1. (6 pts) Let D be the region in the plane bounded by the circle $x^{2}+y^{2}=4$ with density $\rho(x, y)=x^{2}+y^{2}$. Which of the following statements is true:
(a) The center of mass of D is the origin.
(b) The center of mass of D is $(1,1)$
(c) The center of mass of D is $(0.5,-0.5)$
(d) The center of mass of D is $(-0.5,0.5)$
(e) The center of mass of D is $(2,-2)$
2.(6pts) Calculate the volume enclosed by the paraboloid $z=x^{2}+y^{2}$ and the plane $z=1$.
(a) $\frac{\pi}{2}$
(b) π
(c) $\frac{1}{2}$
(d) 2π
(e) 1
2. $(6 \mathrm{pts})$ Let S be the solid inside both the cone $z=\sqrt{x^{2}+y^{2}}$ and the sphere $x^{2}+y^{2}+z^{2}=1$. Write the iterated integral $\iiint_{S} z d V$ in spherical coordinates.
(a) $\int_{0}^{2 \pi} \int_{0}^{\frac{\pi}{4}} \int_{0}^{1} \rho^{3} \cos \phi \sin \phi d \rho d \phi d \theta$
(b) $\int_{0}^{2 \pi} \int_{0}^{\frac{\pi}{2}} \int_{0}^{1} \rho^{3} \cos \phi \sin \phi d \rho d \phi d \theta$
(c) $\int_{0}^{2 \pi} \int_{0}^{\pi} \int_{0}^{1} \rho^{3} \cos \phi \sin \phi d \rho d \phi d \theta$
(d) $\int_{0}^{2 \pi} \int_{0}^{\frac{\pi}{4}} \int_{0}^{1} \rho^{2} \cos \phi \sin \phi d \rho d \phi d \theta$
(e) $\int_{0}^{2 \pi} \int_{0}^{\frac{\pi}{4}} \int_{0}^{1} \rho \cos \phi d \rho d \phi d \theta$
3. (6pts) Let a thin wire in space be in the shape of the helix C given by $\mathbf{r}(t)=\langle\cos 3 t, \sin 3 t, 3 \sqrt{3} t\rangle$, $0 \leq t \leq 2 \pi$. Let the linear density at (x, y, z) be given by $\mu(x, y, z)=\frac{z}{x^{2}+y^{2}}$. Compute the mass of the wire.
(a) $36 \sqrt{3} \pi^{2}$
(b) $216 \sqrt{3} \pi^{2}$
(c) $36 \sqrt{3} \pi$
(d) $6 \sqrt{3} \pi^{2}$
(e) 12π
4. (6 pts) Evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$, where $\mathbf{F}=-2 x y \mathbf{i}+4 y \mathbf{j}+\mathbf{k}$ and $\mathbf{r}=t \mathbf{i}+t^{2} \mathbf{j}+\mathbf{k}, 0 \leq t \leq 2$.
(a) 24
(b) 12
(c) 48
(d) 18
(e) 32
5. (6pts) Let $\mathbf{F}=\nabla f$ where $f(x, y)=x^{2} \cos (y)+e^{\sin (y)}$. Evaluate the integral $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ where C is the semicircle $x^{2}+y^{2}=1, x \geq 0$ and the orientation is counterclockwise.
(a) $e^{\sin (1)}-e^{\sin (-1)}$
(b) $e^{\sin (-1)}-e^{\sin (1)}$
(c) -2
(d) 2
(e) $\cos (1)+\cos (-1)$
7.(6pts) Rewrite the iterated integral

$$
\int_{0}^{3} \int_{0}^{2-\frac{2 z}{3}} \int_{0}^{6-2 z-3 y} \frac{e^{z}}{(z+2)(6-z)} d x d y d z
$$

as an iterated integral $d y d x d z$. In other words, switch $d x d y$ to $d y d x$.
(a) $\int_{0}^{3} \int_{0}^{6-2 z} \int_{0}^{\frac{6-2 z-x}{3}} \frac{e^{z}}{(z+2)(6-z)} d y d x d z$
(b) $\int_{0}^{3} \int_{0}^{2-\frac{2 z}{3}} \int_{0}^{6-2 z-3 x} \frac{e^{z}}{(z+2)(6-z)} d y d x d z$
(c) $\int_{0}^{3} \int_{0}^{6-2 z} \int_{0}^{6-2 z-3 x} \frac{e^{z}}{(z+2)(6-z)} d y d x d z$
(d) $\int_{0}^{3} \int_{0}^{6-2 z-3 x} \int_{0}^{6-2 z} \frac{e^{z}}{(z+2)(6-z)} d y d x d z$
(e) $\int_{0}^{3} \int_{0}^{6-2 y-3 x} \int_{0}^{6-2 x} \frac{e^{z}}{(z+2)(6-z)} d y d x d z$
8. (10pts) Let S be the "ice-cream cone" bounded below by $z=\sqrt{3\left(x^{2}+y^{2}\right)}$ and above by $x^{2}+y^{2}+z^{2}=4$. Use spherical coordinates to express the volume of S as an integral. Do not evaluate the integral.
9.(10pts) Consider the double integral $\iint_{D} y d A$ where D is the region bounded by $y+2 x=2$, $y+2 x=6, y-2 x=-2$, and $y-2 x=2$. Let T^{-1} be the transformation defined by $u=y+2 x$ and $w=y-2 x$. Describe the region R such that $T(R)=D$ and write $\iint_{D} y d A$ as a double integral over R. Note $x=\frac{1}{4}(u-w)$ and $y=\frac{1}{2}(u+w)$.

Do not evaluate the integral.
11. (10pts) Use Green's Theorem to write down a double integral over the shaded region in Figure 12 which is equal to the line integral
$\int_{6}(y+(\sin x) e-2 x) d x+\left(x^{2}+(y \cos y) e^{y^{2}}+2-3 x\right) d y$
along the boundary of the region.

Figure 12.

1. Solution. The region D and the density $\rho(x, y)$ are symmetric about the x-axis, hence the center of mass is located in the x-axis. Similarly, D and $\rho(x, y)$ are symmetric about the y-axis, so the center of mass is located in the y-axis. Therefore, the center of mass of D is the origin.
2. Solution. Using cylindrical co-ordinates, the paraboloid is $z=r^{2}$. The surfaces intersect when $r^{2}=1$, ie, $r=1$. It follows that the volume is

$$
\int_{0}^{2 \pi} \int_{0}^{1} \int_{r^{2}}^{1} r d z d r d \phi=2 \pi \int_{0}^{1}\left(r-r^{3}\right) d r=\left.2 \pi\left(\frac{r^{2}}{2}-\frac{r^{4}}{4}\right)\right|_{0} ^{1}=\frac{\pi}{2}
$$

3. Solution. The cone $z=\sqrt{x^{2}+y^{2}}$ is the same as $\phi=\frac{\pi}{4}$ in spherical coordinates and the sphere $x^{2}+y^{2}+z^{2}=1$ is $\rho=1$. The limits of integration are therefore $0 \leq \rho \leq 1,0 \leq \phi \leq \frac{\pi}{4}$ and $0 \leq \theta \leq 2 \pi$. The iterated integral is therefore

$$
\int_{0}^{2 \pi} \int_{0}^{\frac{\pi}{4}} \int_{0}^{1} \rho^{3} \cos \phi \sin \phi d \rho d \phi d \theta
$$

4. Solution. Recall

$$
\int_{C} \mu(x, y, z) d s=\int_{0}^{2 \pi} f(\mathbf{r}(t))\left|\mathbf{r}^{\prime}(t)\right| d t
$$

First, we find $\mathbf{r}^{\prime}(t)$:

$$
\mathbf{r}^{\prime}(t)=\langle-3 \sin 3 t, 3 \cos 3 t, 3 \sqrt{3}\rangle
$$

then

$$
\left|\mathbf{r}^{\prime}(t)\right|=\sqrt{(-3 \sin 3 t)^{2}+(3 \cos 3 t)^{2}+(3 \sqrt{3})^{2}}=\sqrt{9+27}=\sqrt{36}=6
$$

So, the mass is

$$
\begin{aligned}
\int_{C} \mu(x, y, z) d s & =\int_{0}^{2 \pi} \mu(\mathbf{r}(t))\left|\mathbf{r}^{\prime}(t)\right| d t \\
& =\int_{0}^{2 \pi} \frac{3 \sqrt{3} t}{(\cos 3 t)^{2}+(\sin 3 t)^{2}}(6) d t \\
& =\int_{0}^{2 \pi} 18 \sqrt{3} t d t \\
& =\left.9 \sqrt{3} t^{2}\right|_{0} ^{2 \pi}=36 \sqrt{3} \pi^{2}
\end{aligned}
$$

5. Solution. Since $\mathbf{F}(\mathbf{r}(t))=<-2 t^{3}, 4 t^{2}, 1>$ and $\mathbf{r}^{\prime}=<1,2 t, 0>$. We get that $\mathbf{F}(\mathbf{r}(t)) \bullet \mathbf{r}^{\prime}(\mathbf{t})=$ $6 t^{3}$. Thus $\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{0}^{2} 6 t^{3} d t=24$.
6. Solution. Using the Fundamental Theorem of Line Integrals, we see that

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=f(0,1)-f(0,-1)=\left(0+e^{\sin (1)}\right)-\left(0+e^{\sin (-1)}\right)=e^{\sin (1)}-e^{\sin (-1)}
$$

7. Solution. The outer integral is the same in both cases so start by drawing the plane region determined by $\int_{0}^{2-\frac{2 z}{3}} \int_{0}^{6-2 z-3 y} \cdots d x d y$ for an arbitrary z between 0 and 1 .

The integral in the other order has the outside integral running from $x=0$ to $x=6-2 z$. In the inner integral, y starts at 0 and runs to $\frac{6-2 z-x}{3}$
8. Solution. The sphere $x^{2}+y^{2}+z^{2}=4$ is $\rho=2$ and the cone $z=\sqrt{3\left(x^{2}+y^{2}\right)}$ transforms as $\phi=\frac{\pi}{6}$. The volume is then given by

$$
\iiint_{S} d V=\int_{0}^{2 \pi} \int_{0}^{\frac{\pi}{6}} \int_{0}^{2} \rho^{2} \sin \phi d \rho d \phi d \theta
$$

9. Solution. First let draw the region D.

In terms of u and $w, y+2 x=2$ is equivalent to $u=2$.
In terms of u and $w, y+2 x=6$ is equivalent to $u=6$.
In terms of u and $w, y-2 x=2$ is equivalent to $w=2$.
In terms of u and $w, y-2 x=2$ is equivalent to $w=-2$.
The region R is the rectangle with corners (u, w) equal to $(2,2),(6,2),(2,-2),(6,-2)$. Here is a picture.

Next So $\frac{\partial(x, y)}{\partial(u, w)}=\operatorname{det}\left|\begin{array}{ll}\frac{\partial \frac{1}{4}(u-w)}{\partial u} & \frac{\partial \frac{1}{4}(u-w)}{\partial w} \\ \frac{\partial \frac{1}{2}(u+w)}{\partial u} & \frac{\partial \frac{1}{2}(u+w)}{\partial w}\end{array}\right|=\operatorname{det}\left|\begin{array}{ll}\frac{1}{4} & -\frac{1}{4} \\ \frac{1}{2} & \frac{1}{2}\end{array}\right|=\frac{1}{8}-\left(-\frac{1}{8}\right)=\frac{1}{4}$.
Then

$$
\iint_{D} y d A=\iint_{R}\left(\frac{u+w}{2} \cdot \frac{1}{4}\right) d A
$$

10. Solution.

$$
\frac{\partial p}{\partial y}=x^{4} e^{x^{2} y}+2 y
$$

so

$$
p=x^{2} e^{x^{2} y}+y^{2}+h(x)
$$

$$
\frac{\partial p}{\partial x}=\frac{\partial x^{2} e^{x^{2} y}+y^{2}+h(x)}{\partial x}=2 x e^{x^{2} y}+x^{2}(2 x y) e^{x^{2} y}+h^{\prime}(x)=2 x e^{x^{2} y}+2 x^{3} y e^{x^{2} y}+2 x e^{x^{2}}
$$ so

$$
\begin{gathered}
h^{\prime}(x)=2 x e^{x^{2}} \\
p=x^{2} e^{x^{2} y}+y^{2}+e^{x^{2}}
\end{gathered}
$$

OR
Start with

$$
\frac{\partial p}{\partial x}=2 x e^{x^{2} y}+2 x^{3} y e^{x^{2} y}+2 x e^{x^{2}}
$$

This is harder to integrate but it can be done. An anti-derivative of the first term is $\frac{e^{x^{2} y}}{y}$. An anti-derivative of the third term is $e^{x^{2}}$. To find an anti-derivative for the second term, use the substitution $t=x^{2}$, so $d t=2 x d x$ and $\int 2 x^{3} y e^{x^{2} y} d x=\int y t e^{y t} d t$. This is a parts: $u=t d v=e^{y t} d t$ so $d u=d t$ and $v=\frac{e^{y t}}{y}$.

Hence $\int 2 x^{3} y e^{x^{2} y} d x=\int y t e^{y t} d t=y t \frac{e^{y t}}{y}-y \int \frac{e^{y t}}{y} d t=t e^{y t}-\frac{e^{y t}}{y}=x^{2} e^{x^{2} y}-\frac{e^{x^{2} y}}{y}$.
Therefore

$$
p=\frac{e^{x^{2} y}}{y}+x^{2} e^{x^{2} y}-\frac{e^{x^{2} y}}{y}+e^{x^{2}}+h(y)=x^{2} e^{x^{2} y}+e^{x^{2}}+h(y)
$$

Then

$$
\frac{\partial p}{\partial y}=x^{4} e^{x^{2} y}+h^{\prime}(y)=x^{4} e^{x^{2} y}+2 y
$$

so $h^{\prime}(y)=2 y$ and $h(y)=y^{2}$ so

$$
p=x^{2} e^{x^{2} y}+e^{x^{2}}+y^{2}
$$

is a potential function.
11. Solution. Let D be the shaded region. $M=y^{2}+(\sin x) e^{x}-2 x$ and $\frac{\partial M}{\partial y}=2 y . \quad N=$ $x^{2}+(y \cos y) e^{y^{2}}+2-3 x$ and $\frac{\partial N}{\partial x}=2 x-3$. Hence $\int_{\partial D}\left(y^{2}+(\sin x) e^{x}-2 x\right) d x+\left(x^{2}+\right.$ $\left.(y \cos y) e^{y^{2}}+2-3 x\right) d y=\iint_{D}(2 x-3+2 y) d A$.

Now $\int_{\partial D}\left(y^{2}+(\sin x) e^{x}-2 x\right) d x+\left(x^{2}+(y \cos y) e^{y^{2}}+2-3 x\right) d y$ is the line integral around the boundary curve oriented so that the region is on your left. This is the given orientation on C so $\int_{C}\left(y^{2}+(\sin x) e^{x}-2 x\right) d x+\left(x^{2}+(y \cos y) e^{y^{2}}+2-3 x\right) d y=\iint_{D}(2 x-3+2 y) d A$.

