M20550 Calculus III Tutorial Worksheet 7

1. Find the minimum distance from the parabola $y = x^2$ to the point (0, 9).

Solution: We want to minimize the function $d(x, y) = \sqrt{x^2 + (y - 9)^2}$ subject to $y = x^2$. Since $f(x, y) = x^2 + (y - 9)^2 \ge 0$ and $d(x, y) \ge 0$, the minimums of d and f occur at the same points, so to make the algebra simpler, let's minimize f subject to $y = x^2$ instead. Let $g = x^2 - y$. So, since $\nabla f = \langle 2x, 2y - 18 \rangle$ and $\nabla g = \langle 2x, -1 \rangle$, the system we get is

Equation (1) $\iff 2x - 2x\lambda = 0$ has two solutions, either x = 0 or $\lambda = 1$. If $\lambda = 1$, then by (2) we have 2y - 18 = -1, so that $y = \frac{17}{2}$, and plugging this into (3) we get that $x = \pm \sqrt{\frac{17}{2}}$. So this case gives us the critical points $\left(\sqrt{\frac{17}{2}}, \frac{17}{2}\right)$ and $\left(-\sqrt{\frac{17}{2}}, \frac{17}{2}\right)$.

If x = 0, then by (3), y = 0, and so the critical point in this case is (0, 0). Now we check for the minimums:

$$(x,y) \qquad f(x,y) = (0,0) \qquad 81 \\ (\sqrt{\frac{17}{2}}, \frac{17}{2}) \qquad \frac{35}{4} \\ (-\sqrt{\frac{17}{2}}, \frac{17}{2}) \qquad \frac{35}{4} \\ \end{cases}$$

So, the minimum value of f is $\frac{35}{4}$, and hence the minimum value of d is $\sqrt{\frac{35}{4}}$, and this occurs at the points $\left(\sqrt{\frac{17}{2}}, \frac{17}{2}\right)$ and $\left(-\sqrt{\frac{17}{2}}, \frac{17}{2}\right)$. Said another way, the closest points to (0,9) on the parabola $y = x^2$ are the points $\left(\sqrt{\frac{17}{2}}, \frac{17}{2}\right)$ and $\left(-\sqrt{\frac{17}{2}}, \frac{17}{2}\right)$ which are a distance of $\sqrt{\frac{35}{4}}$ away.

(Note that you could also do this problem by plugging $y = x^2$ into the equation for d or f and using Calculus I methods.)

2. Maximize the function f(x, y, z) = xyz subject to the constraint $x^2 + 2y^2 + 3z^2 = 9$, assuming that x, y, and z are nonnegative. Explain why the extremum you find is a maximum.

Solution: The gradient of f is

$$\nabla f = \langle yz, xz, xy \rangle$$

Let $g = x^2 + 2y^2 + 3z^2$, then $\nabla g = \langle 2x, 4y, 6z \rangle$. The system of equations we get by Lagrange multipliers is thus

$$\begin{cases} yz = 2\lambda x & (1) \\ xz = 4\lambda y & (2) \\ xy = 6\lambda z & (3) \\ x^2 + 2y^2 + 3z^2 = 9 & (4) \end{cases}$$

Solving (1) for λ gives $\lambda = \frac{yz}{2x}$, however, to do this, we have to make sure $x \neq 0$. If x = 0, then f = 0, but since there are solutions (a, b, c) of g = 9 (e.g., (2, 1, 1)) such that f(a, b, c) > 0, any solution with x = 0 will not be a maximum. This same reasoning shows that anything with y = 0 or z = 0 is not a maximum, so we can assume that x, y, z > 0. If we plug λ into (2), we get $xz = 4\frac{yz}{2x}y$, and as long as $z \neq 0$ (which is true since z > 0) we can divide both sides by z and simplify to get $x^2 = 2y^2$. Plugging λ into (3) we have $xy = 6\frac{yz}{2x}z$, and as long as $y \neq 0$ (which is is isn't since y > 0) we can divide both sides by y and simplify to get $x^2 = 3z^2$. Plugging all this information into (4) gives

$$x^{2} + 2y^{2} + 3z^{2} = 3x^{2} = 9 \implies x^{2} = 3 \implies x = \pm\sqrt{3}$$

Since $x^2 = 2y^2$ we have $y = \pm \sqrt{\frac{3}{2}}$, and since $x^2 = 3z^2$ we have $z = \pm 1$. Now, since we only want the extrema with x, y, and z nonnegative, we get that the only candidate for the maximum is the extreme point $\left(\sqrt{3}, \sqrt{\frac{3}{2}}, 1\right)$, and $f\left(\sqrt{3}, \sqrt{\frac{3}{2}}, 1\right) = \frac{3}{\sqrt{2}}$. To show it is a maximum (we know it is either a maximum or a minimum) we check to see if there is a point on $x^2 + 2y^2 + 3z^2 = 9$ which makes f smaller than $\frac{3}{\sqrt{2}}$ (meaning it can't be a minimum). The point (2, 1, 1) lies on $x^2 + 2y^2 + 3z^2 = 9$ and f(2, 1, 1) = 2 which is smaller than $\frac{3}{\sqrt{2}}$ since $\sqrt{2} < 1.5$. Thus the maximum value of f on $x^2 + 2y^2 + 3z^2 = 9$ is $\frac{3}{\sqrt{2}}$ and occurs at $\left(\sqrt{3}, \sqrt{\frac{3}{2}}, 1\right)$.

3. Minimize the function $f(x, y, z) = x^2 + y^2 + z^2$ subject to the constraints x + 2z = 6 and x + y = 12 using the method of Lagrange multipliers. Also, explain why the extremum you find is a minimum.

Solution: The gradient of f is

 $\nabla f = \langle 2x, 2y, 2z \rangle \,.$

Let g = x + 2z and let h = x + y. Then

 $\nabla g = \langle 1, 0, 2 \rangle$

and

$$\nabla h = \langle 1, 1, 0 \rangle \,.$$

The system we get is thus

$$2x = \lambda + \mu \qquad (1)$$

$$2y = \mu \qquad (2)$$

$$2z = 2\lambda \qquad (3)$$

$$x + 2z = 6 \qquad (4)$$

$$x + y = 12 \qquad (5)$$

(3) gives $z = \lambda$. Plug this into (4) to get $\lambda = 3 - \frac{1}{2}x$. (2) gives $y = \frac{\mu}{2}$. Plug this into (5) to get $\mu = 24 - 2x$. Plug these into (1) to get

$$2x = 3 - \frac{1}{2}x + 24 - 2x \implies \frac{9}{2}x = 27 \implies x = 6.$$

By (5), y = 6, and by (4), z = 0. So (6, 6, 0) is our candidate for the minimum, and f(6, 6, 0) = 72. As in problem 1, (6, 6, 0) is either a minimum or maximum, and we need to rule out it being a maximum. So we are looking for a point (a, b, c)satisfying g = 6 and h = 12 with f(a, b, c) > 72. Theoretically any such point that is not (6, 6, 0) should work. Consider the point (0, 12, 3) which satisfies g = 6 and h = 12. Since f(0, 12, 3) = 0 + 144 + 9 = 153 > 72, we have that (6, 6, 0) is indeed where the minimum of f subject to g = 6 and h = 12 occurs. So the minimum value of f subject to x + 2z = 6 and x + y = 12 is 72 and occurs at the point (6, 6, 0).

4. Find the maximum value of the function f(x, y, z) = x + 2y on the curve of intersection of the plane x + y + z = 1 and the cylinder $y^2 + z^2 = 4$.

Solution: Basically, the problem asks to maximize f subject to two constraints:

$$g(x, y, z) = x + y + z = 1$$

 $h(x, y, z) = y^{2} + z^{2} = 4$

We'll do this problem by the method of Lagrange Multipliers: First compute

$$\nabla f(x, y, z) = \langle 1, 2, 0 \rangle$$

$$\nabla g(x, y, z) = \langle 1, 1, 1 \rangle$$

$$\nabla h(x, y, z) = \langle 0, 2y, 2z \rangle$$

We know $\nabla f = \lambda \nabla g + \mu \nabla h$ for some scalars λ , μ . So, along with the two constraints, we have the following system of equations:

	1	$=\lambda$	(1)
	2	$=\lambda + 2\mu y$	(2)
ł	0	$=\lambda + 2\mu z$	(3)
	x + y + z	= 1	(4)
	$y^{2} + z^{2}$	= 4	(5)

We get $\lambda = 1$ from equation (1). Putting this into equations (2) and (3), we get

$$\begin{cases} 1 &= 2\mu y \\ -1 &= 2\mu z. \end{cases}$$

Adding these two equations, we get $2\mu y + 2\mu z = 0 \implies 2\mu(y+z) = 0$. So, $\mu = 0$ or y = -z.

If $\mu = 0$, then from equation (2), we have 2 = 1, a contradiction. So, $\mu \neq 0$.

If $\underline{y} = -\underline{z}$, then equation (5) yields $2z^2 = 4 \implies z = \pm\sqrt{2}$. So then $y = \pm\sqrt{2}$. And from equation (4), x = 1 - y - z. So, $x = 1 - (-\sqrt{2}) - \sqrt{2} = 1$ or $x = 1 - \sqrt{2} - (-\sqrt{2}) = 1$.

So, we obtain the points $(1, -\sqrt{2}, \sqrt{2})$ and $(1, \sqrt{2}, -\sqrt{2})$.

So then,

$$f(1, -\sqrt{2}, \sqrt{2}) = 1 - 2\sqrt{2}$$

$$f(1, \sqrt{2}, -\sqrt{2}) = 1 + 2\sqrt{2}.$$

Thus, the maximum value of f is $1 + 2\sqrt{2}$ on the curve of intersection.

5. Find the volume of the solid S bounded by the surface $z = xe^{xy}$, the planes x = 2 and y = 1, and the three coordinate planes (i.e. the planes x = 0, y = 0, z = 0).

Solution: Since $z(x, y) = xe^{xy}$ is positive on the rectangular $R = [0, 2] \times [0, 1]$, the volume of the solid S is given by

$$Volume(S) = \iint_{R} z(x, y) \, dA = \iint_{R} x e^{xy} \, dA$$
$$= \int_{0}^{2} \int_{0}^{1} x e^{xy} \, dy \, dx$$
$$= \int_{0}^{2} \left(e^{xy} \Big|_{y=0}^{y=1} \right) \, dx$$
$$= \int_{0}^{2} \left(e^{x} - 1 \right) \, dx$$
$$= \left(e^{x} - x \right)_{x=0}^{x=2}$$
$$= e^{2} - 3.$$

Note, if we chose dA = dx dy instead, we would have to use integration by parts for the first integration. But, we can avoid this by choosing the order dA = dy dx, which is what we did.