
1.(6pts) Find all the critical points of f(x, y) = 4xy − x4 − y4.

(a) (0, 0), (1, 1), (−1,−1) (b) (0, 0)

(c) (0, 0), (1,−1), (−1, 1) (d) (1,−1), (1, 1), (−1, 1), (−1,−1)

(e) (0, 0), (1,−1), (1, 1), (−1, 1), (−1,−1)

Solution.Solution.
∇f =

〈
4y − 4x3, 4x− 4y3

〉
= 〈0, 0〉

so 4y − 4x3 = 0, and 4x− 4y3 = 0. Hence y = x3 and x− x9 = 0. Hence x = 0 or x = ±1.
So the critical points are

(0, 0) (1, 1) (−1,−1)

2.(6pts) Evaluate

∫∫
S

(∇×× ~F ) •d ~S, where ~F (x, y, z) = −y~ı+ x~+ x2yz~k, S is the part of the

paraboloid z = x2 + y2 that lies inside the cylinder x2 + y2 = 4, oriented downward. (Hint:
Use Stokes’ Theorem and be careful with orientations.)

(a) −8π (b) −4π (c) 0 (d) 4π (e) 8π

Solution.Solution. The boundary of the surface S is the circle of radius 2 at height 4 and so is
parametrized by ~r(t) = 〈2 cos(t), 2 sin(t), 4〉, 0 6 t 6 2π. By Stoke’s Theorem we can
compute∫ 2π

0

~F •~r ′(t) dt =

∫ 2π

0

〈
−2 sin(t), 2 cos(t), cos2(t) sin(t) · 4

〉
• 〈−2 sin(t), 2 cos(t), 0〉 dt =∫ 2π

0

4 sin2(t) + 4 cos2(t) dt = 8π

The orientation on the surface for this orientation on the boundary is the upward orientation
so the correct answer is −8π.



3.(6pts) Let S be the bounded surface in space parametrized by the equations

x(u, v) = u+ v, y(u, v) = u− v, z(u, v) = v

where 0 6 u 6 4 and 0 6 v 6 2. Then the flux integral of the vector field ~F (x, y, z) =

x~ı− ~− y

2
~k over the surface S with downward normal is

(a) 24 (b) 20 (c) 40 (d) 10 (e) 0

Solution.Solution. Let ~r(u, v) = 〈x(u, v), y(u, v), z(u, v)〉. Note that ~ru = 〈1, 1, 0〉 and rv = 〈1,−1, 1〉,

~ru××~rv =

∣∣∣∣∣∣
~ı ~ ~k
1 1 0
1 −1 1

∣∣∣∣∣∣ = 〈1,−1,−2〉. Hence ~ru××~rv is the downward normal and

~F •(~ru××~rv) =
〈
x,−1,−y

2

〉
• 〈1,−1,−2〉 = x(u, v) + 1 + y(u, v) = 2u+ 1.

Thus∫∫
S

~F •d~S =

∫ 4

0

∫ 2

0

(2u+ 1) dv du

=

∫ 4

0

(2u+ 1)v

∣∣∣∣2
0

du = 2

∫ 4

0

(2u+ 1) du = 2 (u2 + u)
∣∣4
0

= 2(16 + 4)− 0 = 40

4.(6pts) A spaceship is traveling along the curve ~r(t) = 〈cos t, t, sin t〉. Starting with t = 0
how long does the spaceship have to travel to travel a distance of 2π.

(a) 3√
2
π (b) It never goes that far. (c) 2π

(d)
√

2π (e) 2

Solution.Solution. Distance traveled is s(t) =

∫ t

0

|~r ′(t)| dt =

∫ t

0

|〈− sin t, 1, cos t〉| dt
∫ t

0

√
2dt =

√
2t.

Now set
√

2t = 2π. So t =
√

2π.



5.(6pts) Let D be the region in the first quadrant of the xy-plane bounded by the line y = x−2
and the parabola x = y2. Let S be the solid under the plane z = x and above the region
D. Which integral below is the iterated integral of the function f(x, y, z) = z − xy over the
solid S?

(a)

∫ 2

−1

∫ y+2

y2

∫ x

0

(z − xy) dz dx dy (b)

∫ 4

1

∫ √x
x−2

∫ x

0

(z − xy) dz dy dx

(c)

∫ 2

0

∫ y+2

y2

∫ x

0

(z − xy) dz dx dy (d)

∫ 4

0

∫ √x
x−2

∫ x

0

(z − xy) dz dy dx

(e)

∫ y+2

y

∫ √x
x−2

∫ xy

0

x dz dy dx

Solution.Solution. The region D is enclosed by the curves x = y2, x = y+ 2, y = 0, and y = 2. The
curve x = y2 is to the left and x = y+ 2 is to the right. Since the plane z = x lies above the
xy-plane for all points in D, the bound on z is 0 6 z 6 x. Altogether:∫ 2

0

∫ y+2

y2

∫ x

0

z − xy dz dx dy

6.(6pts) Given the curve ~r(t) =

〈
t, t,

t2

2

〉
, find the unit binormal vector at the point (2, 2, 2).

(a)
1√
2
〈1, 0,−1〉 (b) There is no unit binormal at this point.

(c)
1√
2
〈1, 0, 1〉 (d)

1√
2
〈−1, 1, 0〉 (e)

1√
2
〈1,−1, 0〉

Solution.Solution. The particle is at the point (2, 2, 2) when and only when t = 2.
~r ′(t) = 〈1, 1, t〉; ~r ′(2) = 〈1, 1, 2〉.
~r ′′(t) = 〈0, 0, 1〉; ~r ′′(2) = 〈0, 0, 1〉

Then ~r ′(2)××~r ′′(2) =

∣∣∣∣∣∣
~ı ~ ~k
1 1 2
0 0 1

∣∣∣∣∣∣ =

∣∣∣∣1 2
0 1

∣∣∣∣~ı− ∣∣∣∣1 2
0 1

∣∣∣∣~+

∣∣∣∣1 1
0 0

∣∣∣∣~k = 〈1,−1, 0〉.

Then ~B(2) =
1√
2
〈1,−1, 0〉.



7.(6pts) Let ~F be the vector field 〈3x2 − yz, xz, y − 2x〉. At which of the following points is

the curl of ~F perpendicular to the plane 3x+ 6y + 6z = 7?

(a) (0, 1, 0) (b) (1, 0, 0) (c) (1, 1, 1) (d) (0, 0, 0) (e) (0, 0, 1)

Solution.Solution. The curl of ~F is∣∣∣∣∣∣∣∣
~ı ~ ~k
∂

∂x

∂

∂y

∂

∂z
3x2 − yz xz y − 2x

∣∣∣∣∣∣∣∣ = 〈1− x, 2− y, 2z〉

The normal vector of the plane is 〈3, 6, 6〉, so we want a point where the curl of ~F is parallel

to 〈3, 6, 6〉. If z = 0 then the third coordinate of the curl of ~F is 0, and so the curl is not
parallel to 〈3, 6, 6〉. This rules out (0, 1, 0), (1, 0, 0), and (0, 0, 0). For the same reason x

cannot be 1, which rules out (1, 1, 1). So the answer must be (0, 0, 1). Indeed, the curl of ~F
at (0, 0, 1) is 〈1, 2, 2〉, which is parallel to 〈3, 6, 6〉.

8.(6pts) Suppose ~r(t) is a vector-valued function such that ~r ′(t) = 〈et, 2t+ 4, π cos(πt)〉 and
~r(1) = 〈0, 7, 1〉. Find ~r(0).

(a) 〈1, 0, 0〉 (b) 〈−e, 1, π − 1〉 (c) 〈0, 7, 1〉 (d) 〈0, 4, π〉 (e) 〈1− e, 2, 1〉

Solution.Solution. After taking antiderivatives:

~r(t) =
〈
et + c1, t

2 + 4t+ c2, sin(πt) + c3
〉

for some constants c1, c2, c3. From ~r(1) = 〈0, 7, 1〉, it follows that

e+ c1 = 0

5 + c2 = 7

0 + c3 = 1

So ~r(t) = 〈et − e, t2 + 4t+ 2, sin(πt) + 1〉, which means ~r(0) = 〈1− e, 2, 1〉.



9.(6pts) Let S be the bounded surface in space parametrized by the equations

x(u, v) = u+ v, y(u, v) = u− v, z(u, v) = v

where 0 6 u 6 4 and 0 6 v 6 2. Then the surface integral∫∫
S

(x+ y)z dS =

(a) −32 (b) 32 (c) −32
√

6 (d) 32
√

6 (e) 8
√

6

Solution.Solution. Let ~r(u, v) =
(
x(u, v), y(u, v), z(u, v)

)
. Note that ~ru = 〈1, 1, 0〉 and ~rv =

〈1,−1, 1〉, ~ru××~rv = 〈1,−1,−2〉 and |~ru××~rv| =
√

6.∫∫
S

(x+ y)z dS =

∫ 4

0

∫ 2

0

(x(u, v) + y(u, v))z(u, v) |~ru××~rv| dv du

=

∫ 4

0

∫ 2

0

(2u)v
√

6 dv du

= = 32
√

6

10.(6pts) Let p(x, y) be a function such that ∇p = 〈2x+ y, x+ 2y〉 and p(0, 0) = 1. Find
p(1, 1).

(a) 4 (b) 0 (c) 2 (d) −1 (e) 3

Solution.Solution. Let p(x, y) be a potential function. Then
∂p

∂x
= 2x+y so p(x, y) = x2 +xy+h(y).

Then
∂p

∂y
= x+2y so p(x, y) = x+h′(y) = x+2y, so h′(y) = y and p(x, y) = x2+xy+y2+C.

p(0, 0) = C so p(x, y) = x2 + xy + y2 + 1. Then p(1, 1) = 4.



11.(6pts) Find the projection of the vector 〈3, 1,−1〉 onto the vector 〈1, 0,−1〉.

(a)

〈
1√
12
, 0,− 1√

12

〉
(b) 〈6, 2,−2〉 (c) 〈2, 0,−2〉

(d) 〈2, 1,−2〉 (e) 〈5, 1,−2〉

Solution.Solution. proj〈1,0,−1〉
(
< 3, 1,−1 >

)
=
〈3, 1,−1〉 • 〈1, 0,−1〉
〈1, 0,−1〉 • 〈1, 0,−1〉

〈1, 0,−1〉 =
4

2
〈1, 0,−1〉 =

〈2, 0,−2〉

12.(6pts) Find
∂x

∂z
at the point (1, 2, 3) where x is defined implicitly as a function of y and z

by the equation xyz − 6 = exyz − e6.

(a)
2e6 − 2

6− 6e6
(b)

2e6 − 2

6e6 + 6
(c)

2e6 − 2

6e6 − 6
(d)

2e6 + 2

6− 6e6
(e)

2e6 + 2

6e6 − 6

Solution.Solution.
∂

∂z
: xyz = exyz.

∂x

∂z
yz +

∂y

∂z
xz +

∂z

∂z
xy =

(
∂x

∂z
yz +

∂y

∂z
xz +

∂z

∂z
xy

)
exyz

But
∂y

∂z
= 0 so

∂x

∂z
yz + xy =

(
∂x

∂z
yz + xy

)
exyz

∂x

∂z
6 + 2 =

(
∂x

∂z
6 + 2

)
e6

∂x

∂z

(
6− 6e6

)
= 2e6 − 2

∂x

∂z
=

2e6 − 2

6− 6e6
=

2(e6 − 1)

6(1− e6)
= −1

3



13.(6pts) Evaluate

∫
C

~F • d~r where ~F = 〈ex,−xy〉 and C is the boundary of the square with

corners
{

(0, 0), (0, 2), (2, 2), (2, 0)
}

in a clockwise direction.

(a) −4 (b) 4 (c) 0 (d) 6 (e) −6

Solution.Solution. Use Green’s Theorem to get

∫
C

~F • d~r = −
∫∫

R

−y dA =

∫∫
R

ydA. Notice that

this is the moment about the x-axis. So since the area of R is 4 and center of mass is (1, 1),

this integral have a value of 4. It is also easy to solve

∫ 2

0

∫ 2

0

y dydx.

14.(6pts) The equation of the plane which contains the point (0, 0, 0), (1, 0, 1) and (1, 1, 0)

(a) x+ y + z = 0 (b) −x+ y + z = 2 (c) x− y + z = 0

(d) −x+ y + z = 0 (e) x+ y + z = 2

Solution.Solution. The vector
(~ı+ ~k)××(~ı+ ~) = −~ı+ ~+ ~k

is normal to the plane. Moreover the plane passes through the origin. So

−x+ y + z = 0

is the equation of the plane.



15.(6pts) At what points does the curve ~r(t) = 〈t, 0, 2t+ 3〉 intersect the paraboloid z =
x2 + y2?

(a) (−3, 0,−3) (b) (3, 0, 9), (−1, 0, 1) (c) (−3, 0,−3), (1, 0, 5)

(d) (−1, 0, 1) (e) (3, 0, 9)

Solution.Solution. We need to solve 2t + 3 = t2 + 02 so t2 − 2t − 3 = (t − 3)(t + 1) = 0. Solutions
are t = 3 and hence (3, 0, 9) and t = 1 and hence (−1, 0, 1).

16.(6pts) Evaluate

∫
C
z dx− y dy + 3x dz where C is defined by ~r(t) = 〈t3, t2, t〉, 0 6 t 6 2.

(a) 32 (b) 8 (c) 20 (d) −8 (e) 16

Solution.Solution.

∫
C
z dx−y dy+3x dz where C =

∫
C 〈z,−y, 3x〉 • d~r =

∫ 2

0
〈t,−t2, 3t3〉 • 〈3t2, 2t, 1〉 dt =∫ 2

0
3t3 − 2t3 + 3t3 dt =

∫ 2

0
4t3 dt = 24 = 16.



17.(6pts) Compute the tangential component of the acceleration of a particle at t =
π

2
whose

motion is given by ~r(t) =

〈
4 cos(t), 4 sin(t),

3

π
t2
〉

.

(a)
5

π
(b)

18

5π
(c)

9

5π

(d)
4

5

√
25 +

18

π2
(e) 0

Solution.Solution. Recall

aT (t) =
~r ′(t) •~r ′′(t)

|~r ′(t)|2
.

Now ~r ′(t) =

〈
−4 sin(t), 4 cos(t),

6

π
t

〉
and ~r ′′(t) =

〈
−4 cos(t),−4 sin(t),

6

π

〉
. Thus

aT (π) =

〈−4, 0, 3〉 •
〈

0,−4,
6

π

〉
√

02 + 42 + 32
=

18

5π
.

18.(6pts) Let f(x, y) be any function with continuous second order derivatives. Let (a, b) be a
critical point such that fxy(a, b) = 0, fyy(a, b) > 0 and fxx(a, b) 6= 0, then,

(a) (a, b) is a local minimum if fxx(a, b) < 0.

(b) (a, b) is never a saddle point.

(c) (a, b) is a local minimum if fxx(a, b) > 0.

(d) (a, b) is a local maximum if fxx(a, b) > 0.

(e) (a, b) is a local maximum if fxx(a, b) < 0.

Solution.Solution. Since fxy(a, b) = 0, we have

D(a, b) = fxx(a, b)fyy(a, b)− fxy(a, b)2 = fxxfyy

which is clearly nonzero under the assumptions. Since it is given that fxx(a, b) > 0 the sign
of D is determined by fyy(a, b). Thus we have two cases

(1) If fyy(a, b) < 0, then D(a, b) < 0, then (a, b) is a saddle point. This eliminates the
case “(a, b) is never a saddle point ”.

(2) If fyy(a, b) > 0, then D(a, b) > 0. Since fxx(a, b) > 0, by the Second Derivative Test,
(a, b) must be local minimum.



19.(6pts) Find

∫∫
D

ex
2+y2 dA where D is the disk centered at the origin of radius a.

(a) 2πea
2

(b) aπ2 (c) π
(
ea

2 − 1
)

(d) aeπa
2

(e) 0

Solution.Solution. Convert to iterated polar integral:

∫∫
D

ex
2+y2 dA =

∫ 2π

0

∫ a

0

er
2

r dr dθ =

∫ 2π

0

er
2

2

∣∣∣∣∣
a

0

dθ =∫ 2π

0

ea
2 − 1

2
dθ = π

(
ea

2 − 1
)

20.(6pts) A thin wire W in space parametrized by the equation

〈x(t), y(t), z(t)〉 = 〈cos t, sin t, t〉
where 0 6 t 6 π, has density

ρ(x, y, z) = z

at the point (x, y, z) on the wire. Then the mass of the wire is

(a)
π2

4
(b)

√
2π2

2
(c)

√
2π2

4
(d)

√
2π2

8
(e)

√
2π

4

Solution.Solution. The mass m =

∫
W

ρ(x, y, z) ds, where s is the arc-length parametrization.∫
W

ρ(x, y, z)ds =

∫ π

0

ρ(x(t), y(t), z(t))
√
x′(t)2 + y′(t)2 + z′(t)2 dt

=

∫ π

0

t
√

2 dt

=
√

2
t2

2

∣∣∣∣π
t=0

=

√
2π2

2



21.(6pts) Which one of the followings is the directional derivative of f(x, y, z) = xey+yez+zex

at the point (0, 0, 1) in the direction of the vector ~v = 〈−1, 2,−2〉?

(a) −e
3

(b) −1

3
(c)
−4 + 2e

3
(d)

1

3
(e) −4 + 2e

Solution.Solution. ∇f(x, y, z) = 〈ey + zex, xey + ez, yez + ex〉 so ∇f(0, 0, 1) = 〈2, e, 1〉 and hence

D〈−1,2,−2〉f(0, 0, 1) =
〈−1, 2,−2〉 •∇f(0, 0, 1)

|〈−1, 2,−2〉|
=
〈−1, 2,−2〉 • 〈2, e, 1〉√

9
=

2e− 4

3

22.(6pts) The maximum value of the function

f(x, y) = x+ 2y

on the ellipse on xy-plane given by the equation
x2

2
+ y2 = 1 is

(a)
√

2
3

(b) 2 (c) 1 (d)
√

6 (e)
√

3
2

Solution.Solution. We are trying to maximize f(x, y) = x + 2y, under the constraint g(x, y) =
x2

2
+ y2 = 1. We apply methods of Lagrange Multipliers: So we solve the equations

(1) fx(x, y) = λgx(x, y)⇒ 1 = λx,
(2) fy(x, y) = λgy(x, y)⇒ 2 = 2λy, and,

(3) g(x, y) =
x2

2
+ y2 = 1

simultaneously. Observe that λ 6= 0, so we can set

x =
1

λ
, y =

1

λ
.

Therefore g(x, y) =
1

2λ2
+

1

λ2
= 1. Thus

λ = ±
√

3

2

and f(x, y) = x+ 2y =
1

λ
+

2

λ
=

3

λ
is maximum when λ =

√
3
2

and the maximum value is

3

√
2

3
=
√

6.



23.(6pts) Find the points at which the direction of fastest change of the function f(x, y) =
x2 + y2 − 3x− 4y + 2016 is parallel to ~ı+ 2~.

(a) (2, 3) (b) All points on the line y = 2x− 1

(c) All points on the line y = x+ 1 (d)

(
3

2
+

1

2
√

5
, 2 +

1√
5

)
(e) (1, 1)

Solution.Solution. At the point (x, y) the direction of fastest increase of f is∇f(x, y) = 〈2x− 3, 2y − 4〉.
Hence 〈2x− 3, 2y − 4〉 = λ 〈1, 2〉 so 2x− 3 = λ and 2y − 4 = 2λ. Hence 2y − 4 = 2(2x− 3)
so y = 2x− 1.

OR
At the point (x, y) the direction of fastest increase of f is ∇f(x, y) = 〈2x− 3, 2y − 4〉. The

vector 〈2x− 3, 2y − 4〉 is parallel to 〈1, 2〉 provided

∣∣∣∣∣∣
~ı ~ ~k

2x− 3 2y − 4 0
1 2 0

∣∣∣∣∣∣ = 4x−6−(2y−4) = 0

or y = 2x− 1.

24.(6pts) Let ~F = 〈x+ 2xy + eyz, y − y2 + sin(x2 + z2), z + xy〉 be a vector field and let E

be a solid circular cylinder of radius 2 and height 3. Compute the flux integral

∫∫
∂E

~F • d~S

with the outward normal.

(a) 12π (b) 48 (c) 52π

(d) 36π (e) Can not be determined from the given information.

Solution.Solution. ∇• ~F =
∂(x+ 2xy + eyz)

∂x
+
∂(y − y2 + sin(x2 + z2))

∂y
+
∂(z + xy)

∂z
=

(1 + 2y) + (1− 2y) + 1 = 3. By the Divergence Theorem,∫∫
∂E

~F • d~S =

∫∫∫
E

(∇• ~F ) dV = 3 · volume(E) = 3 · π · 22 · 3 = 36π



25.(6pts) Identify the parametric surface ~r(u, v) = 〈sin(u) cos(v), sin(u) sin(v), cos(u)〉 where
0 6 u 6 π and 0 6 v 6 2π.

(a) (b) (c)

(d) (e)

Solution.Solution. This is spherical coordinates for ρ = 1 θ = v and φ = u, so this is a sphere of
radius 1.


