M20550 Calculus III Tutorial Worksheet 7

1. Find the minimum distance from the parabola $y=x^{2}$ to the point $(0,9)$.

Solution: We want to minimize the function $d(x, y)=\sqrt{x^{2}+(y-9)^{2}}$ subject to $y=x^{2}$. Since $f(x, y)=x^{2}+(y-9)^{2} \geq 0$ and $d(x, y) \geq 0$, the minimums of d and f occur at the same points, so to make the algebra simpler, let's minimize f subject to $y=x^{2}$ instead. Let $g=x^{2}-y$. So, since $\nabla f=\langle 2 x, 2 y-18\rangle$ and $\nabla g=\langle 2 x,-1\rangle$, the system we get is

$$
\left\{\begin{aligned}
2 x & =2 \lambda x \\
2 y-18 & =-\lambda \\
y & =x^{2}
\end{aligned}\right.
$$

Equation (1) $\Longleftrightarrow 2 x-2 x \lambda=0$ has two solutions, either $x=0$ or $\lambda=1$.
If $\lambda=1$, then by (2) we have $2 y-18=-1$, so that $y=\frac{17}{2}$, and plugging this into (3) we get that $x= \pm \sqrt{\frac{17}{2}}$. So this case gives us the critical points $\left(\sqrt{\frac{17}{2}}, \frac{17}{2}\right)$ and $\left(-\sqrt{\frac{17}{2}}, \frac{17}{2}\right)$.
If $x=0$, then by (3), $y=0$, and so the critical point in this case is $(0,0)$.
Now we check for the minimums:

(x, y)	$f(x, y)$
$(0,0)$	81
$\left(\sqrt{\frac{17}{2}}, \frac{17}{2}\right)$	$\frac{35}{4}$
$\left(-\sqrt{\frac{17}{2}}, \frac{17}{2}\right)$	$\frac{35}{4}$

So, the minimum value of f is $\frac{35}{4}$, and hence the minimum value of d is $\sqrt{\frac{35}{4}}$, and this occurs at the points $\left(\sqrt{\frac{17}{2}}, \frac{17}{2}\right)$ and $\left(-\sqrt{\frac{17}{2}}, \frac{17}{2}\right)$. Said another way, the closest points to $(0,9)$ on the parabola $y=x^{2}$ are the points $\left(\sqrt{\frac{17}{2}}, \frac{17}{2}\right)$ and $\left(-\sqrt{\frac{17}{2}}, \frac{17}{2}\right)$ which are a distance of $\sqrt{\frac{35}{4}}$ away.

(Note that you could also do this problem by plugging $y=x^{2}$ into the equation for d or f and using Calculus I methods.)
2. Maximize the function $f(x, y, z)=x y z$ subject to the constraint $x^{2}+2 y^{2}+3 z^{2}=9$, assuming that x, y, and z are nonnegative. Explain why the extremum you find is a maximum.

Solution: The gradient of f is

$$
\nabla f=\langle y z, x z, x y\rangle
$$

Let $g=x^{2}+2 y^{2}+3 z^{2}$, then $\nabla g=\langle 2 x, 4 y, 6 z\rangle$. The system of equations we get by Lagrange multipliers is thus

$$
\left\{\begin{aligned}
y z & =2 \lambda x \\
x z & =4 \lambda y \\
x y & =6 \lambda z \\
x^{2}+2 y^{2}+3 z^{2} & =9
\end{aligned}\right.
$$

Solving (1) for λ gives $\lambda=\frac{y z}{2 x}$, however, to do this, we have to make sure $x \neq 0$. If $x=0$, then $f=0$, but since there are solutions (a, b, c) of $g=9$ (e.g., $(2,1,1)$) such that $f(a, b, c)>0$, any solution with $x=0$ will not be a maximum. This same reasoning shows that anything with $y=0$ or $z=0$ is not a maximum, so we can assume that $x, y, z>0$. If we plug λ into (2), we get $x z=4 \frac{y z}{2 x} y$, and as long as $z \neq 0$ (which is true since $z>0$) we can divide both sides by z and simplify to get $x^{2}=2 y^{2}$. Plugging λ into (3) we have $x y=6 \frac{y z}{2 x} z$, and as long as $y \neq 0$ (which is isn't since $y>0$) we can divide both sides by y and simplify to get $x^{2}=3 z^{2}$. Plugging all this information into (4) gives

$$
x^{2}+2 y^{2}+3 z^{2}=3 x^{2}=9 \quad \Longrightarrow \quad x^{2}=3 \quad \Longrightarrow \quad x= \pm \sqrt{3}
$$

Since $x^{2}=2 y^{2}$ we have $y= \pm \sqrt{\frac{3}{2}}$, and since $x^{2}=3 z^{2}$ we have $z= \pm 1$. Now, since we only want the extrema with x, y, and z nonnegative, we get that the only candidate for the maximum is the extreme point $\left(\sqrt{3}, \sqrt{\frac{3}{2}}, 1\right)$, and $f\left(\sqrt{3}, \sqrt{\frac{3}{2}}, 1\right)=\frac{3}{\sqrt{2}}$. To show it is a maximum (we know it is either a maximum or a minimum) we check to see if there is a point on $x^{2}+2 y^{2}+3 z^{2}=9$ which makes f smaller than $\frac{3}{\sqrt{2}}$ (meaning it can't be a minimum). The point $(2,1,1)$ lies on $x^{2}+2 y^{2}+3 z^{2}=9$ and $f(2,1,1)=2$ which is smaller than $\frac{3}{\sqrt{2}}$ since $\sqrt{2}<1.5$. Thus the maximum value of f on $x^{2}+2 y^{2}+3 z^{2}=9$ is $\frac{3}{\sqrt{2}}$ and occurs at $\left(\sqrt{3}, \sqrt{\frac{3}{2}}, 1\right)$.
3. Minimize the function $f(x, y, z)=x^{2}+y^{2}+z^{2}$ subject to the constraints $x+2 z=6$ and $x+y=12$ using the method of Lagrange multipliers. Also, explain why the extremum you find is a minimum.

Solution: The gradient of f is

$$
\nabla f=\langle 2 x, 2 y, 2 z\rangle
$$

Let $g=x+2 z$ and let $h=x+y$. Then

$$
\nabla g=\langle 1,0,2\rangle
$$

and

$$
\nabla h=\langle 1,1,0\rangle .
$$

The system we get is thus

$$
\left\{\begin{aligned}
2 x & =\lambda+\mu \\
2 y & =\mu \\
2 z & =2 \lambda \\
x+2 z & =6 \\
x+y & =12
\end{aligned}\right.
$$

(3) gives $z=\lambda$. Plug this into (4) to get $\lambda=3-\frac{1}{2} x$. (2) gives $y=\frac{\mu}{2}$. Plug this into (5) to get $\mu=24-2 x$. Plug these into (1) to get

$$
2 x=3-\frac{1}{2} x+24-2 x \quad \Longrightarrow \quad \frac{9}{2} x=27 \quad \Longrightarrow \quad x=6
$$

By (5), $y=6$, and by (4), $z=0$. So $(6,6,0)$ is our candidate for the minimum, and $f(6,6,0)=72$. As in problem $1,(6,6,0)$ is either a minimum or maximum, and we need to rule out it being a maximum. So we are looking for a point (a, b, c) satisfying $g=6$ and $h=12$ with $f(a, b, c)>72$. Theoretically any such point that is not $(6,6,0)$ should work. Consider the point $(0,12,3)$ which satisfies $g=6$ and $h=12$. Since $f(0,12,3)=0+144+9=153>72$, we have that $(6,6,0)$ is indeed where the minimum of f subject to $g=6$ and $h=12$ occurs. So the minimum value of f subject to $x+2 z=6$ and $x+y=12$ is 72 and occurs at the point $(6,6,0)$.
4. Find the maximum value of the function $f(x, y, z)=x+2 y$ on the curve of intersection of the plane $x+y+z=1$ and the cylinder $y^{2}+z^{2}=4$.

Solution: Basically, the problem asks to maximize f subject to two constraints:

$$
\begin{aligned}
& g(x, y, z)=x+y+z=1 \\
& h(x, y, z)=y^{2}+z^{2}=4
\end{aligned}
$$

We'll do this problem by the method of Lagrange Multipliers: First compute

$$
\begin{aligned}
& \nabla f(x, y, z)=\langle 1,2,0\rangle \\
& \nabla g(x, y, z)=\langle 1,1,1\rangle \\
& \nabla h(x, y, z)=\langle 0,2 y, 2 z\rangle
\end{aligned}
$$

We know $\nabla f=\lambda \nabla g+\mu \nabla h$ for some scalars λ, μ. So, along with the two constraints, we have the following system of equations:

$$
\begin{cases}1 & =\lambda \tag{1}\\ 2 & =\lambda+2 \mu y \\ 0 & =\lambda+2 \mu z \\ x+y+z & =1 \\ y^{2}+z^{2} & =4\end{cases}
$$

We get $\lambda=1$ from equation (1). Putting this into equations (2) and (3), we get

$$
\begin{cases}1 & =2 \mu y \\ -1 & =2 \mu z\end{cases}
$$

Adding these two equations, we get $2 \mu y+2 \mu z=0 \Longrightarrow 2 \mu(y+z)=0$. So, $\mu=0$ or $y=-z$.

If $\mu=0$, then from equation (2), we have $2=1$, a contradiction. So, $\mu \neq 0$.

If $\underline{y=-z}$, then equation (5) yields $2 z^{2}=4 \Longrightarrow z= \pm \sqrt{2}$. So then $y=\mp \sqrt{2}$. And from equation (4), $x=1-y-z$. So, $x=1-(-\sqrt{2})-\sqrt{2}=1$ or $x=$ $1-\sqrt{2}-(-\sqrt{2})=1$.
So, we obtain the points $(1,-\sqrt{2}, \sqrt{2})$ and $(1, \sqrt{2},-\sqrt{2})$.

So then,

$$
\begin{aligned}
& f(1,-\sqrt{2}, \sqrt{2})=1-2 \sqrt{2} \\
& f(1, \sqrt{2},-\sqrt{2})=1+2 \sqrt{2}
\end{aligned}
$$

Thus, the maximum value of f is $1+2 \sqrt{2}$ on the curve of intersection.
5. Find the volume of the solid S bounded by the surface $z=x e^{x y}$, the planes $x=2$ and $y=1$, and the three coordinate planes (i.e. the planes $x=0, y=0, z=0$).

Solution: Since $z(x, y)=x e^{x y}$ is positive on the rectangular $R=[0,2] \times[0,1]$, the volume of the solid S is given by

$$
\begin{aligned}
\operatorname{Volume}(S)=\iint_{R} z(x, y) d A & =\iint_{R} x e^{x y} d A \\
& =\int_{0}^{2} \int_{0}^{1} x e^{x y} d y d x \\
& =\int_{0}^{2}\left(\left.e^{x y}\right|_{y=0} ^{y=1}\right) d x \\
& =\int_{0}^{2}\left(e^{x}-1\right) d x \\
& =\left(e^{x}-x\right)_{x=0}^{x=2} \\
& =e^{2}-3
\end{aligned}
$$

Note, if we chose $d A=d x d y$ instead, we would have to use integration by parts for the first integration. But, we can avoid this by choosing the order $d A=d y d x$, which is what we did.

