Local Surgery: Foundations and Applications

Laurence Taylor and Bruce Williams*

In sections 1 through 7 of this paper we collect the basic
results of local surgery theory. Sections 1 through 6 merely collect
results found in Quinn [16]. We incorporate a twist motivated by
Barge's work [3], and rearrange the material to suit our needs 1n
sections 7, 8, and 9. The theory parallels the integral theory
until one goes to calculate the normal mhp set. Here Quinn found
an extra obstruction ( see section 6 ).

| Section 7 is a general section in which we try to handle
Quinn's extra obstruction and the surgery obstruction simultaneously.
We give two applications of the general theory to embedding theory
in sections 8 and 9. Hopefully more applications will be forthcoming,

We must apologize to the many people who have worked in this
area but are not mentioned here. A combination of ignorance and
lack of sﬁace prevents a detailed look at the historical found-
ations of local surgery. Our thanks go to Frank Quinn for helpful

conversations on the material in [16].

§1. Basics.
We begin by fixing some notation, We let P denote an arbitrary
subset of primes in Z, and we let P! denote the complementary set.

We let R denote the subring of Q consisting of all rationals with
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denominators relatively prime to the primes in P, and we use R!
to denote the complementary subring.

We use a localization process which preserves the geometry
coming from m,. If X is a CW complex, consider the map

1.1) u: X - K(m.,1) = Bw

which classifies the universal cover. We convert u to a fibration
and apply the fibrewlse localization functor of Bousfield - Kan
[4] p. 4O. We get a commutative diagram

- X - Bm
} !

@ " e ~

where X(P) is the usual localization of the simply connected space'i.

L PR

Amap £f: X - Y 1is a P-equivalence if the induced map
fo: X - Y is a homoto equivalence, A _space is P-local
P (P) (P) py €4 pac ,
if the map X ~ X(P) is a homotopy equivalence.

§2. Local Poincaré spaces.

We say that a P-local space, denoted X, is a simple P-local
P. D. space if there exists a finite complex, K, and a P-equivalence
p: K- X, together with
ij a homomorphism w,: m X - 2/2 and
°)

i1) a class [X] & H (X5R such that

gn.:'HomA.(Cmr*(X);Rﬂ) ~ C(X) ® Rm
is a simple equivalence, where A = Zm and ¢ is a chain represent-

ative for [X]. For more details, see Anderson [1] p. 29 and Wall

[24] p. 21. In particular, the notion of a simple P-local Poincaré




n-ad should be clear.

Remark: The choice of K and p determines the P-local simple

homotopy type of X.

Definition 2.1: An oriented P-local Poincaré space consists

of a simple P-local P. D. space X; a specific choice of [X]; and
a fixed P-local simple homotopy type for X. We denote such a
gadgeﬁ by (X;[X]), suppressing the simple type.

v

§3. Normal maps. ”

We agree to let C stand for O, PL, or TOP: then BSC(P)

denotes the localization of the classifying space BSC. Given a
_c-manifold, M, we have the map u: M - Bm (1.1). The homomorphism ... . ..

TWysTTM= T - z/2 gives rise to a line bundle A .over Bm, If VM Ve e s e b g

*
denotes the normal bundle of M, vy & U (-A) is orientable. Hence
we get a map
. 3.1) myp M - BSC x BV
from which we can recover both u and e En fact; w, can be used
to get a map p: BSC X BT - BC such that pony = vy and

2nd projection)en,, = U.
M

Definition 3.2: An "oriented" manifold is a manifold M -

together with a choice of class [M]e Hm(M,aM;Zt)

Remark: The bundle v, & u*(-A) is now oriented.




Definition 3.3: A degree 1, P-normal map is a map f: M - X

and a map Lp: X - BSC(P) such that

f
1) M X commutes
| iy | gpxu
BSC x BriM - BSC(P)X Br,X

1i) f*w, 1is the first Stiefel-Whitney class of M, and

i11) f£4IM] = [X]

There is an obvious generalization to n-ads. This permits
us to define the set of bordism classes of degree 1, P-normal
maps over the oriented Poincaré complex (X;[X]).

We denote this set by N(X;[X]).

§4. Surgery. i

Our goal is to define and interpret a surgery obstruction
map

4.1) o4 : N(X[X1) - LS (RriX;wi) .

To begin, we form the pullback E(CP) - BSC

| |

x —&p— BSC p)
Given a degree 1, P-normal map f: M - X and QP, we get a map

A
£ M - E(fp). We will need
Lemma 4.2: Let K be a finite complex and let z: K - F be

a map. Suppose there exists a finite complex, L, and a P-equival-

ence L - F(P)' Then there exists a finite complex L, such that




i) g factors as K —Eea, Lm-——r°° - F

ii) r, 1is a P-equivalence.

Proof: We shall define a series of spaces Li and maps 8>
ry such that g= rio 8. Let Lo= K; 8o= 1K; ro= &.

Since 1,F is finitely presented, we can attach a finite
number of cells to Ly to get a complex L1 and a map ry: L1 - F
which is'an isomorphism on m;. The map 8, ig the obvious inclusion
K= LQC Ll. »
Suppose we have constructed Li’ g and r; SO that

(ri)P: (Li)(P) - F(P) is an i-equivalence. Then Wi+1(F(P)’(Li)(P))

is a finitely generated Rr-module (e.g. [24] Lemma 2.3 (b) ). We
can choose a finite set of elements in wi+l(F,Li), attach cells to
get L; 4, and extend the maps. As usual, (ri+1)P is now an (i+1)-

equivalence,

Construct Li, 855 Ty for i = max(dim L, 2). Then Lemma 2.3
of Wall [24] shows that Wi+l(F(P)’(Li)(P)) is s-free over Rr. By
adding more (i+1)—calls to Li’ we can assume it free and choose
elements in vi+1(F,Li) to give a basis for Wi+l(F(P)’(Li)(P))'
Then Le= Li, 15 8w= 81415 Tw= Ti4] satisfy all the requirements. //
Once upon a time we had a map f:M - E(CP). Use Lemma 4,2

to find a finite complex K and a factorization of

f: M —& . K L E(¢p). Over E({p) we have a Cc-bundle, ¢ @ A,

where {: E({p) - BSC and A is the line bundle given by




u

A: E(tp) = X —— Br BW;, pp”. The bundle t ® A restricts to a
pundle r*(¢ @ A). With this bundle over K, the map g: M - K
becomes a normal map in the sense of Anderson [1] and so has a
well-defined surgery obstruction. Using an n-ad version of Lemma

4,2, we see that the obstruction in L; (Rrsw,) depends only on

the degree 1, P-normal map. We get

Theorem 4.3: The map o, (4.1) has the property that

5*(f:CP) _ 0 iff f: M - X is normally bordant to a simple P-
equivalence (provided, as usual, dimension M25).
Even more is true. Let M ——£~ F commute, and suppose
V‘M 4
‘BC

there is a P-equivalence p: F - X such thatﬁavf;<and-gPo5;l

give a degree 1, P-normal map M - X. Then, if 0*(B°f,§§’6§1) = 0,

£f: M » F is normally bordant over F to a map flz M1 - F which is
a simple P-equivalence. Furthermore, if F is a finite complex,

then f 'can be chosen to be (Q%EJ —-connected.

1

froof: One uses Lemma 4,2 and the material in Anderson [1]
to prove all but the last sentence. This follows as in Cappéll -

Shaneson [6] Addendum to 1.7, p. 293. //

Remark: Theorem 4.3 has a straightforward n-ad version. The

experts can amuse themselves by considering non-simple, P-local,




P.FD. spaces; dolng surgery to get P-equivalences with exotic
torsions; introducing I'-groups [6]; etec.

Remark: If we define sc(X;[X]) to be the set of degree 1,
simple P-equivalences f: M - X ( M a C-manifold ) modulo the
relation of P-local s-cobordism, then the usual long exact

sequence (e.g. Wall [24] 10.3 and 10.8) is valid.

§5. The local Spivak normal fibration and local 1ifts.

As usual X is a P-local Poincaré space. Let p: K - X be a
P-equivalence from a finite complex K. We can embed K in some
large sphere and take a regular neighborhood (Nm+k,aN). Make the
inclusion map ON - N into a fibration, and let F denote the fibre.

We can localize the entire fibration and it is easy to redo
Spivak [21] to prove that F(P) is a local sphere and that the
associated stable spherical fibration

v,: X - N
(

- *
" BSG py X K(R ,1)

| ?)
is unique (R*= units of R). (Recall that BSG(P)X K(R¥*,1) is the
classifying space for P-local spherical fibrations, Sullivan [22]
p. 4.14 and May [13].)

More‘is available from our geometry. Instead of considering
F(P) we can use Serre class theory and compute H*(F;Z) modulo the
class of P'-torsion groups. One easily discovers that H*(F;Z) is

P'-torsion, *# k-1, and Hk_i(F;Z)/Torsion is a rank 1 abelian

_ group. The cohomology groups have a similar description. The

‘niversal coefficients theorem and Fuks [8], p.111, Prop. 85.4,
then show that Hk_l(F;Z)/P'—torsion = Z. Hence the map vy factors




through BSG pyX K(Z*,1) , and the map X - K(Z*,1) = RP™ is just.

Ww,. Hence, just as for manifolds, we can define a map
5.1) Nyt X - BSG(P)X Br
Over BSG(P)X Br we have the universal fibration uPX A I
we pull this fibration back over X, we get Vx and we can form

the Thom spectrum J(vy).

Note: All Thom spectra are indexed so that the Thom class

has dimension O,

In Wm(s(vx)) there are elements cy, which, once we orient

X, map to [X] under the Hurewicz and Thom maps. We choose one of
these once and for all and refer to it as the local reduction
of the Thom spectrum for the Spivak normal fibration of X.

Definition 5.2: We define Lift(ny) to be the-set of 1ifts

of Ny to BSC(P)x Br. We suppress which C as it is either clear
from context or irrelevant.
We have the usual map
5.3) £: N(X;[X]) - ILift(ng)

The map £ is defined as follows. The map X - BSC(P)X Br is

given by CPX u and the specific equivalence of the underlying
1o¢al spherical fibration with Mix is specified by choosing the
equivalence which takes the reduction of 3(VM) to'cX using the
map T (vy) - 3(¢pX N) induced by our normal map. Kahn [11] and
May [13] may be profitably consulted here.

Remark: If Lift(ny) # ¢ 1t is in one to one correspondence

with [ X, (G/C) (®)) -




Remark: If P # ¢, there is no reason to suppose that £ is
an isomorphism. Anderson [1] considers a less natural definition
of degree 1, P-normal map and gets a map similar to £ but taking
values in the set of lifts of Vg to BC. He claims, Thm, } p. 51,
that his map is an isomorphism, but we are unable to follow his

proof ( in particular, the first two lines ).

§6. Normal maps again.

We need to calculate N(X;[X]) since the map £ (5.3) is no
longer an ilsomorphism. This was done by Quinn [16] and we display
the result following Barge [3]. Rather than interrupt the

presentation later, we pause to prove

Lemms, 6.1: Consider the square of connected CW complexes

A — B
6.2) ! It
c & »

Suppose that g induces an isomorphism on 7,. Further suppose that
f is a P-equivalence and that C and D are P-local spaces.
Then, if 6.2 is a fibre square, it 1s a cofibre square. If

T4A = 0, then the converse holds.

Proof: Define F to be the fibre of f. Show that H*(F;Z) is
P'-torsion. As in [16], the spectral sequence H*(D,C;H*(F;Z))
H,(B,A) shows H _(D,C) = H,(B,A). The converse is easy. //

To fix notation, let g7 denote the Thom spectrum of the

1ine bundle A over Br. (We should probably call it F(wy,wy), but




we won't,) Given a 1ift X =~ BSC(P)X Br the composite

s X - 3(vy) - MSC pyr O

x)
defines a homomorphism
6.3) BP: Lift(nx) - Mscm(3w;R) "

-We also have a map

6.4) B: N(X;[x]) - Msc (3m)

defined by sending M —=— X to the composite
| ™e
BSC X BriM
m C
™ S+ T(vy) -~ MSC A gTM - MSC A TT .

Clearly N(X;[X]) —Z— Lift(v y)

| | e
MSCm(S"n') - MSCm(mr;R)
commutés. Hence a necessary condition for a 1lift to be in the
image of £ is that BP of it must correspond to an honest manifold.
This is also sufficient as 6.5 below shows.

To fix notation, let B': N(X;[X]) - MSCm(3w;R') denote B
followed by the obvious coefficient homomorphism. If a € N(X;[X])
is given, £(a) determines a map X - BSC(P)X Br . If A denotes the
1ine bundle over X induced from the fixed one on Br, we get a
homomorphism

8, Tpe1(SNR) © MSC,,,  (3T;RY) - Msc,, ,(3mQ) .

Quinn's Theorem 2,3, as reformulated by Barge, now reads




Theorem 6.5: There is an exact sequence of sets

N(X;[X])zﬁ-ﬁ—é———- Lift(vy) X MSc, (JmsR')  ~ MSC, (375Q) -

The group Mscm+1(3w;Q) acts on N(X;[X]) so that two
elements a; and a, € N(X;[X]) satisfy (Z><d)(al) = (£><6)(a2)
1ff oy and a, lie in the same orbit under this action.

The isotropy subgroup of an element a is Just the image
| of Ga.

Proof: The proof is clear from studying Quinn [16] and

Barge [3].Lemma 6.1 is used extensively. //

Remark: Quinn [16] has also proved an n-ad version of 6.5.

§7. Surgery again.

Ranicki [17] has defined.a symmetrization map
1+T Lz(Rw;wl) -~ L™RBmr;w,) .
Thé goal of thils section is to understand 1+T composed
with the surgery obstruction map 4,1, We shall do this in terms
of a hémomorphism o¥*: Msc,(sm) - L"(Rr;w,;) and an element
o*¥(X;[X]) € Lm(Rw;wl), both defined by Ranicki [17] ( or Mischenko

[14] if 2 € P' ). The formula is
7.1) (MT) o, ( ) = o*B( ) - o*(X:[X])

This gives a solution to our problem, but we wish more.

We want to define maps




ol: MScy (Im;RY) - L®(Rr;w,) ® R'

a%; Lift(v -  L™®Bm;w,) ® R

x)
such that
Theorem 7.2: The diagram

N(X;[X]) & —— Lift(vy) X MSC,(Im;R')
(14T) o, T* X O,

0 - L™Bm;w,) — Lm(fi'lTﬂH)@R ® L"(Rr;wy)@R'

commutes,

| Remark: If we think of Lift(vy) as the P-part of the set
of normal maps, and of MSCm(sw;R') as the P'-part of the set of

normal maps, then Theorem 7.2 says that the P-local part of the

symmetrized surgery obstruction is determined by the P-local

part of the normal map set, with a similar statement for P'.

The map 0; is easily defined: one just takes the map
o¥( ) - o*(X;[X]): Msc (3m) - Lm(Rv;w1) and localizes it
with respect to P'. The map <% is almost as easy. Take thé map
—ﬁPa MSCm(sv;R ) igflPﬂ Lm(Rw;w1) ® R and let

¥: Lift(vy)

o*( ) =Y¥( ) - c*(X;[X])(P) . The proof of Theorem 7.2 is easy.

Remark 7.3: The map L;(Rr;wl) ® Rt = Lm(Rw;wl) ® R' 1is

an isomorphism by Ranicki [17], so we have determined the P'-local

part of the surgery obstruction from the P'-local part of the

normal map set.




Remark 7.4: If 2 € P', the map LS (Rmjwy) - I™(Rr;w,) 1is

an isomorphism. Hence we can determine each part of the surgery

obstruction from the corresponding part of the normal map set.
‘Remark: If 2 € P, there is a very involved construction of
a map. T: Lift(VX) - LZ(Rw;wl) so that we can compute o from

c; and T_ . We neither need nor pursue this refinement here,

§8. A metastable embedding theorem.

Dax [7], Laramore [12], Salomonsen [20], Rigdon [18], Rigdon-
Williams [19], etc. have shown that the best metastable
embedding codimension is a o-local phenomenon, This suggests the

* following "converse"

Theorem 8.1: Given a smooth manifold, Mm, whose Novikov

higher signature (defined below) vanishes, there exists a smooth
manifold, N, and a map f: N - M such that

i) N embeds in gk

if m3< 2k
ii) £ is a (%)-local equivalence
111) £ is ( Z-2[_connected

Definition 8.2: The Novikov higher signature of a mdnifold

M is defined to be
£\ (ny) (M1)€ B, (Br323))




where my: M - BSC X Br is the map 3.1 and & is the Morgan-
Sullivan I-class in Hu*(BSC;Z(Q)) [15].
Remark: In the proof of 8.1 we assume only that o¥*(M; [M])

‘is an odd torsion element in Lm(Rw;wl), where R denotes Z[ 3] for

the rest of sections 8 and 9. The Novikov higher signature is
more easily calculated than o¥*(M;[M]). The relation between them

is supplied by

Lemma 8.3: There is a homomorphism

A: H*(BW;Z?Q)) «  L(Rrswi) ® Z(p

such that A( S‘\(nM)*([M]) j = 0*(M;[M]) ® 1.

Proof: Ranicki's methods define an assembly map
L°(R) A or - L°(Rw;w,) and a map MSTOP A J7 - L°(R) A 3T 8O
that the composite s™ SM - T(vy) - MSTOPA Jm - L°(R)A 37 - L°(Rm;w,)
is just o*(M;[M]). See [17] for more details.

In [23] we showed that L°(R) is a product of Eilenberg-
MacLane épectra. Anderson [2] has shown that

_ z ® z/2 » =0 (mod 4)
TH(L°(R)) = (R =2[2])
0 *# #0 (mod &)

Classical quadratic form theory and the methods of [23]
provide classes L; € Hul(L°(R);Z(2)) and h, € H41(1°(R);Z/2) which

give the decomposition. The map MSTOP - L°(R) is described at-

2 by the fact that the hi restrict to O and the Li restrict to the
Morgan-Sullivan L-class. This proves 8.3. //




Remark: This proof was our original motivation for [23].

We need one more lemma.,

Lemma 8.4: If (X;[X]) is an oriented P-local Poincaré

space (2 € P') then

o*(X3[X]) = o*(X:4T[X]) .

Proof’: Miscenko's version of symmetric L-theory with 2
invertible, [14], shows that o¥*(X;[X]) is determined by C,(X)
and the mep gn :C*(X) = C_ (X). Multiplication by ol gives a
chain map Cy4(X) - Cx(X) which induces an equivalence from

C.(X) and 41[X] to C(X) and [X]. Hence they have the same o*. //

We can now prove 8.1, Our first goal 1s to produce a finite
complex having the homotopy properties N is to enjoy.

-Let V denote the pullback V = BO(r) r fixed below.

M - BO
We wish to find a finite complex X and a map g: X - V such thaf
the composite X -V - M is an r-connected, - equivalence, If
k is odd, set k = r., If Kk is even, set k-1 = r. Note r is odd.
To begin, let Xr be an »skeleton for M. It is easy to map
Xr -+ V so that Xr'ﬂ Vv - M is the inclusion, hence r-connected,
Define X, and g,: X, -V inductively by adding i-cells to X; ;.

so that g; is 1 -locally, i-connected. Since the map Vv -M is
1

1 _locally, (2r+l)-connected, this is easy to do up to X since

m< 2k-2.




and, clearly, vm+1(M(§)’(Xm)(%)) is s-free over Rr. As usual, we
may assume that it is free. One can then choose elements in
Tpe1(VsX,) to glve a basis in Wm+1(M(%)’(Xm)(%)) and attach cells
to get X and g: X - V as required.

Over X there is a k-plane bundle, vk, and a stable bundle

k

equivalence h*vM = v, where h is X - V - M, Hence we get a

stable map 3(vk) - 3(vM) which is easily seen to be a % -
equivalence. Hence there exists an element ¢ € vm(z(vk)) such
that ¢ goes to 4ecM for some positive integer e. We also have
the stabilization map vm+k(T(vk)) - vm(s(vk)), where T(vk) is
the Thom space.

Since m¢ 2k-2, Theorem 0.2 of [25] assures us that we céﬂ
find an integer, d, such that, for all 1> d we have an element
vy € vm*k(T(vk)) which goes to 4icM under stabilization and the
map K(VK) = T (vy)

Associated to each v; we get a normal map 0y Ni - M which
is degree 1 if we consider the % -local oriented Poincaré space
(Ms43[M]). If o (a;) = O, and if m¥ 5, then, since m¢ 2k-3,
Levineis work (see [19], Embedded Surgery Lemma) shows that we

k

can do the surgery inside gl , proving 8.1.

But we can calculate (I4+T) o_(a;). It is
o*(Ny5[N;1) - o*(M;47[M]) . Lemmas 8.3 and 8.4 show that this is

410*(M;[M]) - o*(M;[M]) . Since the order of c*(M;[M]) is odd,

we can choose 1i>d so that c*(ai) = 0 (see T.4).




If m<5, then M itself embeds in Sm+k, me 2k-3, //

§9.The False - Hirsch conjecture is half true.

We begin with a local analogue of a theorem of Browder [5].

Theorem 9.1: Let M" be a manifold such that

’ i) Vi desuspends to a bundle nk with k> 2 ;
1i) the image of cy in wm(s(vM)(P)) comes from an
. k
element in w . . (T(n )(P))‘

m+-k+1

Then M embeds in ¥ with normal bundle neael s, Where

' 2m+k+l is a framed P-local homotopy sphere which bounds a framed

P-local homotopy disc. -

We postpone the proof to discuss a corollary. Hirsch [9] has
conjectured that every framed manifold M" embeds in Sm+k with
m¢€ 2k, Thé statement that they embed with trivial normal bundle
is known to be false (e.g. [10]) and is usually iabeled the False-
Hirsch conjecture (even though it was never conjectured by

Hirsch.) We can prove

Theorem 9.2: Every framed manifold of dimension m embeds

in a framed i -homotopy sphere Zm+k with trivial normal bundle
1f m¢ 2k-1. We may choose L to bound a framed 1 -disc.

k-1

Proof of 9.2: Clearly Vi desuspends to € for any k we




wish, so the problem 1is to desuspend the normal invariant when

pr={2} .

The space T(ek—l)

is s¥"1v X for some space X. Theorem

0.2 of [25] shows that, if m< 2(k-1)+1, the image of cM'in

S s .
Wm+k¢1(x(P)) desuspends to ”m+k—1(X(P))' The image of ¢y in

S

”m+k—1(S(P)) desuspends to Wm+k—1(S(P)) by classical EHP

sequence arguments.

Hence 9.1 can be applied to yield the result. //
To prove 9.1 we will need

Theorem 9.%: Assume (X,A) is a CW pair, with X and A simply

S
connected, Let P e m,.(X,A) and a e Wr(X(P)’A(P)) be elements

whose images agree in Wi(X(P)’A(P))' Then, if r» 6, there is a
framed manifold (WY,dW) and maps f: (W,0W) - (X,A) and
g: (W,oW) - (D(P)’ (P)) such that

i) the framed bordism class represented by W and T

"is just B;

-1

i1i) g is a P-local equivalence such that fP°gP is a,

Proof of 9.3: Lemma 6.1 implies that the following fibre

square is also a cofibre square.

(£,8) (X,A)

lw

(%) 5(6) 2 = (X(p)+h(p))




Hence there is an element b € vi(E,El) such that j(b) =8

and m(b) = 1p Wwhere ip denotes the stable homotopy class of
. . r r-1 r r-1

the localization map (D°,S ) - (D(P)’S(P))'

" The element b corresponds to & framed bordism claés. Let it
be represented by a manifold (W{,awl) and a map
£y: (wl,awl) - gE,El). Since 7 is a P-equivalence, f, corresponds
to. a degree 1 normal map. The o.ad version of Theorem 4.2 gives
a local m-1 theorem, so we can do the surgery (provided r>6) to-

get a P-equivalence f: (W,0W) - (E,El) still representing b. //

Proof of 9.1: If mtk+1< 6, it is easy to prove 9.1 case by

case, so assume that m+k+1» 6. The proof which follows is

essentially Browder's [5] (also see [24] Thm. 11.3).

k 5 3 -
Let ¢ & mp . (T(N )(P)) be the element promised in 9.1 ii).

k ” k :
Let .q ET l(Cone(T(n )(P)),T(n )(P)) be the unique element

mtk+

whose boundary is c. Define fp € wm+k+1(Cone(T(vM)),T(vM)) to be

the element whose boundary is Cyre Theorem 9.3 applies so we can

find (W,0W) and a map g: oW - T(nk).

s(ifecl) - T - T YW

vk
D(n) — A

is defined to be a pushout. Browder's proof shows that A is a

m+k+1 . S .
P-local S and that there is an element v € Wm+k+1(A) going

k 1 S
to ¢y under the map A - T(n® e¢”) . Let B € wm+k+2(Cone A,A)




be the element whose boundary is vy, Let a € wi+k+2(00ne A(P),A(é))

65 . mk+2 mrk+l
be the stabilizatlon of (D(P) ’S(P) ) = (Cone A(P)’A(P))'

Use 9.3 again to get Z?*k*l and a P-equivalence g: Zl - A

so that g represents y. Following Browder, make the composite
1
L, - A =~ T(n ® €7)

transverse to the zero section. The result is normally bordant
to M, so we finish just as Browder does using the local m-m

theorem in place of the integral m-m theorem. //
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