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SURGERY GROUPS AND INNER AUTOMORPHISMS

Lawrence R, Taylor

The object of this paper is to investigate the map induced on
Surgery groups by an inner automorphism of the group. To describe our
results, let w:G-'-"Z2 be a homomorphism. Ln(G,w) 1s the nth Wall
grocup. This notation is ambiguous as there are Wall groups Li for
simple homotopy equivalence, Lg for homotopy equivalence, and there
are other possibilities (see section 1 for a thorough discussion). Ln
denotes any of these groups.

Aut (G,w) denotes the group of automorphisms of @ which preserve
w. There is a homomorphism G—> Aut (G,w) which takes an element in G
to its inner automorphism. Wall groups are functors, so therpe is a
homomorphism Aut(G,m)-——rAut(Ln(G,w)). Finally there is a standard
homomorphism from 22 to the automorphism group of any abelian group.
If the group is written additively, -1 € 22 Just goes to multiplication
by -1.

Theorem 1: G—>rAut(G,w) commutes,

Jw
22——rAut(Ln(G,w))
Corollary 1.1: If G-—E—fz2 is trivial, then any inner automorphism in-
duces the identity on Ln(G,w).
Corollary 1.2: 1If (Center G)——2—+E% 1s onto, then Ln(G,w) is a
Za—vector space, and any inner automorphism induces the identity.
Here are examples of non-trivial actions on Ln(G,w). Let

Q:Z~—pAut(Z) 22 be onto, and let K be the seml-direct product of 7
and Z by a. There is g homomorphism w:K = 7 XQ Z--——i-Z-——-rZ2 which 1is
onto. By Wall [5], page 171, L, (K,w) T 2 ang Ly(K,w) Tz 8 Z,. Any

element k € K such that wlk) = -1 gives an inner automorphism of K
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which does not induce the identity on L, and L2. K X Z X Z with the

obvicus w has inner automorphisms whiech are the identity on neither Ll’
L2, L3, nor LM'

Cappell and Shaneson [1] have defined surgery groups I‘n('}'),
where F :2[G]l—PA' is an epimorphism of rings with involution. Any
g € G induces an automorphism of '}' by acting on Z[G] via conjugation
by g and on A' via conjugation by the image of g in A'. This gives a
homomorphism G——sAut(F). The I‘n are functors, so there is a homomor-
phism Aut(?)——'ﬂut(l‘n(?)). As with Wzll groups, I denotes any of
the possible torsions or projective classes which can be used to manu-
facture Cappell-Shaneson groups.

Theorem 2: G—2 AUt (F) commutes.

w

pA -—DAut(I‘n('}') )

2

There are also relative Wall and T groups assoclated to any
groupold of finite type. If Y 1s the groupcid, there is given a

homomorphism of groupoids w:& —= 7 Aut (& ,w) will denote the auto-

5
morphism group of the groupoid whose elements preserve w. Each element

of 11 G gives a collection of automorphisms, fG’ where fG is Jjust the
Gesy
inner automorphism on G given by the component of G in the product.

() c I G is the subgroup such that {f‘G} e Aut(&). (4 }w is the

Gel
subgroup such that w(gG ) = u.l(gG ) where Gi’ Gj e are arbitrary and
5 )

8n is the component of G in the %roduct.
Conjecture: (M )u-)—————vAut(b,w) commutes.
lw
zem——vAut(Ln(,&,w))
There 1s a similar conjecture for T groups.
Almost all that I can prove is
Theorem 3: The conjecture is true for the Wall groups L;k, Lgk’

and L};}ﬁl if,& is a pair. I know nothing about relative T groups.

Remarks: The obvious versions of Corollaries 1.1 and 1.2 are



valid for Theorems 2 and 3, and all are proved by simple diagram chas-
ing.

Notice that the groups are not assumed to be finitely generated
or finlitely presented.

Section 1: Preliminaries.

Wall and I’ groups can actually be defined for any rings with in-
volution, not just integral group rings. Even Wall and I' groups are
obtained by a Grothendieck construction from modules with quadratic
form plus additional structure. If A is a ring with involution, and,
if A EO(A) is a subgroup invariant under the induced invclution, then
we can define Wall groups Lgk(A:“) by insisting that our module be a

~

projective module whose image in KO is contained in A. If B cC El(ﬁ) 1s
invariant under the induced involution, and, 1f we insist that our
modules be free and based, then we can define Wall groups Lgk(ﬂ,—J by
insisting that the torsion of the adjoint map lie in B.

Even I' groups can also be defined. Given F:A—+A' a local
epimorphism (see [1]) we have quadratic modules over A with nice prop-
erties when tensored over A'. If A C Eo(h‘) and B C El(hl) are in-
variant subgroups, we can define ng(?’) and I‘]Sk(?) by insisting in
the first case that our modules when tensored are projective with class
in A and in the second case that our modules are free and based over A
and the adjoint map when tensored cover A' has torsion in B (this uses
lemma 1.2 of [11]).

Hopefully the above motivates consldering Qk(n,—), the category
whose objects are § € [P, A, H] where P 1s a right A-module;

A:P X P—pA is a map; u:P———tA/{x+(-l)ki} is a map; and the five rela-
tions of Wall [5] page 45 are satisfied (with QCN(X) = 0). Morphisms
are just A-module homomorphisms which preserve this extra structure.
QE(A,—) is a similar category: the only difference is that now we re-

quire P to be free and based. The first two paragraphs of this section

just say that Wall and I groups, with any torsions,ete. are constructed



naturally from various subcategories of Qk and QE. We remark that any
map of rings with involution induces a functor on Qk and on QE.

0dd Wall and I' groups are more tricky. L§k+l can be defined as
a quotient of U(A;B), where U(A;B) < U(A) is the subgroup of the in-
finite unitary group over A whose elements are those matrices in U(A)
with torsions in B. L2k+1 can be defined directly (Novikov [4]) or by
a theorem of Farrell-Wagoner which equates L2k+1 to sz of some other
ring. We will use this latter method.

TB can be defined as those elements of LB (A') which come

2k+1 2k+1
from elements in U{(A) with a special property. One might define
A _ A .
Togig -{ X € Lo, (A )|2x is in the image of
K (an) Ky (A") A j
1 1
Lo (7)—’L2k+l (A')—L, (A')} . I know of no use for groups

like FA, s0 the definition is not very important.

As is usual with surgery groups, the proof divides intc an even
and an odd case,.
Section 2: The Even Case.

Let A be a ring with involution -, and suppose u is a unit of A
such that uu = + 1. It follows that Uu = ul. There is an isomorphism

of rings with inveolution ru:A———*A given by ru(x) = u_lxu. Any such

t
k

On the category Qk(or Q;) there is a functor ¢ such that

map induces functors u*:Qk(A,—)—"—'Qk(ﬂ,—) and ug:Q (A,—)-——’QE(A,—)-
e([P, A, w]) = [P, -A, -p]. Note ¢ o c¢ is the identity.
Theorem: Let £ € QK(A,—). Then uy,(§) is naturally isomorphic

to E £ uE =1 If € ¢ QE(A,—) then the torsion of the equiva-
e(E) 1if uu -1

lence is in {uj , Where {u} is the subgroup of Kl(h) generated by the

n

unit u.

proof: Under uy, the module P goes to Pﬂih = PY. where A is
made into a A-module using ru. Let i:P—+PY pe the natural map. Then
i is r -linear, that is, x X a = i(i-l(x)'uau—l) where X is the product

in PY and * is the product in P. Ugh(x,y) = ru(l(i_l(x),i_l(y))) and
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ugH{x) = rﬁu(i_l(x)) where PE is the map induced on A/{x+(—l)k§} by
Py If P is based, use 1 to base Pu.
Consider g% = [PY, lu’ H,] where Xu(x,y) =u l(i_l(x),i-l(y))u

and uu(x) =u H(i_l(x)u. Clearly

g! ={u*(§) i uE =1 neniee £ q, or Qi'
cluy(€)) if uu = -1
Define j:P—sPY by j(x) = i(x) X e = i(x'u_l). j is a

A-module iscomorphism and one easily checks

P X P X and P U
jx\h J\ A/[X+(—1)k§}
J
P X P“/q' Pu/uu'

commute. Hence, in Qk(A,—) , & and g“ are isomorphic.
If € e QE(A,—) then the torsion of the isomeorphism clearly lies
in {u} .

Since ¢ o ¢ = id, uu(g) = {

g if uu 1
¢(E) if uu = -1

means isomorphic. It is easy to check that j gilves a natural isomor-

, where here egual

phism. @.E.D.
The theorem plus the discussion in sectlon 1 almost proves
Theorems 1 and 2. We need only further note that, i1f € goes to an

element of L (or T then c¢(€) goes to the inverse element.

2k 2k)’
For Theorem 3, we have the following situation. We have rings

with involution A and Al,...,hn; maps hizﬂi-——+A of rings with involu-
tion; and units u € A, u; € A, such that ui = uiﬁi = + 1 and each
h.
Ai———l—’A commutes.
r T
1
191
Ai———é—vA

Wall's description ([5] page 72) of the groups Lgk(A;Al,...,An)
(dropping mention of torsions gilves Lgk) and our theorem easily show
id 4if ul = 1
-1

on these relative Wall groups.

i induces _
-1d if uu
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Section 3: The 0dd Case
Again A is a ring with involution - and u 1s a unlt such that

uu = + 1. r, induces a map on U(A) which covers the map induced on

Wall groups. U(A) is the limit of the finite unitary groups U2n(A).

r, induces maps u*:UZn(A)___'UEn(A) which takes the matrix (aij) to

(u_la u). Let c (u) be the diagonal matrix fu™" 0

ij 0

o

2n X 2n
with u”Ll in the first n positions and G in the last n. Given
1 il —
M e Ugn(A), M' denotes the matrix with basis e,, fi changed to e, fi
(see Wall [5] page 62).
Theorem: cn(u) € Ugn(h) and if M € Ugn(ﬁ),

- . -l
cn(u) M cn(u) 1

Uy, (M) = if uu

Cn(l‘l).M‘-cn(u)d1 if uu = -1

proof: That cn(u) € UEH(A) is just a formal check. Our equa-
tion for uy(M) is obvicus. RQ.E.D.

Since Wall groups are abelian, and since M! is the inverse in
the Wall group, we have proved Theorem 1 for{u]g Be EI(A).

Now Farrell-Wagoner [3] showed Lgk—l(A’_) and Lék(lh,—} are
naturally isomorphic. AA = Anm A,where 27 is the ring of locally-
finite matrices over A and MA is the ideal in A of matrices with
only finitely many non-zero entries. Note A C KG(A) = El(kﬂ) by
Farrell-Wagoner [2].

r

; A u A
—_—t
Naturality shows LZK-I(A) Lop_1

A v A
sz(kA)———lJ—-'Lgk(M\)

(A) commutes,

where M is the infinite diagonal matrix with all u's. Our result for

the even case now carries over to thls case.
The groups ng_l are subgroups of odd Wall groups so we are

done in this case also.
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For Lgk_l(A;Al,...,An) we use a relative versilon of the above
Farrell-Wagoner thecrem to place ourselves in the case
sz(u;ml,...,mn), which we know.

The reader may wonder why we do not just use the well known
Shaneson-Wall splitting theorem instead of this strange theorem of
Farrell-Wagoner. The point 1s that the Shaneson-Wall formula is known
only for finitely generated, finitely presented integral group rings
and rings with 1/2, whereas the Farrell-Wagoner formula 1is valid for
an arbitrary ring with invelution. Non-finitely generated groups play

a role in surgery on paracompact manifolds, so we wish to avold any

finiteness assumptions on G.

1. 8. Cappell and J. Shaneson, The codimension two placement problem

and homology equivalent manifolds, preprint, 1972.

5. T, Farrell and J. Wagoner, Infinite matrices in algebraic K-theory

and topology, preprint, U.C. Berkeley, 1971.
3. T. Farrell and J. Wagoner, private communication.

L. 8. Novikov, Algebralc construction and properties of Hermitian

analogs of K-theory over rings with involution from the viewpoint

of Hamiltonian formalism. Applications to differential topology

and the theory of characteristic classes. I., IZV. Akad. Nauk

SSSR Ser. Mat. 34(1970) = Math. USSR Izv. 4(1970), 257-2%92.

5. C.T.C. Wall, Surgery on compact manifolds, Academic Press, 1971.

477



