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In this note we outline a connection between the generalized co-
homology theories of unoriented cobordism and (weakly-) complex
cobordism and the theory of formal commutative groups of one vari-
able [4], [5]. This connection allows us to apply Cartier’s theory of
typical group laws to obtain an explicit decomposition of complex
cobordism theory localized at a prime p into a sum of Brown-Peterson
cohomology theories [1] and to determine the algebra of cohomology
operations in the latter theory.

1. Formal group laws. If R is a commutative ring with unit, then
by a formal (commutative) group law over R one means a power
series F(X, Y) with coefficients in R such that

(i) F(X, 0)=F(0, X)=X,

(i) F(F(X, Y), Z)=F(X, F(Y, 2)),

(iii) F(X, Y)=F(Y,X). Welet I(X) be the “inverse” series satisfy-
ing F(X, I(X))=0 and let

w(X) = dX/Fy(X, 0)

be the normalized invariant differential form, where the subscript 2
denotes differentiation with respect to the second variable. Over
R®Q, there is a unique power series /(X) with leading term X
such that

M F(X, Y)) = UX) + KY).

The series /(X) is called the logarithm of F and is determined by
the equations

U'(X)dX = o(X),

@ 1(0) =0.

2. The formal group law of complex cobordism theory. By complex
cobordism theory Q*(X) we mean the generalized cohomology theory
associated to the spectrum MU. If E is a complex vector bundle of
dimension # over a space X, we let ¢f(E)EQ?(X), 1Si<n be
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the Chern classes of E in the sense of Conner-Floyd [3]. Since
Q*(CP=X CP=) =Q*(pt)[[x, ¥]], where x =c}(0(1)) ®1, y =1Q@c%(0(1))
and O(1) is the canonical line bundle on CP>, there is a unique power
series Fo(X, V)= D auX*V" with a,;EQ*%-21(pt) such that

©) (s ® L) = F(c1(L), c1(Ls))

for any two complex line bundles with the same base. The power
series FB is a formal group law over Q¢*(pt).

THEOREM 1. Let E be a complex vector bundle of dimension n, let
f: PE'—X be the associated projective bundle of lines in the dual E' of
E, and let 0(1) be the canonical quotient line bundle on PE’. Then the
Gysin homomorphism fy: QU(PE')—Qe-27+2(X) is given by the formula

u(Z)w(Z)

@ Fo(u(®) = res —————.
117z, D)
J=1
Here w(Z) EQUX)[Z], E=c$(0(1)), w and I are the invariant differential
form and inverse respectively for the group law FS, and the \; are the
dummy variables of which ci (E) is the gth-elementary symmetric function.

The hardest part of this theorem is to define the residue; we spe-
cialize to dimension one an unpublished definition of Cartier, which
has also been used in a related form by Tate [7].

Applying the theorem to the map f: CP"—pt, we find that the
coefficient of X"dX in w(X) is P,, the cobordism class of CP* in
Q-2n(pt). From (2) we obtain the

COROLLARY (MYSHENKO [6]). The logarithm of the formal group law
of complex cobordism theory is

Z X+l
5 U(X) = P, .
() ( ) nz0 ﬂ+1

3. The universal nature of cobordism group laws.

THEOREM 2. The group law F® over Q°°(pt) is a universal formal
(commutative) group law in the sense that given any such law F over a
commaultative ring R there is a unique homomorphism Q*(pt)—R carry-
ing F8to F.

ProoF. Let F, over L be a universal formal group law [5] and
let : L—Qe*(pt) be the unique ring homomorphism sending F, to F8.
The law F, over L®@ is universal for laws over Q-algebras. Such a
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law is determined by its logarithm series which can be any series with
leading term X. Thus if Y p,X"*+!/n+1 is the logarithm of F,, LQQ
is a polynomial ring over @ with generators ;. By (5) kp;=P;, so as
Q*(pt) @Q@=Q [P, Py, - - - ], it follows that Z®@Q is an isomorphism.

By Lazard [5, Theorem I1], L is a polynomial ring over Z with in-
finitely many generators; in particular L is torsion-free and hence 4
is injective. To prove surjectivity we show £(L) contains generators
for Q*(pt). First of all hp,=P,Eh(L) because p,EL as it is the nth
coefficient of the invariant differential of F,. Secondly we must
consider elements of the form [M,] where M, is a nonsingular
hypersurface of degree ki, - - -, k in CPMX --- XCPm™ Let
7 be the map of this multiprojective space to a point. Then
[M,]=me}(LP® - - - ®LY), where L; is the pull-back of the canon-
ical line bundle on the jth factor. The Chern class of this tensor
product may be written using the formal group law F® in the form
D ow*ay.... 8 - - - Zr, where 0<4;<n;, 1 <j<r, where z;=c}(L;), and
where a;,....,€k(L). Since

,
I .,
%31 * By = H Pnj-—lg

i=1

also belongs to #(L), it follows that [M,]Ek(L). Thus % is an iso-
morphism and the theorem is proved.

We can also give a description of the unoriented cobordism ring
using formal group laws. Let #*(X) be the unoriented cobordism ring
of a space X, that is, its generalized cohomology with values in the
spectrum MO. There is a theory of Chern (usually called Whitney)
classes for real vector bundles with ¢;(E)E7i(X). The first Chern
class of a tensor product of line bundles gives rise to a formal group
law F7 over the commutative ring 7*(pt). Since the square of a real
line bundle is trivial, we have the identity

(6) F1(X,X) = 0.

THEOREM 3. The group law F over n*(pt) is a universal formal (com-
mutative) group law over a ring of characteristic two satisfying (6).

4. Typical group laws (after Cartier [2]). Let F be a formal group
law over R. Call a power series f(X) with coefficients in R and without
constant term a curve in the formal group defined by the law. The
set of curves forms an abelian group with addition (f +7F g)(X)
= F(f(X), g(X)) and with operators
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([r1)(X) = f(rX) rER
(Vaf) (X) = 127 i
(FDX) = 3 7fGxm nz1,

where the {; are the nth roots of 1. The set of curves is filtered by the
order of a power series and is separated and complete for the filtration.

If R is an algebra over Z,, the integers localized at the prime p,
then a curve is said to be typical if F,f =0 for any prime g>=p. If R is
torsion-free then it is the same to require that the series I(f(X)) over
R®Q has only terms of degree a power of p, where / is the logarithm
of F. The group law Fis said to be a typical law if the curve yo(X) =X
is typical. There is a canonical change of coordinates rendering a given
law typical. Indeed let cr be the curve
) D AL

(m,p)=1 B

where the sum as well as division by # prime to p is taken in the
filtered group of curves and where u is the M 6bius function. Then the
group law (cp+F)(X, ¥) =cr(F(c7'X, ¢;'Y)) is typical.

5. Decomposition of Qf,. For the rest of this paper p is a fixed
prime. Let Q5,(X) =0*(X)®2Zy) and let £=csQ. Then £(Z) is a
power series with leading term Z with coefficients in QF,(pf), so there
is a unique natural transformation §: Q) (X)—Q%,(X) which is
stable, a ring homomorphism, and such that

fa(L) = ei(L))
for all line bundles L.

THEOREM 4. The operation £ is homogeneous, idempotent, and its
values on Qg (pt) are

£P,) =P, ifn=p*— 1 for somea =0,
=0  otherwise.

Let QT*(X) be the image of £. Then there are canonical ring iso-
morphisms

®) oT (o) ® Qn(X) =oT"(X),
2(p) (pt)
©) Qp(pt) ® T (X) 2 Q0p(X).

QT* (pt)
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QT* is the gemeralized cohomology theory associated to the Brown-
Peterson spectrum [1] localized at p.

It is also possible to apply typical curves to unoriented cobordism
theory where the prime involved is p=2. One defines similarly an
idempotent operator £ whose image now is H*(X, Z/2Z); there is also
a canonical ring isomorphism

7*(p) ® H*(X, Z/22Z) ~ y*(X)
analogous to (9).

6. Operations in QT*. If 7: Q% —QT* is the surjection induced by
£, then 7 carries the Thom class in Qz,)(M U) into one for QT*. As a
consequence Q7* has the usual machinery of characteristic classes
with ¢T(E) =wc}(E) and FoT =7 F®, Let ¢=(t;, ts, - - - ) be an infinite
sequence of indeterminates and set

7
$:(X) = D t.X7" =1

nz0
where the superscript on the summation indicates that the sum is
taken as curves in the formal group defined by F87. There is a unique
stable multiplicative operation (¢7) " : Q*(X)—QT*(X) [ts, tsy - - - |
such that

-1,0T

(6 e(D) = ¢t (ex (L))

for all line bundles L. This operation can be shown using (8) to kill
the kernel of 7 and hence it induces a stable multiplicative operation

re: QT*(X) — QT*(X) 8y, b2y - - - |-
Writing
r(x) = D ra(2)te  if x € QT*(X)

a

where the sum is taken over all sequences o= (a1, a2, - - ) of natural
numbers all but a finite number of which are zero, we obtain stable

operations
ra: QT*(X) — QT*(X).

THEOREM 5. (i) 7. is a stable operation of degree 2 Y ;a;(pi—1).
Every stable operation may be uniquely written as an infinite sum

Z Ul o u, € QT*(p1)

and every such sum defines a stable operation.
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(i) If x, yEQT*(X), then
ra(xy) = 2 15(2)7,().

B+v=a

(iii) The action of r« on QT*(pt) is given by

n Yy 5
7{(Ppry) = Z P” P p"—lt:—h-
h=0
Gv) If '=(@{, t{, - - - ) is another sequence of indeterminates, then
the compositions r, © rg are found by comparing the coefficients of 1'% in

reory = 25 &(t, t')m,
Y

where ® = (P1(t1; t), o= (4, ta; t{, t{), - - - ) is the sequence of poly-
nomials with coefficients in QT *(pt) in the variables t; and t! obtained
by solving the equations

Z 1‘I’N-h = Z p P 1lpkt,. .

h=0 k4min=N

This theorem gives a complete description of the algebra of opera-
tions in Q7*. The situation is similar to that for @* except the set
of Z,-linear combinations of the 7.’s is not closed under composition.
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