover, Brieskorn [2] has computed (X, = S°). We recall the
result.

Given the Brieskorn variety (z&+ z% + z$2=0) 1 §° = X, the signature (2 < §°) =
p —p~ where p~ is the number of timese jo/ao+ji/a, +j./a, is between 1 and 2
for 0<jo<ag; 0<j<a;; 0<j,<a, p"=(ap—1)(a,—1){a,—1)—p".

To compute o(Z, = S;) we show o(Z, = §;)=0(Z,; = §) =—(d —1). To this end
consider D®. In here we have D®(z;=0) and V®={zd + 2} + 23+ 2z;=0}. In our case,
V¢ is also a smooth disc and by a small isotopy rel|d we can assume V°®n D= Y*
is transverse. Now looking in V*® and arguing that codimension two submanifolds
in spheres have 0 signature, we see o(X,; < S;)=0o(Y"). A similar result holds in
DS so we are done.

Consider (S, 7). Since |H (%, ; Z)| = 3, we see from remark 2.7 that this 7 is not
even topologically conjugate to the standard involution. Let us compute 8(S;, 7)
modulo 16. It is p(S;, 7) = (u(Z;) — r(L(3, 1))) minus (25 < S;) = u(2;) where u
denotes the Rochlin invariant. Hence 8(S;, 7) = —u(L(3, 1)) +10=8 mod 16, since
p(L(3,1)) =2.

Hence 8(S°, 7) assumes four values, 0, 8, 16, and 24 and therefore 8(S°, ) gives
the complete classification.

For the case n =4, let us consider the Fintushel-Stern example S* T [7]. It has
the Brieskorn manifold X = {z3 +2} +2z)° =0} n §° with 7(z0, 2y, 22) = (— 2o, =21, —22)
as an invariant submanifold.

Since  is the standard involution on S°, p(Z, ) — o(Z = §%) =0 (mod 32) by our
5 dimensional result. Since o(Z< S8°)=-80, p(X,7)=16 (mod32). Hence
8(S* T)=16 and we are done in this case too. [

As a corollary of the proof of 2.7 we have

Proposition 2.8. Let 7 be a free smooth involution on S°. If X is an invariant Z/2Z -
homology 3-sphere in S°, then t is topologically conjugate to the standard action iff
|H\((2;Z)|==+1 (mod 8).

Remark. The Brieskorn involutions, (S, 7) on S°, have an interesting history. Atiyah
and Bott first stated the correct result
(S4, 7) is equivalent to (S, 7) iff do=+d, (mod 16)

([1], Thm., 9.8). The proof is short a factor of 2 which Atiyah supplies in a note on
p. 338 of [11]. The methods are operator theoretic and apply to any smooth free
involution on S°.
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Meanwhile, Giffen [9] recovered the same result, although the reader will have
to work to recover the above formulation. Browder [4] p. 222 has also recovered
the result. Their methods also apply to any smooth free involution on S°. Their
methods are homotopy theoretic.

It is an instructive exercise to take Neumann’s calculation of the Browder-Livesay
invariant of (X, 7) [18] p. 70, together with his identification of S;/7 with a lens
space and compute 8(S,, 7) using 2.5. We have done this and again recovered the
above result.

3. Quadratic linking forms
In this section we collect the algebraic results we will need later.

Definition 3.1. Let A denote a finite abelian group. A function y:A-> Q/Z is called
a quadratic linking form iff it satisfies

i) if we define : AXA-> Q/Z by
I(a,, a;) = y(a)) +y(ay) — y(a, +ay),

then [ is a non-singular bilinear pairing;
ii) y(ra)=r*y(a) forall ac A and all re Z.

Remarks 3.2. Non-singular means that the adjoint homomorphism, adl:A-
Hom(A, Q/Z), is an isomorphism. We will call / the linking form associated to y
and we will say that y is a quadratic enhancement of /.

If vy satisfies i) and if y(a)= y{—a) for all a€ A, then y satisfies ii}.

We recall some standard constructions and results.

Orthogonal sum. Given (A,,v,) and (A, y,), define (A ®A,, y,Ly,) by
(yi.Ly:)(a,, a;) =v(a;) +v.(a,). This gives a quadratic linking form on A, @ A,.
Under the associated linking form, A,@0 and 0® A, pair to 0.

Scalar multiplication. Given (A, y) and re Z with (7, |A])=1 define (A, ry) by
(ry)(a) = ry(a). This is a quadratic linking form. If r=A” (mod |A|), then (A4, y)
is isomorphic to (A, ry).

Isotropic subgroup. A subgroup B < A for which y(b) =0 for all b€ B is called an
isotropic subgroup. A quadratic linking form (A, v) is called anisotropic if A has
no non-trivial isotropic subgroups.

Isotropic division. Let (A, y) be a quadratic linking form with isotropic subgroup
B. For any finite group, denote Hom(A, Q/Z) by A*:let I*: A-> A* denote the
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adjoint of our linking pairing. Then there exist maps I, and [, so that

0- B - f)A/B—>O

A
ey
0-> (A/B)* » A* > B* >0
commutes. Let K =ker l,. Define 9: K-> Q/Z by ¥(k)=y(a) where a€ A is any

element with p(a) = k. One checks 7 is well defined and a quadratic linking form
on K. We say (K, ¥) is related to (A, y) by isotropic division.

Remark. Note |A|=|K||B||B* =|K||B|*. Hence an isotropic subgroup of A has
order <v|A|.

The usual decomposition theorems for bilinear forms over fields are valid in our
case with a little care. We begin by defining the basic pieces: p denotes a prime; 4

a non-negative integer, and a an integer prime to p.

3.3. (C,(4); a) denotes the form on C,(4)=Z/p“Z with generator g satisfying

a/pA, p odd
y(g)=9 a
2’7, p=2.

34. (E,(A); a,, a,) denotes the form on Ey(A)=Z/2°Z® Z/2°Z with generators
g0, & Wwhich satisfy y(go) = ao/2"; v(g:) = a,/2*; and I(g,, g)=1/2". Neither a,
nor a, need be odd.

Let us agree that (C,(0); a) and (E»(0); ao, a,) will denote the form on the trivial
group.

Theorem 3.5. Any quadratic linking form (A, v) can be written as an orthogonal sum
with each summand isomorphic to one of the forms 3.3 or 3.4.

Proof. We induct on the order of A: the trivial group provides a trivial beginning
for the induction.
Suppose that x € A generates a summand of order p* and that

a/p*, podd,

y(x) = {a/z“‘, il

with (q, p) = 1. The fundamental theorem of abelian groups and the Gram—Schmidt
process can be combined to split orthogonally a (C,(4); a) off of (A, y).
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With this case done we need only study the case in which each generator of a
summand has a y which is too small. Precisely, if x generates a Z/p“Z summand
of A then

b/p*~', podd,
y(x)=

b/2%, p=2,

(with no requirement that (b, p)=1).

Since x generates a summand, we can find a homomorphism f: A-> Q/Z with
f(x)=1/p* and p*- f(a)=0 for all a € A. Since the linking form is non-degenerate,
there exists a unique y € A such that I(—, y) =f( ). Notice that I(x, y)=1/p* and
that y has order p“. Furthermore, y # pz for any z € Asinceifitdid I(x, y)=pl(x, z) =
b/p*~" where b/p* = I(x, z). Hence y generates a summand.

Since I(x, x) = ¢/p*~"' for some ¢, y # x and we claim (x, y) generates a Z/p°Z®
Z/p“Z summand of A. It suffices to show that if p'(ex +8y)=0 with (a, 8)=1
then i= A. By computing 0=1I(x, p'(ax +8y)) we see p|8 if i<A4: computing
I(y, p'(ax + By)) shows p|e. This contradicts (a, 8) = 1. If p is odd, compute y(x +y)
and see that it has the form a/p*®, (a, p)= 1. Hence p =2 and we have a summand
of (A, y) isomorphic to ( E,(4); a,, a,). Modify the Gram—Schmidt process to show
that this summand can be made orthogonal. []

Next we discuss existence and uniqueness.

Theorem 3.6. Let | be a non-degenerate linking form on a finite abelian group A. Then
there exists a quadratic linking form y on A whose associated linking form is . The
set of such quadratic linking forms is in bijective correspondence with Hom(A, Z/2Z).

Proof. We will never need the existence part of 3.6 so we merely sketch the proof.
Just as in 3.5 write the linking form as an orthogonal sum of pieces like (C,(4); a)
and (E,(4); a,, a,). Put a quadratic linking form on each one by hand.

Suppose v, ¥, are two quadratic linking forms. Then ¢y =1y, —v,:A>Q/Z is
linear; ¢(a) = (—a); so  lands in +1 < Q/Z. Conversely, it is easily checked that
given ¥: A-> %1, y +¢ is a quadratic linking form whose associated linking form is
still . O

The last project for this section is to discuss the Milgram Gauss sum formula.
We begin with

Definition 3.7. Let (A, y) denote a quadratic linking form and let

G(y)=ﬁ £ exp(2miv(a)).

Theorem 3.8. G(y,Ly,)=G(v,)G(72): if (A, v) and (K, ¥) are related by isotropic
division, G(vy) = G(¥).
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Proof. The first result is straightforward, so we work out the second. To fix notation
we have B < A with y(B) =0and K is the kernel of the induced map A/ B~ B*. Then

Y expQmiy(a))= ¥ Y ¥ exp(2miy(é+k+b)),

aeA acB* keK beB

where k denotes a choice of lift of k from A/B up to A and & denotes first a choice
of lift from B* up to A/B and then from A/B on up to A. These lifts are fixed
once and for all. Then & +k+b really does run once over each element in A so
our equation is tautological.

But

v(& +k+b)=y(&)+y(k) +y(b)+1(& k) +1(&, b)—I(Kk, b)
= y(&)+y(k)+1(&, k) + (&, b).
For & fixed

Y, exp(2wil(&, b)) =

beB

{O, a #lift of 0 B¥,
|B], a theliftof 0,

G(y) =% 3 exp2ni(3(K) = G(3). O

Next we calculate G(y) on our indecomposable pieces.

Theorem 3.9. G(y)=1 if (A, v)=(C,(A); a) with A even and p odd or if (A, y)=
(E»(4); ay, a,) with A even. Otherwise

i(;) if A odd, p=3 (mod 4),

G(C,(4); a)= J (;) ifAodd, p=1{(mod4),
p*'  ifAodd,p=2,a==1(mod4),

a

P if A even,p=2,

where p = exp(2wi/8), and (}) is £1 as a is a quadratic residue mod p or not.

1 if A odd but aya, is even,
G(E(4); a0, a1) = {—1 if A odd but aya, is odd.
Proof. First apply isotropic division. If p is odd, (C,(4); a) divides out to the
0-form if 4 is even or to (C,(1); a) if 4 is odd. The remaining calculation is classical
(see e.g. Lang [12] IV, Section 3 for this and the remaining calculational claims).
If p=2 and 4 is odd proceed as above. If 4 is even we divide out to get the
form (C,(2); a). Here we just do the calculation directly.
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The form (E,(4); a,, a,) divides out to the 0-form if A is even and to (Ex(1); ay, a,)
if 41s odd. O

Corollary 3.10. If |A| is odd and (r,|A|) =1, then
G(y)=(1A)G(ry) where (|A])
is the Jacobi symbol.

The proof follows from 3.5 and 3.9.

We notice also from 3.5 and 3.9 that G(y) is always an eighth root of unity. The
Milgram Gauss sum formula provides another description of this number.

Now we assume that we have a vector space V over Q and a non-degenerate,
symmetric bilinear pairing 8: VX V> Q. We denote the signature of this form by
o(B). Let L be a Z-lattice inside V and assume B restricted to L takes values in
2Z = Q. (There always are such lattices.) Let L* ={ve V|B(v, I)eZ for all le L}
denote the dual lattice. Clearly L= L* and L*/L is a finite abelian group.

Define a function B: L*/L—~Q/Z by

B(x)=1/2B(y, y)eQ/Z,

where y e L* is any element which hits xe L*/ L.

Theorem 3.11. (The Milgram Gauss sum formula.) The function B is a quadratic
linking form on L”/ L, and

a(B)
8
See [16] Appendix 4 for a proof and discussion.

G(f) = exp(ZTri

Corollary 3.12. o(B)=dimg,,; L*/L®Z/2Z (mod 2). If |L*/L| is odd, o(B)=
1-|L*/L| (mod 4).

Proof. These results follow easily by using 3.5 to reduce to indecomposable case
and then applying 3.9 and 3.11. [

Finally, we convert Theorem 3.11 into the justification for a definition.

Definition 3.13. If (A, y) is any quadratic linking form, define the signature of 7,
denoted o(v), as the integer mod 8 which satisfies

exp(21ri 0(7)) = G(y).

8
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4. Spin structures and quadratic linking forms

The primary goal of this section is to use a spin structure on M ? to put a quadratic
linking form on H,(M) whose associated linking form is the linking form on H,(M).
We can then use Section 3 to compute relative Rochlin invariants modulo 8.

So let us fix a spin structure, ¢, on a compact, oriented spin manifold, M ?, without
boundary. We will define a function

Y: TI(M)—)Q/Za

where T,(M) =torsion subgroup of H;(M; Z).

Given x € T,(M), pick an embedding £: $' > M so that, after we choose a funda-
mental class, £,[S']= x. The normal bundle of this embedding is trivial and framings
correspond bijectively to non-zero sections. Pick a section, 4, and use A to get
another embedding A,%:S'> M —£(S') by pushing X(S') out by the section. Since
x € T,(M) there exists an r so that - x=0. We can then find an oriented surface
F and a map f: F - M? so that aF is the disjoint union of r copies of S' and so
that f takes each S' in 9F to A,%(S') by an orientation preserving homeomorphism.
Define I,(x) =[F- £(S')/r]€ Q where - denotes intersection number. It is a standard
argument that /,(x) is well-defined.

Having picked a section, the set of all sections corresponds bijectively to Z and
Liia(x)=L(x)+a forall aeZ.

So far we have not used the spin structure. The spin structure on M induces one
on TM|£(S"). There are two spin structures on S' but only one of them makes S’
into a spin boundary [15]. With this spin structure on S', pick a section of the
normal bundle for £ so that the spin structure on TM|£(S') is given by the spin
structure on S' plus the spin structure induced by A. Any two sections with this
property, say 4, and 4,, satisfy 4, +a = 4, with a even.

y(x)= %IA(X) eQ/Z

Theorem 4.1. With the above definition, v is a quadratic linking form on T,(M) whose
associated linking form is the usual linking form on T\(M).

Proof. We have argued above that once the embedding X is fixed, the resulting
number in @/Z is well-defined. Our first step is to show y(x) is well-defined. We
show a bit more for later convenience.

Suppose [[. S' > M is an embedding of u circles representing x. We can go through
the above procedure and calculate another number in @/Z. We show this agrees
with the first number we calculated.

We have codimension two submanifolds again and hence an oriented surface E
with 8E = S'[[[]. S' and an embedding Ec M xI with E< M x0 being X and
E c M x1 being [|. S' > M. The normal bundle to E is trivial and it is easy to see
that once we fix the sections for the normal bundles for [[,S'—> M then there is
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only one section for the normal bundle to X which comes from a section of the
normal bundle to E-»> M X1

It is now a standard argument to show that the two numbers one calculates for
y(x) are equal: hence y(x) is well-defined.

To show y(x +y) = vy(x)+y(y)+1(x, y) where I is the linking form on T,(M),
choose disjoint embeddings for x and y and use the disjoint union to calculate
y(x+y).

Furthermore y(x)= y(—x). To see this contemplate the result of reversing the
orientation on S'. If we use the same pushout the intersection numbers don’t change.
What we need to see is that this pushout is still given by a section with the correct
spin structure. We can reverse our procedure and use the spin structure on TM and
the given section to induce a spin structure on S' with both of its orientations. Since
it bounds a spin manifold with one orientation we can just reverse the orientation
on the boundary surface to see that it bounds with the other orientation.

A remark in 3.2 finishes the proof. [

Theorem 4.1 says that a spin structure determines a quadratic enhancement of
the linking form. We consider the relation between these two concepts in more
detail. We have seen that Hom(T,(M), Z/2Z) acts on quadratic enhancements (3.6)
and it is well-known that H'(M;Z/2Z)=Hom(H,(M); Z/2Z) acts on spin struc-
tures. There is a natural epimorphism 0: H'(M;Z/2Z) - Hom(T,(M), Z/2Z).

Theorem 4.2. Let ¢, ¢, be two spin structures on a compact, oriented 3-manifold, M,
without boundary and let v,, v, denote the associated quadratic enhancements of the
linking form on T,(M). Then

0(d1— @) =71~ 72

Proof. Recall that the only role the spin structure plays in the definition of y(x) is
to determine a section of the normal bundle to x:S'> M. Hence if ¢, and ¢,
determine the same spin structure in a neighborhood of £(S'), v,(x) = y(x).

But ¢, and ¢, determine the same spin structure near £(S"') iff (¢, — ¢,)(x) =0.
Hence (¢, — ¢,)(x) =0 implies (y, — y2)(x) =0.

Conversely, if (¢, — ¢,)(x) # 0, we have different spin structures near £(S'). Since
the spin structure we put on S' is fixed, we must switch spin structures in the normal
bundle for x. We saw above that this makes a difference of 1/2 50 y,(x) = y,(x) +1/2.

A check of the definition of y,— v, shows that we have shown 6(¢,—¢,) =

Yi—v. U

Corollary 4.3. Any quadratic enhancement of the linking form on T,(M) comes from
a spin structure by our procedure.

Corollary 44. If H (M ; Q) =0, the quadratic enhancement determines the spin struc-
ture canonically.
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Next we relate the Rochlin invariant, the quadratic enhancement, and the Milgram
Gauss sum formula.

Theorem 4.5. Let M be a compact, oriented, 3-manifold without boundary. Let ¢ be
a spin structure on M and let v denote the resulting quadratic linking form on T\(M).
Then ' )

w(M;¢p)=-a(y) (modS8).

Proof. The first step is to show we can assume H,(M ; Q)= 0. If this is not the case
choose a basis for the free part of H,(M) and do surgery to kill the circles, producing
a spin bordism, W, from M to N with H,(N;Q)=0. If U denotes a tubular
neighborhood of the surgered circles, (M —u)xIc W, and T\(M)=T,(M -v) =
H,(N). Since the signature of W, is =0, and since (T,(M), v) and (H,(N), y) are
isomorphic, we can assume H;(M;Q)=0 without loss of generality.

Let V be a simply connected spin manifold with 3V = M and so that the unique
spin structure on V restricts to ¢ on M. To do this requires 257" =0 and a little
surgery.

Let B denote the intersection pairing H,(V,oV. Q)@ H,(V,0V;Q)->Q. It is
defined since H,(3V; @) =0. Inside H,(V,dV;Q) we have the image of H,{(V; Z),
which we denote L. Poincaré duality says that the image of H,(V,dV; Z) is the dual
lattice L”. Itis easy to show L*/ L= H,(M)since 0> Hy,(V)~> H,(V,3V)> H,(M) >
0 is exact.

Theorem 4.5 will follow from Theorem 3.11 once we show —y = B, since o(—y) =
—o(vy). To define E(x) lift xe H{(M) to Xe H,(V,3V) and calculate £- X€Q. To
do this, multiply X by r so that rX comes from y€ H,(V). Then x- x=1/rX- y.

Geometrically, to lift x to X we can find an oriented surface F< V with 0F > M
being a representative for x. Since V is spin, the normal bundle to F is trivial so
we can choose a section and get another copy of F, say F < V which is disjoint
from F. Pick a spin structure on F (any oriented surface has one) and choose a
section for the normal bundle of F in V for which the spin structure on TV|F agrees
with the one we get from our chosen spin structure on TF plus the one our section
chose on the normal bundle of F in V.

Now take r parallel copies of F. In the definition of y(x) we had to choose an
embedded surface, K = M, with 3K being r parallel copies of 3F. Glue K and rF
together to get a closed surface which represents the class y = rx.

Then x - x = —l,(x). The minus sign comes in because to compute X+ X we need
to have F correctly orient the circles in M whereas to compute I,(x) we need K
to correctly orient the same circles. But the orientations given by F and by K must
be opposite because we want rF' U K to be orientable. [

We list some corollaries. The first is an unpublished result of A. Casson’s.



L.R. Taylor | Relative Rochlin invariants 275

Corollary 4.6. If H/(M;Z/2Z)=0, the linking form on H,(M;Z) determines the
Rochlin invariant mod 8.

Proof. Since H (M ; Z) is an odd order torsion group, the linking form determines
the quadratic enhancement. [

In the same vein we have

Corollary 4.7. If H(M:;Z/2Z)=0 then
w(M)=|H,(M)|~1 (mod 4).

Proof. Combine 4.5 and 3.12. O

Corollary 4.8. If H(M;Q) =0 then
w(M; ¢)=dimgz,z H(M;Z/2Z) (mod2).

Proof. Combine 4.5 and 3.12. [

Finally, we can compute relative Rochlin invariants mod 8. Given a degree 1 map
f:M - P? let T,(f) denote the torsion subgroup of the kernel of H,(M)- H,(P).
Then T\(M)=T, (/)@ T,(P) and T,(f) is paired orthogonally to T,(P) by the
linking pairing on T,(M). Moreover, the induced linking form on T,(P) is the same
as the one coming from P. Choosing a spin structure, ¢, on M gives a decomposition

(T/(M), v)=(Ti(f), V) L(T\(P), ).

Theorem 4.9. Let f: M — P be degree one and let ¢ be a spin structure on M. Then
p{M;f, ¢)=—0c(y|T\(f)) (modS8).

Proof. Recall notation: we have F: W— P X[ with F:0" W- P X0 being f: M > P
and F:9"W- P x1 being an integral homology equivalence. Furthermore, F is
covered by a bundle map between normal bundles. Hence W is a spin manifold so
w(M; f,¢)=a(W)=—o(T(M), y)+o(T, (0, W), v) mod 8 by Theorem 4.5. From
Theorem 3.8 we see that it will suffice to prove (T,(P),y) is isomorphic to
(T,(3. W), v), so we will do this.

Before beginning, do surgery if necessary on Wrelld W to make F induce an
isomorphism on ;. Unfortunately, H,( W) may not be 0 in this case so we cannot
recover all of the quadratic linking form on H,(é W) from the intersection form on
W, but if xe T,(aW) and x goes to 0 in H,(W) we can recover y(x) by our usual
procedure: first lift x to X H,(W,9W) and find ye H,(W) with y hitting rX in
Hy(W,aW); y(x)=—x-y/2r.
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The fact that F is degree 1 provides an orthogonal sum decomposition H,( W)=
H,(F)® H,(P); H,(W,3W)=H,(F,0F)® Hy(Px1,38); H(M)=H/(f)®H,(P);
and H(8,W)= H,(P). In particular, there is a specific isomorphism between
H,(8,W) and the H;(P) summand of H,(M). With these identifications we have
a commutative diagram of exaet sequences

H,(PxI)-» H,(PxIo)->H/(P][]P)

4 ') !
H,(W) -~ Hy(W,0W)-> H(s W)

and the vertical maps on the H,’s preserve intersections. The top row shows that
the two quadratic linking forms on T,(P) are isomorphic, so we have shown
(T (8. W), v) is isomorphic to the (Ty(P), y) summand of (T, (M), y). O

Remark. The idea of using geometry to pass from a linking form to a quadratic
linking form can be found in the Milgram [14] and Morgan-Sullivan [17] papers
on surgery theory where they use the geometry of the normal map to enhance the
linking form on a surgery kernel. In the presence of more geometry (e.g. a framing)
one can enhance the whole linking form. We have worked through the three-
dimensional case and acquired an unexpected bonus in the close connection between
enhancements of the linking form and spin structures. It also seemed easier to show
the Morgan-Sullivan proofs worked directly in our case than to prove that our
enhancement on the surgery kernel agreed with theirs, a prerequisite to just quoting
their results.

5. Free involutions on Z/2Z-homology 3-spheres

In [19] W. Neumann and F. Raymond discovered that in many cases the Browder—
Livesay invariant of a free involution on a Z/2Z-homology 3-sphere is equal to the
Rochlin invariant of the Z/2Z-homology 3-sphere. This equality was demonstrated
for all integral homology 3-spheres by Yoshida in [26]. Moreover, he pointed out
that there is a counterexample to this being true in general.

To describe the general situation, let 2 be a Z/2Z-homology 3-sphere with a free
involution, denoted 7. Since H,(ZX) has odd order, 7, acting on H;(2) decomposes
it as H(Z)=T"®T  where T*={xe H,(X)|r,x=+x}. Moreover, T is
orthogonal to T~ under the linking form. Since T has odd order, the linking form,
I, can be viewed as a quadratic linking form.

Definition 5.1. Let o_(7) denote the mod 8 integer obtained by applying Definition
3.13 to the quadratic linking form (77, I). Let a(Z, 7) denote the Browder-Livesay
invariant for this involution. Then we have
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Theorem 5.2. We notate as above. We have

a(Z, 7)=pu(X)+20_(7) (mod 16).
Corollary 5.3. If 7, =1d, then a(Z, )= u(Z) (mod 16).

Remark 5.4. Since all of the Neumann-Raymond involutions are homotopic to the
identity, we recover their result. We also recover Yoshida’s result.

Proof of 5.2. First calculate that the result is true for the standard involutions on
S* and L(3,1) with quotients RP* and L(6, 1) respectively. Of course this also
follows from the Neumann-Raymond calculations.

Now let W be a normal bordism over RP* X I between X/ and RP® or L(6, 1).
Let 3/ be denoted by M and let Q denote either RP* or L(6,1) so aW=M [] Q.
Then a(Z, 7)— (0, 7)=20(W)— (W) and u(2) - u(Q)=o(W). Thus we have
a(Z, )= u(2) = 2o (W)~ a(W)). ) )

From Theorem 4.9 we see that o( W) =a(—y|T,(f)) and a(W)=0o(—vy|Ti(f))
where f: M [| Q~ RP*[| RP® and f is the cover = [[ Q- S*[] §°

Since Tl(f) has odd order, so does T,(f) and the covering projection :d W->oW
gives an isomorphism of T( f )" onto T,(f). Moreover, m sends T,( f )~ to 0.

Let A denote the linking form in H,(dW) and let I denote the linking form in
H,(3 W). There is a transfer map tr: H,(3W)-> H,(0 W) which almost splits 7 in
that 7,  tr is multiplication by 2. Moreover, if xe H,(0W)

I(tr x, tr x) =2A(x, x).

This equation follows from the intersection number equation y- tr x =,y x for y
a 2-chain in aW and x a l-chain in aW. Since T;{f) and T\( f) have odd order, the
quadratic linking forms on these groups are determined by the associated linking
forms. Hence (T,(f), v) is isomorphic to (T (f), 2y).

Since |H (9 W)l =+] (mod8) (Lemma 2.1) we can use Corollary 3.10 and the
fact that

(H, (W) =1
to see that o(—v|T\(f)) = o(=2v|T:(f)). Hence -
(=T ) — o (~y| T D) = = (=29 TT(N) = oy TT ()

=o(| T (f)) = a_(r). tl

The proof of 5.2 leads to the proof of an amusing formula. Note X/7 has two
spin structures distinguished by their quadratic enhancements of the linking form.
Let y. denote the enhancement distinguished by y.(x) = +1 where x is the unique
element of order 2 in H,. Let u.(%/7) denote the corresponding Rochlin invariants.
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The proof of 5.2 also shows:
Theorem 5.5. pu (Z/7)+u_(2/7)=2u(2)+20_(7) (mod 16).

Corollary 5.6. Let m be odd. Then

Corollary 5.6 leads to the following question. Von Randow [24] has shown L(p, q)
is the boundary of an explicit simply-connected, spin 4 manifold. If p is even, which
spin structure does L(p, q) receive?

6. Change of spin structure

Let M be a compact, oriented, 3-manifold without boundary and let ¢ be a spin
structure on M with associated enhancement of the linking form denoted by 7. The
problem we begin to study in this section is to determine how the Rochlin invariant
u(M; ¢) changes if we change ¢ by xe H'(M;Z/2Z).

The first case we will do is the case x” # 0. In this case we have a degree 1 normal
map f: M - RP>.

Theorem 6.1. Let y< H,(M) be the Poincaré dual to 8x € H*(M) where & denotes
integral Bockstein. Then y(y) = 3. Let ¥ denote the enhancement associated to y + x.
Then y(y)=—v(y). Let u,(M) denote the Rochlin invariant for the spin structure
whose quadratic linking form has value § on y: let u_(M) denote the Rochlin invariant
for the other spin structure. Then, modulo 16,

—2 iffis normally bordant to 1gp?,

M)—u_(M E{
A M)=p(M) +2 iffis normally bordant to L(6, 1) > RP>.

Proof. Since x*#0 and 8: H'(RP?;Z/2Z)~ H*(RP?, Z) is an isomorphism, y is an
element of order 2 which is orthogonal to the torsion in the kernel of f,: H/(M) -
H,(RP?). Hence y(y) = 4. The result on ¥ follows from this and 4.2.

Let W be the normal bordism over RP®x I from M to either RP? or L(6,1). If
we choose the spin structure on M with y(y) =4 and extend it across W we get the
spin structure at the other end which evaluates 4 on the unique element of order 2.
Hence p.(M)—u (M) has the same value as p . (Q)—n_(Q) where Q= RP? or
L(6, 1). Compute this number directly: it is -2 (Q = RP*) or +2(Q=L(6,1)). O

The other case we will do here is the case 6x =0. Then x comes from an integral
class € H'(M;Z) and we can assume X generates a summand. It is not hard to
construct a degree 1 map f:M-S>xS' corresponding to % Since H?*(S*x
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S'.Z2/2Z)=1Z/2Z, f is either normally cobordant to the identity or to one other
problem.

Theorem 6.2. With notation as above, modulo 16,

0 iffis normally bordant to id.,

M(M;¢)=M(M;¢+x)+{ .
8 otherwise.

Proof. Since S2xS' bounds D?xS' with either spin structure, the result if f is
normally bordant so the identity is clear.

Given any knot k: S'> $* we can do 0 framed surgery on it to get a M> and an
H,(; Z) isomorphism f: M>- §?x §. In one spin structure, M° bounds a homology
52 x D? and hence had Rochlin invariant 0. If the arf invariant of the knot is not
zero, M> also bounds a spin manifold of index 8 [20]. Hence any such 0 framed
surgery represents the non-trivial normal bordism class and the result follows. O

Remark 6.3. To actually compute relative Rochlin invariants for P = RP? we need
to choose a representative, M> > RP>, of the non-zero class which is an H,(; Z)-
equivalence. It is not hard to show that we can take the +2 surgery on the trefoil
knot for M. Indeed one can take the +2 surgery on any knot of arf invariant 1. If
we do take the +2 surgery on the trefoil as our representative, u(L(6,1); f, ) =0
for either spin structure ¢.
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