"Algebraic \$K\$-theory III", Lecture Notes in Math. 343, Springer-Verlag, Berlin (1973) pp.471-477. MR# 0405460 (53#9253)

SURGERY GROUPS AND INNER AUTOMORPHISMS

Lawrence R. Taylor

The object of this paper is to investigate the map induced on surgery groups by an inner automorphism of the group. To describe our results, let $w:G \longrightarrow \mathbb{Z}_2$ be a homomorphism. $L_n(G,w)$ is the n^{th} Wall group. This notation is ambiguous as there are Wall groups L_n^s for simple homotopy equivalence, L_n^h for homotopy equivalence, and there are other possibilities (see section 1 for a thorough discussion). L_n denotes any of these groups.

Aut(G, ω) denotes the group of automorphisms of G which preserve ω . There is a homomorphism $G \longrightarrow \operatorname{Aut}(G,\omega)$ which takes an element in G to its inner automorphism. Wall groups are functors, so there is a homomorphism $\operatorname{Aut}(G,\omega) \longrightarrow \operatorname{Aut}(L_n(G,\omega))$. Finally there is a standard homomorphism from \mathbb{Z}_2 to the automorphism group of any abelian group. If the group is written additively, $-1 \in \mathbb{Z}_2$ just goes to multiplication by -1.

Theorem 1:
$$G \longrightarrow Aut(G, w)$$
 commutes.
$$\downarrow w \qquad \downarrow Z_2 \longrightarrow Aut(L_n(G, w))$$

Corollary 1.1: If $G \xrightarrow{\psi} Z_2$ is trivial, then any inner automorphism induces the identity on $L_n(G, \psi)$.

Corollary 1.2: If (Center G) \xrightarrow{w} Z_2 is onto, then $L_n(G,w)$ is a Z_2 -vector space, and any inner automorphism induces the identity.

Here are examples of non-trivial actions on $L_n(G, \omega)$. Let $\alpha: \mathbb{Z} \longrightarrow \operatorname{Aut}(\mathbb{Z}) \cong \mathbb{Z}_2$ be onto, and let K be the semi-direct product of \mathbb{Z} and \mathbb{Z} by α . There is a homomorphism $\omega: \mathbb{K} = \mathbb{Z} \times_{\alpha} \mathbb{Z} \longrightarrow \mathbb{Z} \longrightarrow \mathbb{Z}_2$ which is onto. By Wall [5], page 171, $L_1(\mathbb{K}, \omega) \cong \mathbb{Z}$ and $L_2(\mathbb{K}, \omega) \cong \mathbb{Z} \oplus \mathbb{Z}_2$. Any element $\mathbb{K} \in \mathbb{K}$ such that $\omega(\mathbb{K}) = -1$ gives an inner automorphism of \mathbb{K}

which does not induce the identity on L_1 and L_2 . K × Z × Z with the obvious w has inner automorphisms which are the identity on neither L_1 , L_2 , L_3 , nor L_4 .

Cappell and Shaneson [1] have defined surgery groups $\Gamma_n(\mathfrak{F})$, where $\mathfrak{F}:\mathbb{Z}[\mathbb{G}]\longrightarrow \Lambda'$ is an epimorphism of rings with involution. Any $g\in \mathbb{G}$ induces an automorphism of \mathfrak{F} by acting on $\mathbb{Z}[\mathbb{G}]$ via conjugation by g and on Λ' via conjugation by the image of g in Λ' . This gives a homomorphism $G\longrightarrow \operatorname{Aut}(\mathfrak{F})$. The Γ_n are functors, so there is a homomorphism $\operatorname{Aut}(\mathfrak{F})\longrightarrow \operatorname{Aut}(\Gamma_n(\mathfrak{F}))$. As with Wall groups, Γ_n denotes any of the possible torsions or projective classes which can be used to manufacture Cappell-Shaneson groups.

Theorem 2:
$$G \longrightarrow Aut(\mathcal{F})$$
 commutes.
$$\bigcup_{\omega} \bigcup_{Z_2 \longrightarrow Aut(\Gamma_n(\mathcal{F}))}$$

There are also relative Wall and Γ groups associated to any groupoid of finite type. If $\mathcal B$ is the groupoid, there is given a homomorphism of groupoids $w: \mathcal B \longrightarrow \mathbb Z_2$. Aut $(\mathcal B, w)$ will denote the automorphism group of the groupoid whose elements preserve w. Each element of Π G gives a collection of automorphisms, f_G , where f_G is just the general automorphism on G given by the component of G in the product. $(\mathcal B) \subseteq \prod_{G \in \mathcal B} G$ is the subgroup such that $\{f_G\} \in \operatorname{Aut}(\mathcal B)$. $(\mathcal B)_w$ is the subgroup such that $w(g_G) = w(g_G)$ where $G_G \in \mathcal B$ are arbitrary and g_G is the component of G in the product.

Conjecture:
$$(\mathcal{B})_{\overline{w}} \longrightarrow \operatorname{Aut}(\mathcal{B}, w)$$
 commutes.
$$\downarrow^{w} \downarrow^{\mathbb{Z}_{2}} \longrightarrow \operatorname{Aut}(\mathbb{L}_{n}(\mathcal{B}, w))$$

There is a similar conjecture for Γ groups.

Almost all that I can prove is

Theorem 3: The conjecture is true for the Wall groups L_{2k}^s , L_{2k}^h and L_{2k+1}^h if $\red{\mathcal{B}}$ is a pair. I know nothing about relative Γ groups.

Remarks: The obvious versions of Corollaries 1.1 and 1.2 are

valid for Theorems 2 and 3, and all are proved by simple diagram chasing.

Notice that the groups are not assumed to be finitely generated or finitely presented.

Section 1: Preliminaries.

Wall and Γ groups can actually be defined for any rings with involution, not just integral group rings. Even Wall and Γ groups are obtained by a Grothendieck construction from modules with quadratic form plus additional structure. If Λ is a ring with involution, and, if $\Lambda \subset K_0(\Lambda)$ is a subgroup invariant under the induced involution, then we can define Wall groups $L_{2k}^A(\Lambda,-)$ by insisting that our module be a projective module whose image in K_0 is contained in Λ . If Γ is invariant under the induced involution, and, if we insist that our modules be free and based, then we can define Wall groups $L_{2k}^B(\Lambda,-)$ by insisting that the torsion of the adjoint map lie in Γ

Even Γ groups can also be defined. Given $\mathbf{F}:\Lambda\longrightarrow\Lambda'$ a local epimorphism (see [1]) we have quadratic modules over Λ with nice properties when tensored over Λ' . If $\Lambda\subset K_0(\Lambda')$ and $\Pi\subset K_1(\Lambda')$ are invariant subgroups, we can define $\Gamma_{2k}^A(\mathbf{F})$ and $\Gamma_{2k}^B(\mathbf{F})$ by insisting in the first case that our modules when tensored are projective with class in Λ and in the second case that our modules are free and based over Λ and the adjoint map when tensored over Λ' has torsion in Π (this uses lemma 1.2 of [1]).

Hopefully the above motivates considering $\mathbb{Q}_k(\Lambda,-)$, the category whose objects are $\xi \in [P, \lambda, \mu]$ where P is a right Λ -module; $\lambda:P \times P \longrightarrow \Lambda$ is a map; $\mu:P \longrightarrow \Lambda/\{x+(-1)^k \overline{x}\}$ is a map; and the five relations of Wall [5] page 45 are satisfied (with $\mathbf{X}_N(\mathbf{x}) = 0$). Morphisms are just Λ -module homomorphisms which preserve this extra structure. $\mathbb{Q}_k^t(\Lambda,-)$ is a similar category: the only difference is that now we require P to be free and based. The first two paragraphs of this section just say that Wall and Γ groups, with any torsions, etc. are constructed

naturally from various subcategories of \mathbf{Q}_k and \mathbf{Q}_k^t . We remark that any map of rings with involution induces a functor on \mathbf{Q}_k and on \mathbf{Q}_k^t .

Odd Wall and Γ groups are more tricky. L_{2k+1}^B can be defined as a quotient of $U(\Lambda;B)$, where $U(\Lambda;B)\subseteq U(\Lambda)$ is the subgroup of the infinite unitary group over Λ whose elements are those matrices in $U(\Lambda)$ with torsions in B. L_{2k+1}^A can be defined directly (Novikov [4]) or by a theorem of Farrell-Wagoner which equates L_{2k+1} to L_{2k} of some other ring. We will use this latter method.

 $\Gamma^B_{2k+1} \text{ can be defined as those elements of } L^B_{2k+1}(\Lambda^*) \text{ which come}$ from elements in $U(\Lambda)$ with a special property. One might define $\Gamma^A_{2k+1} = \left\{ \text{ x } \in L^A_{2k+1}(\Lambda^*) \, \middle| \, 2x \text{ is in the image of } \right\}$

 $\Gamma_{2k+1}^{\widetilde{K}_1(\Lambda')}(\boldsymbol{\mathcal{F}}) \longrightarrow L_{2k+1}^{K_1(\Lambda')}(\Lambda') \longrightarrow L_{2k+1}^{A}(\Lambda') \} \ . \ \text{I know of no use for groups}$ like Γ^A , so the definition is not very important.

As is usual with surgery groups, the proof divides into an even and an odd case.

Section 2: The Even Case.

Let Λ be a ring with involution -, and suppose u is a unit of Λ such that $u\bar{u}=\pm 1$. It follows that $\bar{u}u=u\bar{u}$. There is an isomorphism of rings with involution $r_u:\Lambda\longrightarrow\Lambda$ given by $r_u(x)=u^{-1}xu$. Any such map induces functors $u_*:\mathbb{Q}_k(\Lambda,-)\longrightarrow\mathbb{Q}_k(\Lambda,-)$ and $u_*:\mathbb{Q}_k^t(\Lambda,-)\longrightarrow\mathbb{Q}_k^t(\Lambda,-)$.

On the category Q_k (or Q_k^t) there is a functor c such that $c([P, \lambda, \mu]) = [P, -\lambda, -\mu]$. Note c \circ c is the identity.

Theorem: Let $\xi \in Q_k(\Lambda,-)$. Then $u_*(\xi)$ is naturally isomorphic to $\begin{cases} \xi & \text{if } u\bar{u} = 1 \\ c(\xi) & \text{if } u\bar{u} = -1 \end{cases}$. If $\xi \in Q_k^t(\Lambda,-)$ then the torsion of the equivalence is in $\{u\}$, where $\{u\}$ is the subgroup of $K_1(\Lambda)$ generated by the unit u.

proof: Under u_* , the module P goes to $P A^{\Lambda} = P^U$, where Λ is made into a Λ -module using r_u . Let $i:P P^U$ be the natural map. Then i is r_u -linear, that is, $x \times a = i(i^{-1}(x) \cdot uau^{-1})$ where X is the product in P^U and \cdot is the product in P. $u_*\lambda(x,y) = r_u(\lambda(i^{-1}(x),i^{-1}(y)))$ and

 $u_*\mu(x) = r_u^k\mu(i^{-1}(x))$ where r_u^k is the map induced on $\Lambda/\{x+(-1)^k\bar{x}\}$ by r_u . If P is based, use i to base P^u .

Consider $\xi^u = [P^u, \lambda_u, \mu_u]$ where $\lambda_u(x,y) = \bar{u} \lambda(i^{-1}(x), i^{-1}(y))u$ and $\mu_u(x) = \bar{u} \mu(i^{-1}(x)u$. Clearly

$$\boldsymbol{\xi}^{u} = \begin{cases} u_{*}(\boldsymbol{\xi}) & \text{if } u \overline{u} = 1 \\ c(u_{*}(\boldsymbol{\xi})) & \text{if } u \overline{u} = -1 \end{cases}. \quad \text{Hence } \boldsymbol{\xi}^{u} \in \boldsymbol{Q}_{k} \text{ or } \boldsymbol{Q}_{k}^{t}.$$

Define $j:P \longrightarrow P^{U}$ by $j(x) = i(x) \times u^{-1} = i(x \cdot u^{-1})$. j is a Λ -module isomorphism and one easily checks

$$P \times P \longrightarrow A$$
 and
$$P \longrightarrow A / \{x + (-1)^k \overline{x} \}$$

$$P \longrightarrow A / \{x + (-1)^k \overline{x} \}$$

commute. Hence, in $\textbf{Q}_{\textbf{k}}(\Lambda,-)$, § and § $^{\textbf{U}}$ are isomorphic.

If $\xi \in \mathbb{Q}_k^t(\Lambda, -)$ then the torsion of the isomorphism clearly lies in $\{u\}$.

Since $c \circ c = id$, $u_*(\xi) = \begin{cases} \xi & \text{if } u\overline{u} = 1 \\ c(\xi) & \text{if } u\overline{u} = -1 \end{cases}$, where here equal means isomorphic. It is easy to check that j gives a natural isomorphism. Q.E.D.

The theorem plus the discussion in section 1 almost proves $\label{eq:theorems} \mbox{ Theorems 1 and 2.} \mbox{ We need only further note that, if ξ goes to an element of L_{2k} (or Γ_{2k}), then $c(\xi)$ goes to the inverse element.$

For Theorem 3, we have the following situation. We have rings with involution Λ and $\Lambda_1, \ldots, \Lambda_n$; maps $h_i : \Lambda_i \longrightarrow \Lambda$ of rings with involution; and units $u \in \Lambda$, $u_i \in \Lambda_i$ such that $u\bar{u} = u_i\bar{u}_i = \frac{1}{2}$ and each $\Lambda_i \longrightarrow \Lambda$ commutes.

Wall's description ([5] page 72) of the groups $L_{2k}^s(\Lambda;\Lambda_1,\ldots,\Lambda_n)$ (dropping mention of torsions gives L_{2k}^h) and our theorem easily show r_u induces $\begin{cases} \text{id} & \text{if } u\bar{u} = 1 \\ -\text{id} & \text{if } u\bar{u} = -1 \end{cases}$ on these relative Wall groups.

Section 3; The Odd Case

with u^{-1} in the first n positions and \bar{u} in the last n. Given M ϵ U_{2n}(Λ), M' denotes the matrix with basis e_1 , f_1 changed to e_1 , $-f_1$ (see Wall [5] page 62).

$$\begin{aligned} & \text{Theorem: } c_n(u) \in \textbf{U}_{2n}(\Lambda) \text{ and if } \textbf{M} \in \textbf{U}_{2n}(\Lambda), \\ & \textbf{u}_*(\textbf{M}) = \begin{cases} c_n(u) \cdot \textbf{M} \cdot c_n(u)^{-1} & \text{if } u\bar{\textbf{u}} = 1 \\ c_n(u) \cdot \textbf{M} \cdot c_n(u)^{-1} & \text{if } u\bar{\textbf{u}} = -1 \end{cases} .$$

proof: That $c_n(u)$ ε U $_{2n}(\Lambda)$ is just a formal check. Our equation for $u_{*}(M)$ is obvious. Q.E.D.

Since Wall groups are abelian, and since M' is the inverse in the Wall group, we have proved Theorem 1 for $\{u\}\subseteq B\subseteq K_1(\Lambda)$.

Now Farrell-Wagoner [3] showed $L_{2k-1}^A(\Lambda,-)$ and $L_{2k}^A(\lambda\Lambda,-)$ are naturally isomorphic. $\lambda\Lambda=\text{$\lambda$}\Lambda/\!\!/\!\!/\!\!/$ Λ , where $\text{$\lambda$}\Lambda$ is the ring of locally-finite matrices over Λ and $\text{$m$}\Lambda$ is the ideal in Λ of matrices with only finitely many non-zero entries. Note $\Lambda\subseteq K_0(\Lambda)=K_1(\lambda\Lambda)$ by Farrell-Wagoner [2].

Naturality shows
$$L_{2k-1}^{A}(\Lambda) \xrightarrow{r_u} L_{2k-1}^{A}(\Lambda)$$
 commutes, $L_{2k}^{A}(\lambda\Lambda) \xrightarrow{r_{\mu}} L_{2k}^{A}(\lambda\Lambda)$

where μ is the infinite diagonal matrix with all u's. Our result for the even case now carries over to this case.

The groups $\boldsymbol{\Gamma}_{2k-1}$ are subgroups of odd Wall groups so we are done in this case also.

For $L^h_{2k-1}(\Lambda;\Lambda_1,\ldots,\Lambda_n)$ we use a relative version of the above Farrell-Wagoner theorem to place ourselves in the case $L^s_{2k}(\lambda\Lambda;\lambda\Lambda_1,\ldots,\lambda\Lambda_n), \text{ which we know.}$

The reader may wonder why we do not just use the well known Shaneson-Wall splitting theorem instead of this strange theorem of Farrell-Wagoner. The point is that the Shaneson-Wall formula is known only for finitely generated, finitely presented integral group rings and rings with 1/2, whereas the Farrell-Wagoner formula is valid for an arbitrary ring with involution. Non-finitely generated groups play a role in surgery on paracompact manifolds, so we wish to avoid any finiteness assumptions on G.

- S. Cappell and J. Shaneson, <u>The codimension two placement problem</u> and homology equivalent manifolds, preprint, 1972.
- 2. T. Farrell and J. Wagoner, <u>Infinite matrices in algebraic K-theory</u> and topology, preprint, U.C. Berkeley, 1971.
- 3. T. Farrell and J. Wagoner, private communication.
- 4. S. Novikov, Algebraic construction and properties of Hermitian analogs of K-theory over rings with involution from the viewpoint of Hamiltonian formalism. Applications to differential topology and the theory of characteristic classes. I., IZV. Akad. Nauk SSSR Ser. Mat. 34(1970) = Math. USSR IZV. 4(1970), 257-292.
- 5. C.T.C. Wall, Surgery on compact manifolds, Academic Press, 1971.