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Introduction: The Freedman-Casson handle theorem [F] used an

unusual combination of smooth and topological techniques that resulted
in the topological classification of almost smooth l-connected closed
four manifolds. (A compact connected manifold M is almost smooth, if

MO = M - interior point, is smooth.) In this paper we combine

smoothing theory with Freedman's results to further study the structure

of topological and almost smooth manifolds.

In section 1 we give a preliminary discussion of almost smooth
manifolds and show, using Freedman's completion of Scharlemann's

transversality theorem, that if M is a compact four manifold, then

M # k(S2 X 82), some k, 1s s~cobordant to an almost smooth manifold.
(Theorem A)

In sections 2-5 we glve consequences of our main result that
ﬂi(TOph/OM) = ﬂi(Top/O), i =2, 3. Some of these consequences are:

1. A smoothing of MO x R, M a four manifold, is isotopic to a product

smoothing provided M, admits some smoothing. (Theorem B)

0

2. If V is a cobordism between almost smooth four manifolds, then V
has a topological handle decomposition on 3 V. (Theorem C)

3. An s-cobordism between almost smooth four manifolds becomes a

topological product by adding 82 X 82'5 along the cobordism.

(Theorem D)

I, Let M be a closed 5-manifold. Then the tangent microbundle of M
splits off a line bundle. (Corollary of Theorem E)




Finally, in section 5 we prove our main result.

Remark: Quinn [Q] has proved that “i(TOpM/OM) =0, 1=20, 1, 2.

This implies that every four manifold is almost smoothable. Our proof
that w2(Topu/Ou) = 0 is independent of Quinn's.

1. Remarks on Almost Smooth 4-Manifolds.

If M is a topological manifold, a smoothing of M is a pair (U,a)
where U is a smooth manifold and o« : M > U is a homeomorphism. Two
such (Ul,al) and (U2,a2) are isotopic rel 3M if there is an isotopy

G oM = 1, and a)Galt 1 U > U, is

G : Mx I > Msuch that G, =1 M 27171 1 2

0 M?
a diffeomorphism (where Gt(x) = G(x,t)).

An almost smoothing of M is a smoothing (U,a) of M minus one

interior point from each compact Qomponent. If M is compact and
connected, denote an almost smoothing by (U,a,p), where p is the
interior point. A homotopy class w(p,q) of paths from p to q in M
determines a bijective correspondence between isotopy classes of
smoothings rel 3M of m - p and M - g. In fact there is an ambient
isotopy G : M x I » I such that G, = 1y, thaM = 1y Gl(p) = q

and Gt(p), 0 <t <1, is a path in w(p,q). If (U,a) is a smoothing
of M - p, (U,aGil) i1s a smoothing of M - g. If G' is another such

1"
isotopy, then G' is isotopic rel endpoints to G" with Gt(p) = Gt(p),

and it is easy to see that this implies the two smoothings of M - g
are isotopic. This gives an action of the fundamental group on the
smoothings of M - p. Just as for homotopy groups we will often

suppress the base point and simply write MO for M minus any interior

point p.

If (U,a) is a smoothing of M, we will sometimes identify M with
U via o, and write Ma for M with this smoothing.

Note that a four manifold is smoothable if and only if it is @
handlebody. Freedman has shown there are four manifolds which are




not smoothable and hence not handlebodies. This suggests we

investigate the following notion:

Call a_compact hemanifold M an almost handlebody if one can find

a compact contractible 4-manifold W in the interior of M so that M- W
is a smooth manifold with boundary. Thus M 1s a handlebody except for
one exotic U4 handle W. Clearly, every almost handlebody is almost
smooth. The converse is unknown in general, but we will say more about
it later. For the present we note the following:

1.1. Scharlemann's transversality theory [S] as completed by

Freedman [F] allows one to deform a map [ : Vk+u > T(Ek) of a

topological manifold V into the Thom space of a k-plane bundle £ to a
map g topologically transverse to the zero sectilon. This process

yields an almost handlebody 1‘-’ILl as preimage of the zero section.

1.2. The arguments of Freedman and Quinn [FQ] in the smooth
case show that if the Wall obstruction vanishes, one may do surgery

mod # 82 X Sz's on a normal degree one map £ : M > X, M an almost

handlebody, so as to end up with a simple homotopy equivalence of an

almost handlebody M' with X # k(82 X 82), some k. In fact their

method requires surgery only on 0 and 1 spheres.

Theorem A: If M is a compact 4 manifold, there is a k such that

M # k(82 X 82) is s-cobordant rel 3 to an almost handlebody.

Proof: By 1.1 with £ the normal bundle of M and Vk+u = Sk+u,
we obtain an almost handlebody N and a degree one normal map f : N > M,
normally cobordant to lM' By 1.2 we may assume f is a simple homotopy

equivalence, when we replace M by M # k(S2 b 82). Now we wish to do
surgery on the normal cobordism to make it an s-cobordism, but in
general there is a surgery obstruction. On the other hand, every

surgery obstruction can be realized mod # 82 X 82 by a normal cobordism

of N to N', at least if N is smooth [CS]. By first removing the
interior of the exotic 4-handle in N, and realizing the surgery
obstruction on the resultant smooth manifold, we end up with a normal

cobordism mod S2 % 82's of N to another almost handlebody N', such




that the surgery obstruction for the normal cobordism from N' to

M # k(S2 X 82), some k, vanishes, enabling us to construct an

s—-cobordism.

Remark: Alternately, starting with M x [0,») and making the
projection onto [0,») transverse to say M x 1, we could construct an

almost handlebody N in M x (0,1), and modify it so that mod 82 b 82's

the cobordism from M to N is an s-cobordism. Compare [CSL], where

‘the argument is done in the smooth case.

2. Bundle Reductions and the Product Structure Theorem.

Let J : BTopu -+ BTop and J : BOM + B0 be the maps induced by the
inclusion of Topu in Top. Note that J may be considefed a map of

fibrations:

e

BTopu ——3—> BTop ,
with fibres TopL‘/O)1l and Top/0, respectively.

Notation: If (X,A) is a relative CW complex, we let

(X,A)T = A u cells of dimension < i.

Proposition 2.1: Let (X,A) be a relative CW complex of dimension

at most four. Let & : X » BTopu and suppose EO = EI(X,A)3 1lifts to

%O : (X,A)3 - Bou. Then the correspondence 2 to 3% induces a surjection
of the homotopy classes of 1lifts of & extending EOIA onto the homotopy

classes of 1lifts of j& extending S%OIA.

Addenda: By replacing A by (X,A)2 and using the fact that
ni(Top/O) = (0 for 1 < 3 we have by 2.1:




2.1la: & 1lifts to Bou extending EO](X,A)2 if and only 1f j&

1ifts to BO extending jEOIA.

By replacing A by (X,A)3 and using the fact that nu(Top/O) =0

we have:
2.1b: & 1ifts to B0, extending éo if and only if j& 1lifts to

B0 extending 3%0. Any two such lifts of j& are homotopic rel(X,A)3;
and in particular if % is such a 1ift of £ and ﬁ such a 1ift of j&,

3% is homotopic to n rel(X,A)>.

Proof of 2.1 (using the main theorem): Since ﬂi(Top/O) = 0 for

i < 3 we may assume up to homotopy that any 1lift n of Jj& to BO extending
ng]A actually extends ggol(X,A)2. Since n3(Topu/04) - nB(Top/O) is

surjective, we may change 20 over the 3 cells of (X,A) so that 3%0 is

homotopic rel(X,A)2 to ﬁl(X,A)3, and hence we can assume n agrees

A

with 380 over (X,A)3. Since n3(Topu/Ou) - n3(Top/O) is injective EO

extends to a 1lift £ of £. Since nu(Top/O) = 0, 32 is homotopic to 7
3
rel(X,A)".

If M is a 4-manifold, the Kirby-Siebenmann obstruction
K € HM(BTop;Z2) yields a class k(M) « HM(M,BM;ZE) which can be viewed

as the obstruction to smoothing M x R rel 3M x R.
The following is an immediate consequence of 2.1.

Proposition 2.2: Let M be a l-connected almost smoothed closed

b-manifold with k(M) = 0. Then the corresponding 1lift of Ty to BOLl
0
extends to a 1ift of TM.

Remark: The proposition says there is no bundle theoretic
obstruction to extending the smoothing to M. Nevertheless, a recent

result of Donaldson on Spin manifolds, shows that the smoothing does

not always extend.




Smoothing theory and 2.1 will allow us to prove the following

weak product structure theorem:

Theorem B: Let M be an almost smoothed J-manifold, and suppose
we are given a smoothing of MO x R which is the product smoothing
on 8M x R. Then there exists (a possibly different) smoothing of MO’
unchanged on the boundary, so that the product smoothing of MO x R
is isotopic rel 3M x R to the given smoothing.

Remark: The reason this theorem is called weak is that the new
smoothing of MO is unique only up to concordance — not isotopy or even
sliced concordance.

Addendum Bl: Let C < M be a proper closed subset. Under the
hypothesis of Theorem B and supposing C c MO (which can always be
arranged — see section 1) and that the smoothing of MO X R restricts
to the product smoothing on U x R, U a neighborhood of C in MO’
then we can conclude that the new smoothing of MO agrees with the
original smoothing on a neighborhood of C.

If M is smoothed and we are given a smoothing of M x R one
cannot guarantee that this smoothing is isotopic to a product smoothing

on all of M x R, even though all bundle obstructions vanish. However

we can show:

Addendum B2: There is an integer k 2 0 with the following
property. With the hypothesis of Theorem B, and assuming

M=X# k(S2 X 82) for some smooth compact connected 4-manifold X; if
we are given a smoothing of all of M X R, which is the product
smoothing on 8M x R, then there is a smoothing of all of M such that
the product smoothing on M x R is isotoplc rel 3M x R to the given
smoothing.

Remark B3: The relative version of Addendum B2 holds provided

C e X, ¢ M.

0




Addendum B4: Let Ng be the twilsted s3-bundle over S'. There

exists a smooth 4-manifold, MM, and a homotopy equivalence f : Mu > Nu

which is not homotopic to a diffeomorphism iff k = 0.

Proof of Theorem B: The classifying map 7 : M » BTopu of the

tangent microbundle of M satisfies: a) 1, = TIMO lifts to Bou — using

0
the almost smoothing of M, b) jTO lifts to BO — using the smoothing of

M. x R, so that if T, 1s the 1lift of T

0 0 0 and no is the 1lift of jro,

AN A ~t
then jTOIBM = nolaM. By 2.1 there is a 1ift T, of 1, so that

]

0
smoothing theory [L], that there is a smoothing of MO satisfying

Al AN A~
TO|3M = TolaM and jt, 1s homotopic to n, rel d3M. It follows from

the conclusion.

Proof of Bl: Take a smooth compact submanifold Au c U, with
C < Int A. Then the same argument as above with 3M v A replacing 9°M,
proves Bl. '

Proof of B2: The classifying map for the tangent bundle of M

factors up to homotopy as follows:

TvT'
M=X# k(S2 X 82) 2. Xv k(S2 X S2) _— BTopu, where g 1s the

quotient map and T (resp. t') classifies the tangent bundle of X
(resp. k(S2 X S2)). Since k(S2 X 82) has a trivial stable tangent

bundle, jt' is homotopically trivial by a standard based homotopy.
Since ﬂ2(Top/O) = 0, any 1ift of jTM defines a 1lift of jt. The 1lift

is unique up to homotopy since m,(Top/0) = 0. Thus the smoothing of
4

M x R defines a 1ift n of jT so that if T is the 1lift of T given by
the smoothing of X, JT|8X = n]|3X.

Since Top/0 1is a K(ZZ,B), the difference between ﬂ and 3? defines

a class a < HB(X,SX;ZE). We assume o # 0, since otherwise the result

is trivial. The dual of a is represented by a smoothly embedded Sl

in X. The normal tube of Sl is either E+ = D3 X Sl or
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E = the unoriented D~ bundle over Sl. LLet E denote whichever one we

have. Then a is the image of the generator y of
H3(E,8E;Z2) = H3(D3,3D;Z2). In particular, we can assume n = 5T on

X - Int E. Then ﬂIE is in the unique non-standard homotopy class 6
of 1ifts of jtg rel 3E. To realize the 1lift 7 of jt, it would be

sufficient to change the smoothing on E rel 9E from the standard
smoothing represented by‘%IE to one defining a 1ift 3, where 33 is in

§. By 2.1, a 1lift 0 always exists such that 38 is in §. However,

in general, G only defines a smoothing of E # k(S2 X.S2) for some k

[LS]1, but nevertheless with the induced product smoothing of

(E # k(S2 X 82)) x R representing §. Thus if for E_ we chose o with

AN

jc+ € 6+ and similarly for E_, then letting k = max(k+,k_), we can

always get a smoothing of X # k(S2 x 82) satisfying BZ2.

Proof of B4: If k = O we can use the homeomorphism h promised
by B2 for f.

Given f it is an easy surgery theoretic calculation to show that

Mu is topologically h-cobordant to Nu but Mu is not smoothly

h~cobordant to'Nu.

By a theorem of Quinn [Q], any sufficientl§‘large cover of this

h-cobordism is a product. Here we can find a smooth manifold M“ and

a homeomorphism h : Mu > Nu by taking a large odd cover. This shows

k = 0. The double cover of this picture shows k+ = 0.

3. Handlebody Theory.

Remark: These results are largely superseded by Quinn's
results [Q]. |

Proposition 3.1: Let V be a five dimensional compact cobordism

between the four manifolds 3 _V and 8+V which is a product between

their boundaries. If V is a topological handlebody on 3_V, there




is a U4-plane bundle n over VO such that n & 1 = T(VO) and

n]9,v = 1(3,V).

Proof: It suffices to prove 3.1 when V.= 23 V x I v, D x Ds_l.
In fact, by induction up the handles this will construct a.bundle n
over V - F, F a finite collection of interior points, which we can
assume contains at least one point from each component of V. By a

standard argument VO may be engulfed rel 3V into V - F.

Now we can always define a smooth structure on a neighborhood of
f‘(Si_l X DS-i) < 3_V so the attachment is smooth with rounded .corners;

i-1 Su—l

and in particular we have an embedding e : S X x R+ 3 Vx 1.

(0,0)

& & gy 8 -VX I

~~ Ao 1 s §

3 - Vx0

Define n over W = 3_V x I y R X s 1 by gluing T(RY x 5% to

T(3_ V) x I by T(e). Since V, =V = (0,0), (0,0) « pi x p°>~1, has W as

a deformation retract, the result follows.

Corollary 3.2: Under the hypothesis of 3.1 and assuming 8+V 4,

there is a U4-plane bundle § over V such that € & 1 = (V),
£]9_V = 1(3_V) and E[(3,V), = 1(3,V),.

Proof: Engulf V in V., by pushing 1n on an interval from a base

0
point in 8+V to the base point in V. Let £ be the pull back of n by

the engulfing.

Proposition 3.3: Let X be a 4-complex and &, &, topological

L-plane bundles over X. If a) El and 52 are stably equivalent, and




and b) El and £2 have 1lifts to BOM over the 3-skeleton X3; then gl

and Eé are equivaleht over X3 and El 1lifts to BOu over X if and only

if 52 does.

Proof: “iBOM - ﬂiBO is an isomorphism for i < 3 and

niBO > niBTop is an isomorphism for i < 3. Thus the 1lifts El and 22

of EllX3 and EZIX3 to BOA are homotopic over X2. Since W3B0a = Oy
3

El and 22 are homotopic. Hence El and €2 are equivalent over X-. The

last statement of the proposition follows from 2.1 and hypothesis a).

Remark: In order for El and £2 to be equivalent it is necessary

and sufficient that they have the same Euler class.

Proposition 3.4: Let V be a compact h-cobordism between

4-manifolds which 1s a product along the boundary, and suppose V is a
handlebody on 3_V. Then

a) B_V is almost smoothable if and only if 8+V is almost smoothable.

b) 1t(3_V) reduces to a vector bundle if and only 1if T(3+V) reduces to

a vector bundle.

Proof: By 3.2, there is a l-plane bundle & over V such that
£]9,V = t(3,V). Since V is an h-cobordism £ = r¥t(3_V), where
%
r : V> 3_V is the retraction. In particular, T(3+V) = r+T(B_V),

where r, = r|8+V. Since 3+V has the homotopy type of a 4-complex X

with (8+V)0 homotopy equivalent to X3 [Wl, the result follows from
3.3 and the fact that 1f V is a handlebody on B_V then it 1is a

handlebody on,8+V.

Proposition 3.5: Suppose there is a compact 4-manifold which 1s

not almost smoothable. Then

a) there is a compact s-cobordism V5 which does not have a handle

decomposition on 3_V, and




b) there is a'compact manifold V5 with boundary such that V is not a
handlebody on aV.
Proof:
a) By Theorem A, if M is the compact 4-manifold of the hypothesis,

then M # k(S2 x 82) is s-cobordant to an almost smoothable compact

manifold. But if M is not almost smoothable, neither is

M # k(S2 X 82). Hence by 3.4, the s-cobordism cannot have a handle

decomposition.

b) Let V be the s-cobordism in a). Suppose V is a handlebody on 3V.
By 3.2, there is a lU-plane bundle £ on V which restricts to T(BV)O

on (3V),. Since & = r*t(3_V), £|(3V), = T(3V), has a vector
bundle reduction. But this impliles 3+V is almost smoothable,
giving a contradiction.

Theorem C: Let V be a compact cobordism between almost smoothable

b_manifolds which is a product along the boundary. Then V has a
topological handle decomposition on B_V.

Proof:

1. We may assume d_V and 8+V are non-empty:

Just remove one or two open discs from V as necessary to make 3_V
and 3+V non-empty. Obviously if the new V has a handle decomposition

on 3_V so does the original cobordism.

2. We may assume 7(V) reduces to a vector bundle rel L, L = B(B_V) x I

the (possibly empty) "lateral" surface of V:

Suppose the obstruction k(V) e HM(V,L;ZE) to extending the
reduction of t(V)|L (induced by the smoothing of 3(3_V)) is non-zero.
Let a « Hl(V, 3, Vud_V; Z2) be the dual class. Then it is easy

to see that a is represented by a finite collection of locally flat
embedded arcs going from 3 V to 3+V. Now each arc is the core of a

"
l-handle T x Du going from 3 V to 8+V. Let PLl c Int D be a compact
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contractible U-manifold with 3P the Poincaré homology sphere [F].
Remove I x Int P from each of the above l-handles. This gives a new
compact c¢obordism which is a product along the boundary, and it is
again obvious that if the new V has a handle decomposition on 3_V so

did the original cobordism. Since the obstruction to reducing t(P)
to a vector bundle rel 3P is non-zero, it follows that the tangent

bundle of the new V reduces to a vector bundle rel the new L.

3. If t(V) reduces to a vector bundle rel L, V has a handle
decomposition on B_V:
The reduction of tT(V) defines stable reductions of 1(3,V) and by

2.1, reductions of the t(2,V) themselves. By Lashof and Shaneson
[LS], there is a compatible smoothing of 3,V # k(S2 X 82), for some k.

We may think of 3,V # K(S° x s°) as embedded in outside collar
neighborhoods of the 3,V by first.adding trivial 2-handles to 9,V X I
and then cancelling 3-handles. Thus we have a smoothable manifold W,

> W =5V #k(s? x 5°) and 3,0 = 8,V # k(s® x s°

). V is constructed
by first adding trivial 2-handles to 3 V.x I to reach 3_W, and then
attaching the (smooth) handles of W to reach 8+W, and finally attaching

the dual three handles to 3+W to get to 8+V.

Addendum: We may assume the handles of a given dimension are

attached disjointly in order of increasing dimension.

Proof: In the handle decomposition given in the proof above,
one can certainly assume the 0, 1, 2 handles are attached before any
of the 3, 4, 5 handles, by taking such a handle decomposition for
the smooth manifold W. Hence using only general position arguments

one can arrange the 0, 1, 2 handles in order on 3_V and the dual

0, 1, 2, handles in order on 3+V.

Notation: Let V be a compact connected cobordism between four

manifolds, and let H < V be a l-handle I x Du going from 3 _V to 3+V.



Proposition 3.7: If M is a compact almost smooth 4-manifold,

then there is a k such that M # k(S2 b 82) is an almost handlebody.

Proof: Immediate from Theorems A and D.

We can also add a little to our knowledge of homotopy RP“'S.

By Theorem D, all the Cappell-Shaneson RPu's [CS] and the
Y

Finteshel-Stern exotic RP  [FS] are homeomorphilc to RPM mod connected

2 2 b

sums with S x S°'s. Secondly, we note that since H3(RP ;Z2) # 0

there is an exotic almost smoothing of RPM. The bundle obstruction to
extending this smoothing over the last point is zero, as remarked
above (see B2 and the proof thereof). Thus we get a non-trivial

smoothing of RP“ # k(82 X 82) by [LS]. Also note that we can assume

the smoothing is standard on a neighborhood of RP2.

4. Disc Bundiles.

In [St], R. Stern did a detailed study of the problem of finding
a disc bundle inside a given microbundle. He was able to deal with

this question except for five dimensional bundles. We offer,

Theorem E: Let X be a 5-dimensional complex. Any 5-dimensional

microbundle over X contains a topological disc bundle.

Remark: We do not claim the disc bundle is unique. That

involves unknown homotopy groups éf TOPM/OM'

The following is due to Stern for k > 2.

Corollary 4.1: Let M2k+l be a closed manifold. Then the tangent

microbundle of M splits off a line bundle.

Proof of Corollary: Let Top(I)n, resp. Top(S)n, denote the group

; n n . s :
of homeomorphisms of I, resp. S . An n-dimensional microbundle over

X contains a disc bundle if and only if & : X = BTopn 1ifts to

BTop(I)n. Since the restriction map Top(I)n -+ Top(S)n_l is a homotopy




equivalence, one has the fibration:

n-=-1

¥ Top + Top(I)rl + S 5

n-1

n-1

and hence the fibration: S > BTOpn—l - BTop(I)n. Thus £ will

split off a line bundle if its EHuler class is zero. But for
n = 2k + 1, the Euler class of (M) is zero.

Proof of Theorem E: From (¥) we see that Top,/0, » Top(I)g/0g

g

is a homotopy equivalence and that we have the fibration:
TOpu/ou + Top5/05 > TopS/Top(I)S.

In particular, since HM(TOPS/OS) = 0 and ﬁ3(Top4/Ou) - W3(T0p5/05) is

an isomorphism by our main theorem, we see that nu(TopS/Top(I)S) =0

and that w3(Top5/05) > n3(Top5/Top(I)5) is trivial. From the map of

fibrations:

Top5/05 —_— TopS/Top(I)5

| |

BO5 i BTop(I)5

| |

X — BTop5 = BTop5 5

we see that EIX3 lifts to BO5 since ni(TopB/OS) = 0 for 1 < 3, and
that the obstruction to getting a 1ift to BO5 over Xu in

HM(X;ﬂB(Top5/05)) maps to zero in HM(X;HB(TopS/Top(I)S). Thus glxu

lifts to BTop(I)S. The 1ift extends to X since w“(TopS/Top(I)S) = 0.




B, ﬂi(TOpM/OM>'

Case 1 = 2:
An element o € ﬂ2(TOp4/OM) defines an exotic smoothing of

R x 82 X Sl as follows: Since the tangent bundle of the standard

smoothing is trivial, the classifying map t : R X 82 ><‘Sl > BTopLl

can be taken to be the constant map to the base point. Define a 1ift
Ia of T to Bou by Ty = ifp, Where'p : R x 82 b3 Sl -+ S2 is projection,

£ : 82 > Topu/O4 represents o and i : Topu/Ou - Bou 1s the inclusion
of the fibre when we consider BOM as a fibre space over BTopu. This
defines a homotopy class of 1lifts Ta and hence a sliced concordance

class of smoothings (R x 82 X Sl)a [LS].

Proposition 5.1: There is a compact 4-manifold V with

oV = 82 X Sl which is h-=-cobordant rel boundary to D3 X Sl

)
and such that the smoothing o of R X 82 x Sl extends to a smoothing of
W =V u open collar (i.e., the open bicollar of 3V in W identifies

with R x S2 X Sl).

# k(82 x S2

Proof: Since ng(Top /05) = 0, the smoothing o is stably

5
equivalent to the standard smoothing. Thus there is a smoothing B of

R x 82 X S:L x I, I = [-1,1], which is the standard smoothing near

R x 82 % Sl x +1, the smoothing o x 1 on a product neighborhood of

R x 82 X Sl x 0 and with B isotopic to the standard smoothing

rel a product neighborhood of the boundary. Identifying R x 82 with

1

R3 - 0, we can get a smoothing y of R3 x ST x I which is standard

1« +1 and equal to B outside Dg X Sl x T, D3 a small disc

near R3 x S £

3

about 0 in R-.

1

We can deform the projection p : (R3 x ST x I)Y + I to a smooth

3, gl

map p' transverse to 0 in I, rel the complement of DE x I and a
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collar neighborhood of the boundary. Let W = p'—l(O); Then W is
smooth and the end of W is topologically the same as the end of

R3 X Sl and has the smoothing a. The composition gqj : W » R3 X Sl,

3 X

j the inclusion of W in R” x 87 x I and g the projection of

3 X Sl, is a proper degree one normal map. Let v

be the compact topological manifold with oV = 82 X Sl such that

R3 X Sl x I onto R

W =V u open collar. Then qj restricts to a degree one normal map

2 x Sl), the identity on the boundary. Following

[FQ] or [CS1 we can do smooth framed surgery on Int V mod S2 X 82's

h i (V,3V) > (D3xst, s

so that we get a homotopy equivalence of the new V with

D3 x Sl # k(S2 X 82) rel boundary. In fact, as in the proof of

Theorem A, we can assume the homotopy equivalence is actually an

h-cobordism.

Lemma 5.2: Let o and B be smoothings of W and T andvTB the

corresponding lifts of © : W »> BTopu.to BOu. 1r Ty ™ TB on the base

point (p,q) e« S2 X Sl, then 7 ~ Tg On S2 x q. (~ means homotopic

through 1lifts.)

Proof: Since V is h-cobordant to D3 x Sl #.k(82 X SZ), the

Stiefel-Whitney classes wl(V) and w2(V) are zero. It follows that TW

and hence TW is trivial. Thus we may assume t sends W to the base
point. Again since V 1is homotopy equivalent rel boundary to

1

D3 X ST # k(S2 X S2), the inclusion 1 : 82 x q > 3V ¢ W is homotopic

to the constant map to (p,qa). Since T, ~ Tg on (p,a), Tai ~’TBi

.. 2
over ti; i.e., T, ~ TB on S X (.

Proposition 5.3: Let V be homotopy equivalent rel boundary to
1

D3 x ST # k(S2 X 82) and let W = V u open collar. Let M =V u D3 x Sl,

identified along their boundaries, and let o be a smoothing of W

which is standard on a neighborhood of (p,q) ¢ 82 X S:L in the bicollar.

If M is almost smoothable, Ta is homotopic to the standard 1lift on a

neighborhood of 82 x q in the bicollar.




Proof: We identify W with an open neighborhood of V in M.
Let B8 be an almost smoothing of M. Since W is trivial, if

Ty Tg : W TOpu/OM c BOLl do not land in the same component we can

always change Ty by composition with an element g of Topu to achieve

] 1 1
this; and then Ty ™ TB on the base point, Ty = 8T, - By 6.2, Ty ~ TB

on 82. Since we can take M, = M - (0,q'), (0,9') « D3 x’sl

0 > a' #q,

TB extends over D3 X q. ' Take the trivializaﬁion of W to be that

given by T(MO)B so that 1 : MO + base point and

. ! 2 T L2 .
T Mg + (1) < TOpM/OM' Since T ~ Tg on S¢ x q, TqIS x q is

homotopic to the constant map onto (1). By composing with g_l we see
that Ta]S2 x q is homotopic to a constant map, and since a was
standard on a neighborhood of the base point, Ty must be homotopic to

the standard 1ift on a neighborhood of S2 X q.

Corollary 5.4: Let o ¢ ﬂ2(TOp4/OM) and let M =V u D3 x Sl,

where V is given by 5.1. If M is almost smoothable a = 0.

Proposition 5.5: Let a and M be as in 5.4. If the universal

cover of M is smoothable, o = 0.
Proof: The obstruction to smoothing Mo'with a given smoothing B8

in a neighborhood of the base point is a class OB € H3(M;ﬂ2(Top4/Ou)).

Indeed if B is isotopic to o on a neighbofhood of the base point it

extends to W, and the obstruction to extending TB, and hence R, to MO

is a class 0B as above. If TB corresponds to a different component

]
of Topu/ou than Ta on the base point, T = gTa will be in the same

o
component for some g e Topu, and hence TB will extend over W in any

case so that we get an obstruction to smoothing MO as above.

If f : M > M is the universal cover,

r#* H3(M;n2(Topu/0u)) > H3(ﬁ;ﬂ2(Topu/Ou)) is an isomorphism since M
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1 2

# k(82 x 8°). If 0, 1s non zero,

B
is the obstruction to smoothing M with the pull

has the homotopy type of S3 X S

* i 5 *(
f 08 # 0; but f OB

back smoothing 8 on a neighborhood of the base point in M. Thus

if M is smoothable f*OB = 0 for some B, SO OB = 0 and M0 is smoothable.

Hence o = 0 by 5.4.

Proposition 5.6: Let a and M be as in 5.5. Then M is

B
homeomorphic to S3 x R #Aw(Sg % 52) and hence smoothable.

Proof: M =7V u D3 x ST and M - 0 x ST 1is homeomorphic to W.

~

SoM =V u D-3 x Rand M - 0 x R is homeomorphic to W. Since W is

3 x Sl # k(S2 X'Sz), W is properly

2).

properly h-cobordant to R

4

h-cobordant to R # °°(S2 x S Since W is smoothable by the pull

4 2

back of a, Freedman's theorem says W=TR"# °°(S2 x 3°). In

particular, we can perform topological surgery on W to obtain R4 and

this changes M to a manifold M', the proper homotopy type. of S3 x R.
But Siebenmann [F] has shown that such a manifold is homeomorphic to

~

S3 x R. But then M = S3 x R # w(S2 X 82), connected along an

embedding f of Rl1l in S3 X R. The Lemma below shows that there 1s a

homeomorphism h of 83 x R such that hf is isotopic to the standard

embedding of Ru and hence M is homeomorphic to the standard (smooth)

connected sum.

Lemma 5.7: If f : Ru - S3 x R is any embedding, then there is a

smooth embedding g : RLl > S3 x R and a homeomorphism h of S3

that hf = g on Du.

x R such

Proof: We can smoothly identify S3 x R with Ru - q, g # 0, so
that f£(0) is identified with 0 in Ru. By Kister's theorem [K] there
is an ambient homeomorphism k of Ru with k(0) = 0 and le4 = leu.

Choose £ > 0 such that q ¢ Dg u f(Dg). Then we may assume leg = leé

and k(q) = q. Thus k restricts to a homeomorphism of S3 x R so that




ki = fIDu, where 1 : Dg - S3 x R is the smooth embedding so that

composed with the inclusion of 83 x R in Ru it is the standard (smooth)
embedding of Dg in Ru. Then k—lfIDu is i1sotopic to a smooth embedding
g and so using the isotopy extension theorem, we can find a

homeomorphism h such that hf = g on Du.

Main Theorem I: ng(Topu/Ou) = 0.

Proof: This follows immediately from 5.5 and 5.6.

Case 1 = 3:
Let o ¢ ﬂ3(Topu/O”), then a defines a smoothing, unique up to
3

sliced concordance, of S° x R which is standard near the base point.

We denote this by (83 X R)a' In [LS], it 1s shown that 1f a is
stably trivial this is the end of a smooth manifold W the proper
homotopy type of Ru # k(S2 b 82) = (k(S2 x S2))O. By Freedman's

classification theorem the underlying topological manifold W 1s

homeomorphic to RLl # k(S2 X Sz). Since the tangent bundle of the

latter is trivial, we can assume T : W »> B'I‘opu is the constant map

to the base point, and the standard smoothing 8 gives a constant

1ift Tg to the base point of,BOu. Then Wu defines a 1ift

t_ ¢ W+ Top,/0, < BO, of t. Since the inclusion of s3x0cs3xRew
is homotopically trivial, TalS3 is homotopic to TBIS3.

We wish to show that a = 0; but we cannot conclude this directly

from the above. That is, if h + W » Ru # k(S2 X 82) is the

homeomorphism and i : S3 x R > W is the inclusion, then we do not know

that hi is the standard inclusion of the end in Ru # k(S2 X 82)

and hence we do not know that the pull back by hi of B is the standard
3

smoothing of S° X R. On the other hand, T 1is homotopic to T'|W,

where 1' is a classifying map for W, the one point compactification of

W. W is homeomorphic to Su # k(S2 X SZ) and we take 1' to be the
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constant map to the base point on a neighborhood of the point at «.

t
By the covering homotopy property To and TB are homotopic to 1lifts T,

1 1 1
and T, of tT'|W, where Tg extends to a 1lift of t' with Tg constant on

B
a neighborhood of «. But since the compactification of one end of
1] ! !
S3 x R is RLl (with s3 xR = Ru - 0) and since T, ~ Tg on S3, TGIS3 x R

extends to a 1lift of T'lRu. But T'IR“ has only one homotopy class

E 14
of 1lifts which is standard over a base point. Thus Ta|S3 is standard

and o = 0.

Main Theorem II: Jy : ﬂg(Topu/Ou)-+ ﬂ3(Top/O) is an isomorphism.

Proof: The above argument shows the stabilization homomorphism

J¢ 1s a monomorphism. On the other hand, Freedman [F] has exhibited

an almost smoothed almost parallelizable closed l-connected manifold
of index 8. It follows that the smoothing of the end of this manifold

represents a stably non-trivial element of ﬂ3(TOpu/OM)' Hence j, 1is

an isomorphism.

Remark: The base point is irrelevant in the main theorems since

TOpM/OM is homogeneous.
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