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A-SPLITTING 4-MANIFOLDS
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GIvEN a homotopy (or homology) equivalence, f: N = X, from a manifold to a Poincaré space,
and some “decomposition” of X, we may ask if f is homotopic to a map, g, which restricts to an
equivalence over each “piece” of the *“decomposition”. Finding g is called splitting f. Splitting
has been a fruitful technique in classifying manifolds of dimension at least five. Here we carry
though a version of 4-dimensional spitting and give applications to 4-dimensional classification
problems.

Let (X, Y)) and (X3, Y,) be Poincaré pairs of formal dimension=4, and with product
neighborhoods Y; x [0, 1] of Yi. Let X; and X be connected. Let Yo be a component of Y; for

i =1 and 2 with 7(Yo)— m(X:) an isomorphism. Let X = X, y X,. Let f: (N, 9)—>(X,d) be a

A = Z[m(X)l—equivalence of pairs, i.e. inducing isomorphisms on homology with A-coefficients
(3 may be empty), where (N, 9) is a smooth manifold.

TueoreM 1. The map f is homotopic (rel 8N) to a map g with g|lg™'(X:) and g|g™'(Yo)
A-equivalences, i =1 and 2.

Proof. Our proof is based on Browder’s High-Dimensional Splitting Argument[1]. An
elementary argument using (X, Yo) = 0 enables us to homotop f (we continue to call the map f)
so that f'(X;) and f7'(Y,) are connected.

Let N, = f(X)), M = f'(Yo). Choose handle decompositions #(N:, M) for N; relative to M.
We may assume ¥(N,, M) contains no 0-handles. By a standard homotopy (see [13]) we may
trade first the 1-handles of #(N:, M), then the 1-handles of #(N., M). This again uses
m(X,, Yo)=0. This results in a new f, N;, and M where N: admits a handle decomposition
% (N, M) without 1-handles. Now consider:

() —> m(Ni, M) —> m(X, Yo)
h

0— Kx(Ni, M; A)— HN;, M; A) —> HaoAX,, Yo; A)— 0

The right-hand vertical is an isomorphism by the Hurewicz theorem and the centre vertical an
epimorphism since (M, N) = 0. Hence it follows easily that h is an epimorphism.

Let {o;} C ms(f) satisfy h{e;} generates KNy, M; A). {3} is easily seen to be represented by
relatively imbedded 2-disks. (This because the cores of the 2-handles of #(N,, M) generate
(N1, M) as 7r,(M)-module. In fact #(N,, M) may be modified by handle passing so that {da:} is
represented by cores of 2-handles).

According to Wall[5, p. 13], there is a unique regular homotopy class of relative immersions
for which handle subtraction yields normal bordism. The following lemma shows that we not
need to worry about the relative regular homotopy class of our disks.

LemMA. Let (D", a)—’—» (k*", 8) be a relative map of the n-disk into a smooth 2n-manifold,
n > 1. Then there is exactly one relative regular homotopy class of relative immersions homotopic
to f.

Proof. According to the Smale-Hirsch classification of immersions, the relative regular
homotonv classes of relative immersions homotopic to f are in 1-1 correspondence with the
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homotopy classes of bundle maps:

injection

’T(S"_l) (D2n—l Xsn—l)___) Sn—l

|

injection

(D")—————— (D" xD")—> D"
and hence with the element of the homotopy group

S0(2n) S0Q@2n -1\ _ _
m'( SO(n)’ SO(n) ) ~ m,(SO(2n), SO(2n - 1))

~m(§7 ) =0 O

Again by a standard homotopy, we may alter f to subtract a tubular neighborhood, U, of the
imbedded 2-disks representing {de;} from N, and add U to N.. A calculation shows that
K#(N,M;A=0, * 3. Kx(N;Ny; A) =K % — 1(Ny; A) =k’ *(N,, M; A) =0, % % 3. It follows
that K»(N, M; A) is the only non-zero kernel. By Theorem 2.3[5] K:(N>, M ; A) is stably free.
Note that N still has a handle decomposition rel M without 1-handles. Introduce some trivial
(1-handle, 2-handle) pairs in #(N>, M) and trade the 1-handles over to #(N,, M). This makes
Ky(N>, M; A) free. By the method above, represent a basis by imbedded disks and trade a tubular
neighborhood by homotoping f to a map g. A calculation[5, Chap. 4] shows that g: (N>, M)
(X3, Y) is a A-equivalence of pairs. Since g induces a map between the Mayer—Vietoris
sequences of

7NN
(M\ N7 N)

and

77X\ )
(Y\.Xz/X ;

inspection shows that g: N, - X, is also a A-equivalence.
O

Note. Versions of Theorem 1 for simple-equivalences and for extending A-splittings on a
boundary may be proved.

Putting our A-splitting theorem together with the “‘stable” surgery theorem of Cappell and
Shaneson|[2], we obtain a homology-surgery theorem for simply connected 4-manifolds minus a
disk. Let R(Z*) denote the Rochlin invariant of a homology 3-Sphere 3°.

THEOREM 2. Let f: K*—>Z be a degree 1 normal map from a simply connected smooth
4-manifold to a Poincaré space (assume f|3K is an integral homology equivalence if IK# ¢).
Then f|: K*— D*— Z — D* (f restricted to the complement of an open 4-disk) is normally bordant
(rel 3K) to an integral homology equivalence, g: P*— Z — D* with 9P* = aK* U 3*, where 3 is
an integral homology 3-sphere satisfying:

(1) RE* =[0(Z)- o(K)]/8 (mod 2) and

(2) m(P) is in the normal closure of inc, m(37).

Proof. Consider: K'=K-D*U QM)Z —D*, where D* is the interior of an

SS
imbedded 4-disk, Q is a framed bordism of S°> to a homology 3-sphere o® with
d(Q)=a(Z)- o(K) (Q may be taken to be a plumbing construction on @ * Eq), and k is the
canonical map Q — 5§ Then jloK’ is an integral homology equivalence. The surgery
obstruction, €(j)=0€T*Z[0]— Z[0]) =L«(0)=Z It follows from [2] that for some n,
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g =]j # id satisfy the conclusion of Theorem 1. Let (N, M) =g~ '(X,, Y). Since M also bounds
N:=g7'(Xz), R(M)=0. Set P = N—(an open tubular neighborhood of an imbedded arc
connecting M and *). The normal bordism from K — D* to P may be constructed as the union of
three normal bordisms: K — D*to K' — D*, K'— D* to N, (make H transverse to (X;, Y) x I), and
Nito P.Thens’ =M # ’and R(Z’) = R(M) + R(0”) = R(M) = [(0(Z) — o(K))/8] (mod 2). Now

X is simply connected and g: N = X so by Van Kampen’s Theorem. 0 = 7,(P) s m(N —-P).

Therefore the normal closure of m(2°) in each side is the entire group.
O

We now give some applications to the homology-classification of 4-manifolds.

CoroLLARY 1A. The kernel of Rochlin’s homomorphism, R: 8;" - Z, (8;" = homology—h—
cobordism classes of homology 3-spheres) is generated by homology 3-spheres 3* = dM*, where
M* is spin and integral-homology-equivalent to S*v S* (and is a handle body on oM =3?
consisting of 2, 3, and 4-handles only).

CoroLLARY 1B. 85" isgenerated by homology 3-spheres 3° = dM*, where M* is integral-homology-
equivalent to S* (and is a handle body on 8M =3’ consisting of 2, 3, and 4-handles only).

Proofof 1A. LetR(2%) = 0.Itiswellknownthat3® = 9M*,where M *is framedand o(M) = 0. By
[2], there is an integer n such that the surgery problem M # n(S>x $*) - D* # n(5*x $?) can be
solved rel aM. Let the solution of f: N*— D* # n(S*x %) (3N = M = 2’). By Theorem 1, the
copies of $” X S* may be split off inductively. The result is a bordism (homology equivalent to an
(n + 1)-punctured S*) from @ to n homology 3-spheres (these will be taken as generators) each of
which bounds a homology S*>X §*—D*=8? v §° The lemma follows.

Proof of 1B. The argument is similar to the one above. We generate Ker(R) by first doing
“stable” surgery using = CP” in place of S* x S?, and then split. It then suffices to find a homology
3-sphere 3’ with R(2’) = 1 and 3* = 9M*, M = §? It is well known that the Poincaré-homology-
sphere, P, (R(P)= 1) is the boundary of the handle body consisting of the 4-ball with a 2-handle
attached with framing +1 to the right-handed trefoil knot in 4 (4-ball). 1B follows.

We obtain some equivalences of certain optimistic conjectures.

CONJECTURE “dx”°. Every homology 3-sphere with Rochlin invariant zero bounds a contractible
smooth manifold.

CoNJECTURE “‘dn ™. Everyhomology 3-sphere with Rochlin invariant zero bounds an acyclic
smooth manifold.

CoNIECTURE “S,.”. If f: (M*, 8)> (X, 8) is a degree one normal map from a simply connected
smooth manifold to a Poincaré space inducing a homology isomorphism on  and if o(M) = o(X)
then f is normally bordant (rel 3) to a homotopy equivalence.

COoNIECTURE “S,,”. With the preceding hypothesis conclude: f is normally bordant (rel 3) to an
integral homology equivalence.
COROLLARY 2. “9,"©"S,” and “0u” © “Su”.

Proof. The implications: “S,” = “3,” and “Sx” = “dx " are well known. Assume “3x”. By
Theorem 2, normally bord f|M — D*to a homology equivalence g: N - X — D*. Then f is normally

bordant to a homology equivalence g U ¢: N U A— X implying “Su” (c: (4, 2= (D?, 9) is the
23

collapsing map of an acyclic manifold). If ““3,” is assumed we may find an A so that (N U 4) =0
23

(by Theorem 2), yielding “S,”.
O

If M is an oriented 4-manifold let M be its integral intersection form.
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where (Ao,31) (Ao—D* S, (An2.)—>(A.—D%S"), and (A, 8)-(Ai—2D*, S*1IS®) are
homology equivalences.

Proof. By [4], M = ; A.. Now apply Theorem 1 inductively.
i=0
Example. Tf h o is 0dd and indefinite, =@ M oces
i=0

By the techniques of Theorem 1 and thelemmaa versionof the ( — ar)-surgery theorem [5,Chap.
4] follows (easily):

TueoreM 3. Supposef: (N, 3)—> (X, Y) is a degree 1 normal map from a smooth manifold to a
Poincaré pair (over A= Z[m(X)] coefficients) of formal dimension = 4. If m(Y)> m(X) is an
isomorphism, then f is normally cobordant to a r-homology equivalence of pairs.
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