1. (6pts) Find all the critical points of $f(x, y)=4 x y-x^{4}-y^{4}$.
(a) $(0,0),(1,1),(-1,-1)$
(b) $(0,0)$
(c) $(0,0),(1,-1),(-1,1)$
(d) $(1,-1),(1,1),(-1,1),(-1,-1)$
(e) $(0,0),(1,-1),(1,1),(-1,1),(-1,-1)$

Solution.

$$
\nabla f=\left\langle 4 y-4 x^{3}, 4 x-4 y^{3}\right\rangle=\langle 0,0\rangle
$$

so $4 y-4 x^{3}=0$, and $4 x-4 y^{3}=0$. Hence $y=x^{3}$ and $x-x^{9}=0$. Hence $x=0$ or $x= \pm 1$. So the critical points are

$$
(0,0) \quad(1,1) \quad(-1,-1)
$$

2.(6pts) Evaluate $\iint_{S}(\nabla \times \vec{F}) \bullet d \vec{S}$, where $\vec{F}(x, y, z)=-y \vec{\imath}+x \vec{\jmath}+x^{2} y z \vec{k}, S$ is the part of the paraboloid $z=x^{2}+y^{2}$ that lies inside the cylinder $x^{2}+y^{2}=4$, oriented downward. (Hint: Use Stokes' Theorem and be careful with orientations.)
(a) -8π
(b) -4π
(c) 0
(d) 4π
(e) 8π

Solution. The boundary of the surface S is the circle of radius 2 at height 4 and so is parametrized by $\vec{r}(t)=\langle 2 \cos (t), 2 \sin (t), 4\rangle, 0 \leqslant t \leqslant 2 \pi$. By Stoke's Theorem we can compute

$$
\begin{gathered}
\int_{0}^{2 \pi} \vec{F} \cdot \vec{r}^{\prime}(t) d t=\int_{0}^{2 \pi}\left\langle-2 \sin (t), 2 \cos (t), \cos ^{2}(t) \sin (t) \cdot 4\right\rangle \cdot\langle-2 \sin (t), 2 \cos (t), 0\rangle d t= \\
\int_{0}^{2 \pi} 4 \sin ^{2}(t)+4 \cos ^{2}(t) d t=8 \pi
\end{gathered}
$$

The orientation on the surface for this orientation on the boundary is the upward orientation so the correct answer is -8π.
3. (6pts) Let S be the bounded surface in space parametrized by the equations

$$
x(u, v)=u+v, y(u, v)=u-v, z(u, v)=v
$$

where $0 \leqslant u \leqslant 4$ and $0 \leqslant v \leqslant 2$. Then the flux integral of the vector field $\vec{F}(x, y, z)=$ $x \vec{\imath}-\vec{\jmath}-\frac{y}{2} \vec{k}$ over the surface S with downward normal is
(a) 24
(b) 20
(c) 40
(d) 10
(e) 0

Solution. Let $\vec{r}(u, v)=\langle x(u, v), y(u, v), z(u, v)\rangle$. Note that $\vec{r}_{u}=\langle 1,1,0\rangle$ and $r_{v}=\langle 1,-1,1\rangle$, $\vec{r}_{u} \times \vec{r}_{v}=\left|\begin{array}{ccc}\vec{\imath} & \vec{\jmath} & \vec{k} \\ 1 & 1 & 0 \\ 1 & -1 & 1\end{array}\right|=\langle 1,-1,-2\rangle$. Hence $\vec{r}_{u} \times \vec{r}_{v}$ is the downward normal and

$$
\vec{F} \bullet\left(\vec{r}_{u} \times \vec{r}_{v}\right)=\left\langle x,-1,-\frac{y}{2}\right\rangle \bullet\langle 1,-1,-2\rangle=x(u, v)+1+y(u, v)=2 u+1 .
$$

Thus

$$
\begin{aligned}
\iint_{S} \vec{F} \bullet d \vec{S} & =\int_{0}^{4} \int_{0}^{2}(2 u+1) d v d u \\
& =\left.\int_{0}^{4}(2 u+1) v\right|_{0} ^{2} d u=2 \int_{0}^{4}(2 u+1) d u=\left.2\left(u^{2}+u\right)\right|_{0} ^{4}=2(16+4)-0=40
\end{aligned}
$$

4. (6pts) A spaceship is traveling along the curve $\vec{r}(t)=\langle\cos t, t, \sin t\rangle$. Starting with $t=0$ how long does the spaceship have to travel to travel a distance of 2π.
(a) $\frac{3}{\sqrt{2}} \pi$
(b) It never goes that far.
(c) 2π
(d) $\sqrt{2} \pi$
(e) 2

Solution. Distance traveled is $s(t)=\int_{0}^{t}\left|\vec{r}^{\prime}(t)\right| d t=\int_{0}^{t}|\langle-\sin t, 1, \cos t\rangle| d t \int_{0}^{t} \sqrt{2} d t=\sqrt{2} t$. Now set $\sqrt{2} t=2 \pi$. So $t=\sqrt{2} \pi$.
5.(6pts) Let D be the region in the first quadrant of the $x y$-plane bounded by the line $y=x-2$ and the parabola $x=y^{2}$. Let S be the solid under the plane $z=x$ and above the region D. Which integral below is the iterated integral of the function $f(x, y, z)=z-x y$ over the solid S ?
(a) $\int_{-1}^{2} \int_{y^{2}}^{y+2} \int_{0}^{x}(z-x y) d z d x d y$
(b) $\int_{1}^{4} \int_{x-2}^{\sqrt{x}} \int_{0}^{x}(z-x y) d z d y d x$
(c) $\int_{0}^{2} \int_{y^{2}}^{y+2} \int_{0}^{x}(z-x y) d z d x d y$
(d) $\int_{0}^{4} \int_{x-2}^{\sqrt{x}} \int_{0}^{x}(z-x y) d z d y d x$
(e) $\int_{y}^{y+2} \int_{x-2}^{\sqrt{x}} \int_{0}^{x y} x d z d y d x$

Solution. The region D is enclosed by the curves $x=y^{2}, x=y+2, y=0$, and $y=2$. The curve $x=y^{2}$ is to the left and $x=y+2$ is to the right. Since the plane $z=x$ lies above the $x y$-plane for all points in D, the bound on z is $0 \leqslant z \leqslant x$. Altogether:

$$
\int_{0}^{2} \int_{y^{2}}^{y+2} \int_{0}^{x} z-x y d z d x d y
$$

6. (6pts) Given the curve $\vec{r}(t)=\left\langle t, t, \frac{t^{2}}{2}\right\rangle$, find the unit binormal vector at the point $(2,2,2)$.
(a) $\frac{1}{\sqrt{2}}\langle 1,0,-1\rangle$
(b) There is no unit binormal at this point.
(c) $\frac{1}{\sqrt{2}}\langle 1,0,1\rangle$
(d) $\frac{1}{\sqrt{2}}\langle-1,1,0\rangle$
(e) $\frac{1}{\sqrt{2}}\langle 1,-1,0\rangle$

Solution. The particle is at the point $(2,2,2)$ when and only when $t=2$.
$\vec{r}^{\prime}(t)=\langle 1,1, t\rangle ; \vec{r}^{\prime}(2)=\langle 1,1,2\rangle$.
$\vec{r}^{\prime \prime}(t)=\langle 0,0,1\rangle ; \vec{r}^{\prime \prime}(2)=\langle 0,0,1\rangle$
Then $\vec{r}^{\prime}(2) \times \vec{r}^{\prime \prime}(2)=\left|\begin{array}{ccc}\vec{\imath} & \vec{\jmath} & \vec{k} \\ 1 & 1 & 2 \\ 0 & 0 & 1\end{array}\right|=\left|\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right| \vec{\imath}-\left|\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right| \vec{\jmath}+\left|\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right| \vec{k}=\langle 1,-1,0\rangle$.
Then $\vec{B}(2)=\frac{1}{\sqrt{2}}\langle 1,-1,0\rangle$.
7. (6pts) Let \vec{F} be the vector field $\left\langle 3 x^{2}-y z, x z, y-2 x\right\rangle$. At which of the following points is the curl of \vec{F} perpendicular to the plane $3 x+6 y+6 z=7$?
(a) $(0,1,0)$
(b) $(1,0,0)$
(c) $(1,1,1)$
(d) $(0,0,0)$
(e) $(0,0,1)$

Solution. The curl of \vec{F} is

$$
\left|\begin{array}{ccc}
\vec{\imath} & \vec{\jmath} & \vec{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
3 x^{2}-y z & x z & y-2 x
\end{array}\right|=\langle 1-x, 2-y, 2 z\rangle
$$

The normal vector of the plane is $\langle 3,6,6\rangle$, so we want a point where the curl of \vec{F} is parallel to $\langle 3,6,6\rangle$. If $z=0$ then the third coordinate of the curl of \vec{F} is 0 , and so the curl is not parallel to $\langle 3,6,6\rangle$. This rules out $(0,1,0),(1,0,0)$, and $(0,0,0)$. For the same reason x cannot be 1 , which rules out $(1,1,1)$. So the answer must be $(0,0,1)$. Indeed, the curl of \vec{F} at $(0,0,1)$ is $\langle 1,2,2\rangle$, which is parallel to $\langle 3,6,6\rangle$.
8.(6pts) Suppose $\vec{r}(t)$ is a vector-valued function such that $\vec{r}^{\prime}(t)=\left\langle e^{t}, 2 t+4, \pi \cos (\pi t)\right\rangle$ and $\vec{r}(1)=\langle 0,7,1\rangle$. Find $\vec{r}(0)$.
(a) $\langle 1,0,0\rangle$
(b) $\langle-e, 1, \pi-1\rangle(\mathrm{c})\langle 0,7,1\rangle$
(d) $\langle 0,4, \pi\rangle$
(e) $\langle 1-e, 2,1\rangle$

Solution. After taking antiderivatives:

$$
\vec{r}(t)=\left\langle e^{t}+c_{1}, t^{2}+4 t+c_{2}, \sin (\pi t)+c_{3}\right\rangle
$$

for some constants c_{1}, c_{2}, c_{3}. From $\vec{r}(1)=\langle 0,7,1\rangle$, it follows that

$$
\begin{aligned}
& e+c_{1}=0 \\
& 5+c_{2}=7 \\
& 0+c_{3}=1
\end{aligned}
$$

So $\vec{r}(t)=\left\langle e^{t}-e, t^{2}+4 t+2, \sin (\pi t)+1\right\rangle$, which means $\vec{r}(0)=\langle 1-e, 2,1\rangle$.
9.(6pts) Let S be the bounded surface in space parametrized by the equations

$$
x(u, v)=u+v, y(u, v)=u-v, z(u, v)=v
$$

where $0 \leqslant u \leqslant 4$ and $0 \leqslant v \leqslant 2$. Then the surface integral

$$
\iint_{S}(x+y) z d S=
$$

(a) -32
(b) 32
(c) $-32 \sqrt{6}$
(d) $32 \sqrt{6}$
(e) $8 \sqrt{6}$

Solution. Let $\vec{r}(u, v)=(x(u, v), y(u, v), z(u, v))$. Note that $\vec{r}_{u}=\langle 1,1,0\rangle$ and $\vec{r}_{v}=$ $\langle 1,-1,1\rangle, \vec{r}_{u} \times \vec{r}_{v}=\langle 1,-1,-2\rangle$ and $\left|\vec{r}_{u} \times \vec{r}_{v}\right|=\sqrt{6}$.

$$
\begin{aligned}
\iint_{S}(x+y) z d S & =\int_{0}^{4} \int_{0}^{2}(x(u, v)+y(u, v)) z(u, v)\left|\vec{r}_{u} \times \vec{r}_{v}\right| d v d u \\
& =\int_{0}^{4} \int_{0}^{2}(2 u) v \sqrt{6} d v d u \\
& ==32 \sqrt{6}
\end{aligned}
$$

10. 6 pts) Let $p(x, y)$ be a function such that $\nabla p=\langle 2 x+y, x+2 y\rangle$ and $p(0,0)=1$. Find $p(1,1)$.
(a) 4
(b) 0
(c) 2
(d) -1
(e) 3

Solution. Let $p(x, y)$ be a potential function. Then $\frac{\partial p}{\partial x}=2 x+y$ so $p(x, y)=x^{2}+x y+h(y)$. Then $\frac{\partial p}{\partial y}=x+2 y$ so $p(x, y)=x+h^{\prime}(y)=x+2 y$, so $h^{\prime}(y)=y$ and $p(x, y)=x^{2}+x y+y^{2}+C$. $p(0,0)=C$ so $p(x, y)=x^{2}+x y+y^{2}+1$. Then $p(1,1)=4$.
11. $(6 \mathrm{pts})$ Find the projection of the vector $\langle 3,1,-1\rangle$ onto the vector $\langle 1,0,-1\rangle$.
(a) $\left\langle\frac{1}{\sqrt{12}}, 0,-\frac{1}{\sqrt{12}}\right\rangle$
(b) $\langle 6,2,-2\rangle$
(c) $\langle 2,0,-2\rangle$
(d) $\langle 2,1,-2\rangle$
(e) $\langle 5,1,-2\rangle$

Solution. $\operatorname{proj}_{\langle 1,0,-1\rangle}(<3,1,-1>)=\frac{\langle 3,1,-1\rangle \cdot\langle 1,0,-1\rangle}{\langle 1,0,-1\rangle \cdot\langle 1,0,-1\rangle}\langle 1,0,-1\rangle=\frac{4}{2}\langle 1,0,-1\rangle=$ $\langle 2,0,-2\rangle$
12. (6pts) Find $\frac{\partial x}{\partial z}$ at the point $(1,2,3)$ where x is defined implicitly as a function of y and z by the equation $x y z-6=e^{x y z}-e^{6}$.
(a) $\frac{2 e^{6}-2}{6-6 e^{6}}$
(b) $\frac{2 e^{6}-2}{6 e^{6}+6}$
(c) $\frac{2 e^{6}-2}{6 e^{6}-6}$
(d) $\frac{2 e^{6}+2}{6-6 e^{6}}$
(e) $\frac{2 e^{6}+2}{6 e^{6}-6}$

Solution. $\frac{\partial}{\partial z}: x y z=e^{x y z}$.

$$
\frac{\partial x}{\partial z} y z+\frac{\partial y}{\partial z} x z+\frac{\partial z}{\partial z} x y=\left(\frac{\partial x}{\partial z} y z+\frac{\partial y}{\partial z} x z+\frac{\partial z}{\partial z} x y\right) e^{x y z}
$$

But $\frac{\partial y}{\partial z}=0$ so

$$
\begin{gathered}
\frac{\partial x}{\partial z} y z+x y=\left(\frac{\partial x}{\partial z} y z+x y\right) e^{x y z} \\
\frac{\partial x}{\partial z} 6+2=\left(\frac{\partial x}{\partial z} 6+2\right) e^{6} \\
\frac{\partial x}{\partial z}\left(6-6 e^{6}\right)=2 e^{6}-2 \\
\frac{\partial x}{\partial z}=\frac{2 e^{6}-2}{6-6 e^{6}}=\frac{2\left(e^{6}-1\right)}{6\left(1-e^{6}\right)}=-\frac{1}{3}
\end{gathered}
$$

13. (6pts) Evaluate $\int_{\mathcal{C}} \vec{F} \bullet d \vec{r}$ where $\vec{F}=\left\langle e^{x},-x y\right\rangle$ and \mathcal{C} is the boundary of the square with corners $\{(0,0),(0,2),(2,2),(2,0)\}$ in a clockwise direction.
(a) -4
(b) 4
(c) 0
(d) 6
(e) -6

Solution. Use Green's Theorem to get $\int_{\mathcal{C}} \vec{F} \bullet d \vec{r}=-\iint_{R}-y d A=\iint_{R} y d A$. Notice that this is the moment about the x-axis. So since the area of R is 4 and center of mass is $(1,1)$, this integral have a value of 4 . It is also easy to solve $\int_{0}^{2} \int_{0}^{2} y d y d x$.
14. (6 pts) The equation of the plane which contains the point $(0,0,0),(1,0,1)$ and $(1,1,0)$
(a) $x+y+z=0$
(b) $-x+y+z=2$
(c) $x-y+z=0$
(d) $-x+y+z=0$
(e) $x+y+z=2$

Solution. The vector

$$
(\vec{\imath}+\vec{k}) \times(\vec{\imath}+\vec{\jmath})=-\vec{\imath}+\vec{\jmath}+\vec{k}
$$

is normal to the plane. Moreover the plane passes through the origin. So

$$
-x+y+z=0
$$

is the equation of the plane.
15.(6pts) At what points does the curve $\vec{r}(t)=\langle t, 0,2 t+3\rangle$ intersect the paraboloid $z=$ $x^{2}+y^{2} ?$
(a) $(-3,0,-3)$
(b) $(3,0,9),(-1,0,1)$
(c) $(-3,0,-3),(1,0,5)$
(d) $(-1,0,1)$
(e) $(3,0,9)$

Solution. We need to solve $2 t+3=t^{2}+0^{2}$ so $t^{2}-2 t-3=(t-3)(t+1)=0$. Solutions are $t=3$ and hence $(3,0,9)$ and $t=1$ and hence $(-1,0,1)$.
16. (6pts) Evaluate $\int_{\mathcal{C}} z d x-y d y+3 x d z$ where \mathcal{C} is defined by $\vec{r}(t)=\left\langle t^{3}, t^{2}, t\right\rangle, 0 \leqslant t \leqslant 2$.
(a) 32
(b) 8
(c) 20
(d) -8
(e) 16

Solution. $\int_{\mathcal{C}} z d x-y d y+3 x d z$ where $\mathcal{C}=\int_{\mathcal{C}}\langle z,-y, 3 x\rangle \bullet d \vec{r}=\int_{0}^{2}\left\langle t,-t^{2}, 3 t^{3}\right\rangle \bullet\left\langle 3 t^{2}, 2 t, 1\right\rangle d t=$ $\int_{0}^{2} 3 t^{3}-2 t^{3}+3 t^{3} d t=\int_{0}^{2} 4 t^{3} d t=2^{4}=16$.
17. (6pts) Compute the tangential component of the acceleration of a particle at $t=\frac{\pi}{2}$ whose motion is given by $\vec{r}(t)=\left\langle 4 \cos (t), 4 \sin (t), \frac{3}{\pi} t^{2}\right\rangle$.
(a) $\frac{5}{\pi}$
(b) $\frac{18}{5 \pi}$
(c) $\frac{9}{5 \pi}$
(d) $\frac{4}{5} \sqrt{25+\frac{18}{\pi^{2}}}$
(e) 0

Solution. Recall

$$
a_{T}(t)=\frac{\vec{r}^{\prime}(t) \bullet \vec{r}^{\prime \prime}(t)}{\left|\vec{r}^{\prime}(t)\right|^{2}}
$$

Now $\vec{r}^{\prime}(t)=\left\langle-4 \sin (t), 4 \cos (t), \frac{6}{\pi} t\right\rangle$ and $\vec{r}^{\prime \prime}(t)=\left\langle-4 \cos (t),-4 \sin (t), \frac{6}{\pi}\right\rangle$. Thus

$$
a_{T}(\pi)=\frac{\langle-4,0,3\rangle \cdot\left\langle 0,-4, \frac{6}{\pi}\right\rangle}{\sqrt{0^{2}+4^{2}+3^{2}}}=\frac{18}{5 \pi} .
$$

18. 6 pts) Let $f(x, y)$ be any function with continuous second order derivatives. Let (a, b) be a critical point such that $f_{x y}(a, b)=0, f_{y y}(a, b)>0$ and $f_{x x}(a, b) \neq 0$, then,
(a) (a, b) is a local minimum if $f_{x x}(a, b)<0$.
(b) (a, b) is never a saddle point.
(c) (a, b) is a local minimum if $f_{x x}(a, b)>0$.
(d) (a, b) is a local maximum if $f_{x x}(a, b)>0$.
(e) (a, b) is a local maximum if $f_{x x}(a, b)<0$.

Solution. Since $f_{x y}(a, b)=0$, we have

$$
D(a, b)=f_{x x}(a, b) f_{y y}(a, b)-f_{x y}(a, b)^{2}=f_{x x} f_{y y}
$$

which is clearly nonzero under the assumptions. Since it is given that $f_{x x}(a, b)>0$ the sign of D is determined by $f_{y y}(a, b)$. Thus we have two cases
(1) If $f_{y y}(a, b)<0$, then $D(a, b)<0$, then (a, b) is a saddle point. This eliminates the case " (a, b) is never a saddle point".
(2) If $f_{y y}(a, b)>0$, then $D(a, b)>0$. Since $f_{x x}(a, b)>0$, by the Second Derivative Test, (a, b) must be local minimum.
19. (6 pts) Find $\iint_{D} e^{x^{2}+y^{2}} d A$ where D is the disk centered at the origin of radius a.
(a) $2 \pi e^{a^{2}}$
(b) $a \pi^{2}$
(c) $\pi\left(e^{a^{2}}-1\right)$
(d) $a e^{\pi a^{2}}$
(e) 0

Solution. Convert to iterated polar integral: $\iint_{D} e^{x^{2}+y^{2}} d A=\int_{0}^{2 \pi} \int_{0}^{a} e^{r^{2}} r d r d \theta=\left.\int_{0}^{2 \pi} \frac{e^{r^{2}}}{2}\right|_{0} ^{a} d \theta=$ $\int_{0}^{2 \pi} \frac{e^{a^{2}}-1}{2} d \theta=\pi\left(e^{a^{2}}-1\right)$
20. (6pts) A thin wire W in space parametrized by the equation

$$
\langle x(t), y(t), z(t)\rangle=\langle\cos t, \sin t, t\rangle
$$

where $0 \leqslant t \leqslant \pi$, has density

$$
\rho(x, y, z)=z
$$

at the point (x, y, z) on the wire. Then the mass of the wire is
(a) $\frac{\pi^{2}}{4}$
(b) $\frac{\sqrt{2} \pi^{2}}{2}$
(c) $\frac{\sqrt{2} \pi^{2}}{4}$
(d) $\frac{\sqrt{2} \pi^{2}}{8}$
(e) $\frac{\sqrt{2} \pi}{4}$

Solution. The mass $m=\int_{W} \rho(x, y, z) d s$, where s is the arc-length parametrization.

$$
\begin{aligned}
\int_{W} \rho(x, y, z) d s & =\int_{0}^{\pi} \rho(x(t), y(t), z(t)) \sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}+z^{\prime}(t)^{2}} d t \\
& =\int_{0}^{\pi} t \sqrt{2} d t \\
& =\left.\sqrt{2} \frac{t^{2}}{2}\right|_{t=0} ^{\pi} \\
& =\frac{\sqrt{2} \pi^{2}}{2}
\end{aligned}
$$

21. (6pts) Which one of the followings is the directional derivative of $f(x, y, z)=x e^{y}+y e^{z}+z e^{x}$ at the point $(0,0,1)$ in the direction of the vector $\vec{v}=\langle-1,2,-2\rangle$?
(a) $-\frac{e}{3}$
(b) $-\frac{1}{3}$
(c) $\frac{-4+2 e}{3}$
(d) $\frac{1}{3}$
(e) $-4+2 e$

Solution. $\nabla f(x, y, z)=\left\langle e^{y}+z e^{x}, x e^{y}+e^{z}, y e^{z}+e^{x}\right\rangle$ so $\nabla f(0,0,1)=\langle 2, e, 1\rangle$ and hence

$$
D_{\langle-1,2,-2\rangle} f(0,0,1)=\frac{\langle-1,2,-2\rangle \bullet \nabla f(0,0,1)}{|\langle-1,2,-2\rangle|}=\frac{\langle-1,2,-2\rangle \bullet\langle 2, e, 1\rangle}{\sqrt{9}}=\frac{2 e-4}{3}
$$

22.(6pts) The maximum value of the function

$$
f(x, y)=x+2 y
$$

on the ellipse on $x y$-plane given by the equation $\frac{x^{2}}{2}+y^{2}=1$ is
(a) $\sqrt{\frac{2}{3}}$
(b) 2
(c) 1
(d) $\sqrt{6}$
(e) $\sqrt{\frac{3}{2}}$

Solution. We are trying to maximize $f(x, y)=x+2 y$, under the constraint $g(x, y)=$ $\frac{x^{2}}{2}+y^{2}=1$. We apply methods of Lagrange Multipliers: So we solve the equations
(1) $f_{x}(x, y)=\lambda g_{x}(x, y) \Rightarrow 1=\lambda x$,
(2) $f_{y}(x, y)=\lambda g_{y}(x, y) \Rightarrow 2=2 \lambda y$, and,
(3) $g(x, y)=\frac{x^{2}}{2}+y^{2}=1$
simultaneously. Observe that $\lambda \neq 0$, so we can set

$$
x=\frac{1}{\lambda}, y=\frac{1}{\lambda} .
$$

Therefore $g(x, y)=\frac{1}{2 \lambda^{2}}+\frac{1}{\lambda^{2}}=1$. Thus

$$
\lambda= \pm \sqrt{\frac{3}{2}}
$$

and $f(x, y)=x+2 y=\frac{1}{\lambda}+\frac{2}{\lambda}=\frac{3}{\lambda}$ is maximum when $\lambda=\sqrt{\frac{3}{2}}$ and the maximum value is

$$
3 \sqrt{\frac{2}{3}}=\sqrt{6}
$$

23. 6 pts) Find the points at which the direction of fastest change of the function $f(x, y)=$ $x^{2}+y^{2}-3 x-4 y+2016$ is parallel to $\vec{\imath}+2 \vec{\jmath}$.
(a) $(2,3)$
(b) All points on the line $y=2 x-1$
(c) All points on the line $y=x+1$
(d) $\left(\frac{3}{2}+\frac{1}{2 \sqrt{5}}, 2+\frac{1}{\sqrt{5}}\right)$
(e) $(1,1)$

Solution. At the point (x, y) the direction of fastest increase of f is $\nabla f(x, y)=\langle 2 x-3,2 y-4\rangle$. Hence $\langle 2 x-3,2 y-4\rangle=\lambda\langle 1,2\rangle$ so $2 x-3=\lambda$ and $2 y-4=2 \lambda$. Hence $2 y-4=2(2 x-3)$ so $y=2 x-1$.

OR
At the point (x, y) the direction of fastest increase of f is $\nabla f(x, y)=\langle 2 x-3,2 y-4\rangle$. The vector $\langle 2 x-3,2 y-4\rangle$ is parallel to $\langle 1,2\rangle$ provided $\left|\begin{array}{ccc}\vec{\imath} & \vec{\jmath} & \vec{k} \\ 2 x-3 & 2 y-4 & 0 \\ 1 & 2 & 0\end{array}\right|=4 x-6-(2 y-4)=0$ or $y=2 x-1$.
24. (6pts) Let $\vec{F}=\left\langle x+2 x y+e^{y z}, y-y^{2}+\sin \left(x^{2}+z^{2}\right), z+x y\right\rangle$ be a vector field and let E be a solid circular cylinder of radius 2 and height 3 . Compute the flux integral $\iint_{\partial E} \vec{F} \bullet d \vec{S}$ with the outward normal.
(a) 12π
(b) 48
(c) 52π
(d) 36π
(e) Can not be determined from the given information.

Solution. $\nabla \cdot \vec{F}=\frac{\partial\left(x+2 x y+e^{y z}\right)}{\partial x}+\frac{\partial\left(y-y^{2}+\sin \left(x^{2}+z^{2}\right)\right)}{\partial y}+\frac{\partial(z+x y)}{\partial z}=$ $(1+2 y)+(1-2 y)+1=3$. By the Divergence Theorem, $\iint_{\partial E} \vec{F} \cdot d \vec{S}=\iiint_{E}(\nabla \cdot \vec{F}) d V=3 \cdot \operatorname{volume}(E)=3 \cdot \pi \cdot 2^{2} \cdot 3=36 \pi$
25.(6pts) Identify the parametric surface $\vec{r}(u, v)=\langle\sin (u) \cos (v), \sin (u) \sin (v), \cos (u)\rangle$ where $0 \leqslant u \leqslant \pi$ and $0 \leqslant v \leqslant 2 \pi$.

Solution. This is spherical coordinates for $\rho=1 \theta=v$ and $\phi=u$, so this is a sphere of radius 1.

