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1 Introduction

The following is an attempt at explaining what ‘topology’ is.

• Topology is the study of qualitative/global aspects of shapes, or – more generally –
the study of qualitative/global aspects in mathematics.

A simple example of a ‘shape’ is a 2-dimensional surface in 3-space, like the surface of a
ball, a football, or a donut. While a football is different from a ball (try kicking one...), it
is qualitatively the same in the sense that you could squeeze a ball (say a balloon to make
squeezing easier) into the shape of a football. While any surface is locally homeomorphic
R2 (i.e., every point has an open neighborhood homeomorphic to an open subset of R2) by
definition of ‘surface’, the ‘global shape’ of two surfaces might be different meaning that they
are not homeomorphic (e.g. the surface of a ball is not homeomorphic to the surface of a
donut). The French mathematician Henry Poincaré (1854-1912) is regarded as one of the
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founders of topology, back then known as ‘analysis situ’. He was interested in understanding
qualitative aspects of the solutions of differential equation.

There are basically three flavors of topology:

1. Point set Topology: Study of general properties of topological spaces

2. Differential Topology: Study of manifolds (ideally: classification up to homeomor-
phism/diffeomorphism).

3. Algebraic topology: trying to distinguish topological spaces by assigning to them al-
gebraic objects (e.g. a group, a ring, . . . ).

Let us go in more detail concerning algebraic topology, since that is the topic of this course.
Before mentioning two examples of algebraic objects associated to topological spaces, let us
make the purpose of assigning these algebraic objects clear: if X and Y are homeomorphic
objects, we insist that the associated algebraic objects A(X), A(Y ) are isomorphic. That
means in particular, that if we find that A(X) and A(Y ) are not isomorphic, then we can
conclude that the spaces X and Y are not homeomorphic. In other words, the algebraic
objects help us to distinguish homeomorphism classes of topological spaces.

Here are two examples of algebraic objects we can assign to topological spaces, which
satisfy this requirement. We will discuss them in more detail below:

Homotopy groups To any topological space X equipped with a distinguished point x0 ∈
X (called the base point), we can associate groups πn(X, x0) for n = 1, 2, . . . called
homotopy groups of X. These are abelian groups for n ≥ 2.

Homology groups To any topological space X we can associate abelian groups Hn(X) for
n = 0, 1, . . . , called homology groups of X.

The advantages/disadvantages of homotopy versus homology groups are

• homotopy groups are easy to define, but extremely hard to calculate;

• homology groups are harder to define, but comparatively easier to calculate (with the
appropriate tools in place, which will take us about half the semester)

Let us illustrate these statements in a simple example. We will show (in about a month)
that the homology group of spheres look as follows:

Hk(S
n) =

{
Z k = 0, n

0 k 6= 0, n

The homotopy groups of spheres are much more involved; for example:
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k 1 2 3 4 5 6 7 8 9
πk(S

2, x0) 0 Z Z Z/2 Z/2 Z/12 Z/2 Z/2 Z/3

It is perhaps surprising that these homotopy groups are not known for large k (not only
in the sense that we don’t have a ‘closed formula’ for these groups, but also in the sense
that we don’t have an algorithm that would crank out these groups one after another on a
computer if we just give it enough time...). This holds not only for S2, but for any sphere
Sn (except n = 1). In fact, the calculation of the homotopy groups of spheres is something
akin to the ‘holy grail’ of algebraic topology.

1.1 Homotopy groups

Suppose f and g are continuous maps from a topological space X to a topological space
Y . Then true to the motto that in topology we are interested in ‘qualitative’ properties we
shouldn’t try to distinguish between f and g if they can be ‘deformed’ into each other in
the sense that for each t ∈ [0, 1] there is a map ft : X → Y such that f0 = f and f1 = g,
and such that the family of maps ft ‘depends continuously on t’. The following definition
makes precise what is meant by ‘depending continuously on t’ and introduces the technical
terminology ‘homotopic’ for the informal ‘can be deformed into each other’.

Definition 1. Two continuous maps f, g : X → Y between topological spaces X, Y are
homotopic if there is a continuous map H : X × [0, 1] → Y such that H(x, 0) = f(x) and
H(x, 1) = g(x) for all x ∈ X. The map H is called a homotopy between f and g. We will
denote by [X, Y ] the set of homotopy classes of maps from X to Y .

We note that if H is a homotopy, then we have a family of maps ft : X → Y parametrized
by t ∈ [0, 1] interpolating between f and g, given by ft(x) = H(t, x). Conversely, if ft : X →
Y is a family of maps parametrized by t ∈ [0, 1], then we can define a map H : [0, 1]×X → Y
by the above formula. We note that the continuity requirement for H implies not only that
each map ft is continuous, but also implies that for fixed x ∈ X the map t 7→ ft(x) is
continuous. In other words, our idea of requiring that ft should ‘depend continuously on t’
is made precise by requiring continuity of H.

Examples of homotopic maps.

1. Any two maps f, g : X → R are homotopic; in other words, [X,R] is a one point set.
A homotopy H : X × [0, 1] → R is given by H(x, t) = (1 − t)f(x) + tg(x). We note
that for fixed x the map [0, 1]→ R given by t 7→ (1− t)f(x) + tg(x) is the affine linear
path (aka straight line) from f(x) to g(x). For this reason, the homotopy H is called
a linear homotopy. The construction of a linear homotopy can be done more generally
for maps f, g : X → Y if Y is a vector space, or a convex subspace of a vector space.
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2. A map S1 → Y is a loop in the space Y . Physically, we can think of it as the trajectory
of a particle that moves in the topological space Y , returning to its original position
after some time. In general, there are maps f, g : S1 → Y that are not homotopic. For
example, given an integer k ∈ Z, let

fk : S1 → S1 be the map given by fk(z) = zk.

Physically that describes a particle that moves |k| times around the circle, going coun-
terclockwise for k > 0 and clockwise for k < 0. We will prove that fk and f` are
homotopic if and only if k = `. Moreover, we will show that any map f : S1 → S1 is
homotopic to fk for some k ∈ Z. In other words, we will prove that there is a bijection

Z↔ [S1, S1] given by k 7→ fk

This fact will be used to prove the fundamental theorem of algebra.

Sometimes it is useful to consider pairs (X,A) of topological spaces, meaning that X is
a topological space and A is a subspace of X. If (Y,B) is another pair, we write

f : (X,A) −→ (Y,B)

if f is a continuous map from X to Y which sends A to B. Two such maps f, g : (X,A)→
(Y,B) are homotopic if there is a map

H : (X × I, A× I) −→ (Y,B)

with H(x, 0) = f(x) and H(x, 1) = g(x). We will use the notation [(X,A), (Y,B)] for the
set of homotopy classes of maps from (X,A) to (Y,B).

Definition 2. Let X be a topological space, and let x0 be a point of X. Then the n-th
homotopy group of (X, x0) is by definition

πn(X, x0) := [(In, ∂In), (X, x0)].

Here In := I × · · · × I︸ ︷︷ ︸
n

⊂ Rn is the n-dimensional cube, and ∂In is its boundary.

A map f : (I, ∂)→ (X, x0) is geometrically a path in X parametrized by the unit interval
I = [0, 1] with starting point f(0) = x0 and endpoint f(1) = x0. Such maps are also called
based loops. Similarly, a map f : (I2, ∂I2) → (X, x0) is geometrically a membrane in X
parametrized by the square I2, such that the boundary of the square maps to the base point
x0.
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As suggested by the terminology of the above definition, the set [(In, ∂In), (X, x0)] has
in fact the structure of a group. Given two maps f, g : (In, ∂In) → (X, x0), their product
f ∗ g : (In, ∂In)→ (X, x0) is given by

(f ∗ g)(t1, . . . , tn) :=

{
f(2t1, t2, . . . , tn) for 0 ≤ t1 ≤ 1

2

g(2t1 − 1, t2, . . . , tn) for 1
2
≤ t1 ≤ 1

We note that this is a well-defined map, since for t1 = 1
2

the points (2t1, t2, . . . , tn) and
(2t1 − 1, t2, . . . , tn) both belong to the boundary ∂In, and hence both map to x0 via f and
g. Moreover, f ∗ g is continuous since its restriction to the closed subsets consisting of the
points t = (t1, . . . , tn) with t1 ≤ 1

2
resp. t1 ≥ 1

2
is continuous. We will refer to f ∗ g as the

concatenation of the maps f and g, since for n = 1 the map f ∗ g : I → X is usually referred
to as the concatenation of the paths f and g.

The following picture shows where f ∗ g maps points in the square I2: if t = (t1, t2)
belongs to the left half of the square, it is mapped via f ; points in the right half map via
g (here we implicitly identify the left and right halves of the square again with I2). In
particular the boundaries of the two halves map to the base point x0; this subset of I2 is
indicated by the gray lines in the picture.

f ∗ g = f g

Next we want to address the question whether given f, g, h : (In, ∂In)→ (X, x0) the maps
f ∗ (g ∗ h) and (f ∗ g) ∗ h agree. Thinking in terms of pictures, we have

f ∗ (g ∗ h) = f g ∗ h = f g h

(f ∗ g) ∗ h = f ∗ g h = f g h

which shows that these two maps do not agree. However, they are homotopic to each other.
We leave it to the reader to provide a proof of this. This implies the third of the following
equalities in πn(X, x0); the others hold by definition:

[f ]([g][h]) = [f ]([g ∗ h]) = [f ∗ (g ∗ h)] = [(f ∗ g) ∗ h] = [f ∗ g][h] = ([f ][g])[h].
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This shows that concatenation induces an associative product on πn(X, x0). We leave it to
the reader to show that this product gives πn(X, x0) of a group where the unit element is
represented by the constant map, and the inverse of an element [f ] ∈ πn(X, x0) is represented
by f̄ , defined by f̄(t1, . . . , tn) := f(1− t1, t2, . . . , tn).

The group π1(X, x0) is called the fundamental group of X, while the groups πn(X, x0)
for n ≥ 2 are referred to as higher homotopy groups. Examples show that the fundamental
group is in general not abelian. For example, the fundamental group of the “figure eight” is
the free group generated by two elements. By contrast, for higher homotopy groups we have
the following result.

Lemma 3. For n ≥ 2 the group πn(X, x0) is abelian.

Proof. We need to show that for maps f, g : (In, ∂In) → (X, x0) the concatenations f ∗ g
and g ∗ f are homotopic to each other (as maps of pairs). Such a homotopy H is given by a
continuous family of maps Ht : (In, ∂In)→ (X, x0) which agrees with f ∗g for t = 0 and with
g ∗ f for t = 1. Thinking of each such maps as a picture, like the one for f ∗ g above, such
a homotopy Ht is a family of pictures parametrized by t ∈ [0, 1]. Interpreting t as “time”,
this means that the homotopy Ht is a movie! Here it is:

f g

t = 0

f g

t = 1
6

f

g

t = 1
3

f

g

t = 1
2

f

g

t = 2
3

g f

t = 5
6

g f

t = 1

Here all points in the gray areas of the square map to the base point. So shrinking the
rectangles inside of the square labeled f resp. g allows us to rotate them past each other, a
move which is not possible for n = 1, but for all n ≥ 2.

1.2 The Euler characteristic of closed surfaces

The goal of this section is to discuss the Euler characteristic of closed surfaces, that is,
compact manifolds without boundary of dimension 2. We begin by recalling the definition
of manifolds.

Definition 4. A manifold of dimension n or n-manifold is a topological space X which
is locally homeomorphic to Rn, that is, every point x ∈ X has an open neighborhood U
which is homeomorphic to an open subset V of Rn. Moreover, it is useful and customary to
require that X is Hausdorff (see Definition ??) and second countable (see Definition ??). A
manifold with boundary of dimension n is defined by replacing Rn in the definition above by
the half-space Rn

+ := {(x1, . . . , xn) ∈ Rn | x1 ≥ 0}. If X is an n-manifold with boundary, its
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boundary ∂X consists of those points of X which via some homeomorphism U ≈ V ⊂ Rn
+

correspond to points in the hyperplane given by the equation x1 = 0. The complement
X \ ∂X is called the interior of X. A closed n-manifold is a compact n-manifold without
boundary.

Examples of manifolds of dimension 1. An open interval (a, b) is a 1-manifold. A closed
interval [a, b] is a 1-manifold with boundary {a, b}. A half-open interval (a, b] is a 1-manifold
with boundary {b}.
A non-example. The subspace X = {(x1, x2) ∈ R2 | x1 = 0 or x2 = 0} of R2 consisting of
the x-axis and y-axis is not a 1-dimensional manifold, since X is not locally homeomorphic to
R1 at the origin x = (0, 0). To prove this intuitively obvious fact, suppose that U is an open
neighborhood of (0, 0) which is homeomorphic to an open subset V ⊂ R. Replacing U by the
connected component of U containing (0, 0), and V by the image of that component, we can
assume that U and V are connected. This implies that V is an open interval. Restricting
the homeomorphism f : U → V , we obtain a homeomorphism U \ {(0, 0)} ≈ V \ f(0, 0).
This is the desired contradiction, since U \ {(0, 0)} has four connected components, while
V \ f(0, 0) has two.

Examples of higher dimensional manifolds.

1. Any open subset U ⊂ Rn
+ is an n-manifold whose boundary ∂U is the intersection of

U with the hyperplane {(x1, . . . , xn) ∈ Rn | x1 = 0}.

2. The n-sphere Sn := {x ∈ Rn | ||x|| = 1} is an n-manifold.

3. The n-disk Dn = {x ∈ Rn | ||x|| ≤ 1} is an n-manifold with boundary ∂Dn = Sn−1 =
{x ∈ Rn | ||x|| = 1}.

4. The torus T 2 := S1 × S1 is a manifold of dimension 2. There at least two other ways
to describe the torus. The usual picture we draw describes the torus as a subspace of
R3. It can also be constructed as a quotient space of the square I2: we identify the
two horizontal edges of the square to obtain a cylinder, and then the two boundary
circles to obtain the torus T 2. From a formal point of view, the last sentence describes
an equivalence relation ∼ on I2, and the claim is that the quotient space I2/ ∼ is
homeomorphic to S1 × S1. It will be convenient to use pictures for this and similar
quotient spaces. Here is the picture for the quotient space I2/ ∼ described above:

a

a

b b
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The definition of the Euler characteristic of a closed 2-manifold Σ will involve choosing a
“pattern of polygons” on Σ. By this we mean a graph Γ (consisting of vertices and edges) on
Σ, such that all connected components of the complement Σ \ Γ are homeomorphic to open
discs. For example, the boundary of the 3-dimensional cube is a 2-dimensional manifold
homeomorphic to S2. The 8 vertices and 12 edges of the cube form a graph Γ on S2; the
complement S2 \ Γ consists of the 6 faces of the cube.

Given a pattern of polygons Γ on a surface Σ, we define the integer

χ(Σ,Γ) := #V −#E + #F,

where V is the set of vertices, E is the set of edges, and F is the set of faces.

Lemma 5. χ(Σ,Γ) = χ(Σ,Γ′) for any two choices of graphs Γ, Γ′.

Before proving this lemma, let us illustrate the statement in the example of two patterns
on the 2-sphere S2:

1. Let Γ be the graph described above obtained by identifying S2 with the boundary of
the cube. Then χ(S2,Γ) = 8− 12 + 6 = 2.

2. Let Γ′ be the graph obtained by identifying S2 with the boundary of the tetrahedron.
Then χ(S2,Γ′) = 4− 6 + 4 = 2.

Proof.

2 Appendix on Pointset Topology

This appendix is a quick introduction into point set topology. An excellent source for more
detailed information is the book [Mu] by James Munkres.

2.1 Metric spaces and topological spaces

We recall that a map f : Rm → Rn between Euclidean spaces is continuous if and only if

∀x ∈ X ∀ε > 0 ∃δ > 0 ∀y ∈ X d(x, y) < δ ⇒ d(f(x), f(y)) < ε, (6)

where d(x, y) = |x− y| ∈ R≥0 is the distance of two points x, y in some Euclidean space.

Example 7. (Examples of continuous maps.)

1. The addition map a : R2 → R, x = (x1, x2) 7→ x1 + x2;

2. The multiplication map m : R2 → R, x = (x1, x2) 7→ x1x2;
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The proofs that these maps are continuous are simple estimates that you probably remember
from calculus. Since the continuity of all the maps we’ll look at in these notes is proved by
expressing them in terms of the maps a and m, we include the proofs of continuity of a and
m for completeness.

Proof. To prove that the addition map a is continuous, suppose x = (x1, x2) ∈ R2 and ε > 0
are given. We claim that for δ := ε/2 and y = (y1, y2) ∈ R2 with d(x, y) < δ we have
d(a(x), a(y)) < ε and hence a is a continuous function. To prove the claim, we note that

d(x, y) =
√
|x1 − y1|2 + |x2 − y2|2

and hence |x1 − y1| ≤ d(x, y), |x1 − y1| ≤ d(x, y). It follows that

d(a(x), a(y)) = |a(x)− a(y)| = |x1 + x2− y1− y2| ≤ |x1− y1|+ |x2− y2| ≤ 2d(x, y) < 2δ = ε.

To prove that the multiplication map m is continuous, we claim that for

δ := min{1, ε/(|x1|+ |x2|+ 1)}

and y = (y1, y2) ∈ R2 with d(x, y) < δ we have d(m(x),m(y)) < ε and hence m is a
continuous function. The claim follows from the following estimates:

d(m(y),m(x)) = |y1y2 − x1x2| = |y1y2 − x1y2 + x1y2 − x1x2|
≤ |y1y2 − x1y2|+ |x1y2 − x1x2| = |y1 − x1||y2|+ |x1||y2 − x2|
≤ d(x, y)(|y2|+ |x1|) ≤ d(x, y)(|x2|+ |y2 − x2|+ |x1|)
≤ d(x, y)(|x1|+ |x2|+ 1) < δ(|x1|+ |x2|+ 1) ≤ ε

Lemma 8. The function d : Rn × Rn → R≥0 has the following properties:

1. d(x, y) = 0 if and only if x = y;

2. d(x, y) = d(y, x) (symmetry);

3. d(x, y) ≤ d(x, z) + d(z, y) (triangle inequality)

Definition 9. A metric space is a set X equipped with a map

d : X ×X → R≥0

with properties (1)-(3) above. A map f : X → Y between metric spaces X, Y is

an isometry if d(f(x), f(y)) = d(x, y) for all x, y ∈ X;
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continuous if condition (6) is satisfied.

Two metric spaces X, Y are isometric (resp. homeomorphic) if there are isometries (resp.
continuous maps) f : X → Y and g : Y → X which are inverses of each other.

Example 10. An important class of examples of metric spaces are subsets of Rn. Here are
particular examples we will be talking about during the semester:

1. The n-disk Dn := {x ∈ Rn | |x| ≤ 1} ⊂ Rn, and more generally, the n-disk of radius
r Dn

r := {x ∈ Rn | |x| ≤ r}. We note that D2
r is homeomorphic to D2 for all r, but

D2
r is isometric to D2 if and only if r = 1. (To see that Dn

r is not isometric to Dn
s we

note if a metric space X is isometric to a metric space Y , then diam(X) = diam(Y ),
where diam(X), the diameter of X is defined by diam(X) := sup{d(x, y) | x, y ∈ X} ∈
R≥0 ∪ {∞}. It is easy to see that diam(Dn

r ) = 2r.)

2. The n-sphere Sn := {x ∈ Rn+1 | |x| = 1} ⊂ Rn+1.

3. The torus T = {v ∈ R3 | d(v, C) = r} for 0 < r < 1. Here C = {(x, y, 0) | x2 + y2 =
1} ⊂ R3 is the standard circle, and d(x,C) = infy∈C d(x, y) is the distance between x
and C.

4. The general linear group

GLn(R) = {vector space isomorphisms f : Rn → Rn}
↔ {(v1, . . . , vn) | vi ∈ Rn, det(v1, . . . , vn) 6= 0}
= {invertible n× n-matrices} ⊂ Rn × · · · × Rn︸ ︷︷ ︸

n

= Rn2

Here the bijection sends f : Rn → Rn to (f(e1), . . . , f(en)), where {ei} is the standard
basis of Rn.

5. The special linear group

SLn(R) = {(v1, . . . , vn) | vi ∈ Rn, det(v1, . . . , vn) = 1} ⊂ Rn2

6. The orthogonal group

O(n) = {linear isometries f : Rn → Rn}
= {(v1, . . . , vn) | vi ∈ Rn, vi’s are orthonormal} ⊂ Rn2

We recall that a collection of vectors vi ∈ Rn is orthonormal if |vi| = 1 for all i, and vi
is perpendicular to vj for i 6= j.
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7. The special orthogonal group

SO(n) = {(v1, . . . , vn) ∈ O(n) | det(v1, . . . , vn) = 1} ⊂ Rn2

8. The Stiefel manifold

Vk(Rn) = {linear isometries f : Rk → Rn}
= {(v1, . . . , vk) | vi ∈ Rn, vi’s are orthonormal} ⊂ Rkn

Example 11. The following maps between metric spaces are continuous. While it is pos-
sible to prove their continuity using the definition of continuity, it will be much simpler to
prove their continuity by ‘building’ these maps using compositions and products from the
continuous maps a and m of Example 7. We will do this below in Lemma 22.

1. Every polynomial function f : Rn → R is continuous. We recall that a polynomial
function is of the form f(x1, . . . , xn) =

∑
i1,...,in

ai1,...,inx
i1
1 · · · · · xinn for ai1,...,in ∈ R.

2. Let Mn×n(R) = Rn2
be the set of n× n matrices. Then the map

Mn×n(R)×Mn×n(R) −→Mn×n(R) (A,B) 7→ AB

given by matrix multiplication is continuous. Here we use the fact that a map to the
product Mn×n(R) = Rn2

= R×· · ·×R is continuous if and only if each component map
is continuous (see Lemma 21), and each matrix entry of AB is a polynomial and hence
a continuous function of the matrix entries of A and B. Restricting to the invertible
matrices GLn(R) ⊂Mn×n(R), we see that the multiplication map

GLn(R)×GLn(R) −→ GLn(R)

is continuous. The same holds for the subgroups SO(n) ⊂ O(n) ⊂ GLn(R).

3. The map GLn(R) → GLn(R), A 7→ A−1 is continuous (this is a homework problem).
The same statement follows for the subgroups of GLn(R).

Definition 12. Let X be a metric space. A subset U ⊂ X is open if for every point x ∈ U
there is some ε > 0 such that Bε(x) ⊂ U . Here Bε(x) = {y ∈ X | d(y, x) < ε} is the ball of
radius ε around x.

Lemma 13. A map f : X → Y between metric space is continuous if and only if f−1(V ) is
an open subset of X for every open subset V ⊂ Y .

Proof: homework
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Lemma 14. Let X be a metric space, and U be the collection of open subsets of X. Then
U has the following properties:

1. X and ∅ belong to U.

2. The union of a collection in U belongs to U.

3. The intersection of a finite collection of subsets in U belongs to U.

Definition 15. A topology on a set X is a collection U of subsets of X satisfying the
properties of the previous lemma. A topological space is a pair (X,U) consisting of a set X
and a topology U on X. If (X,U) is a topological space, a subset U ⊂ X is open if U belongs
to U; it is closed if its complement X \ U belongs to U.

Let (X,U), (Y,V) be topological spaces. A map f : X → Y is continuous if and only if
f−1(U) ∈ V for every U ∈ U. It is easy to see that any composition of continuous maps is
continuous.

Examples of topological spaces.

1. Let X be a metric space. Then U = {open subsets of X} is a topology on X, the
metric topology.

2. Let X be a set. Then U = {all subsets of X} is a topology, the discrete topology. We
note that any map f : X → Y to a topological space Y is continuous. We will see later
that the only continuous maps Rn → X are the constant maps.

3. Let X be a set. Then U = {∅, X} is a topology, the indiscrete topology.

2.2 Constructions with topological spaces

The subspace topology. Let X be a topological space, and A ⊂ X a subset. Then

U = {A ∪ U | U ⊂
open

X}

is a topology on A called the subspace topology.

Lemma 16. Let X be a metric space and A ⊂ X. Then the metric topology on A agrees
with the subspace topology on A (as a subset of X equipped with the metric topology).

Lemma 17. Let X, Y be topological spaces and let A be a subset of X equipped with the
subspace topology. Then the inclusion map i : A → X is continuous and a map f : Y → A
is continuous if and only if the composition i ◦ f : Y → X is continuous.
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Basis for a topology. Sometimes it is convenient to define a topology U on a set X by first
describing a smaller collection B of subsets of X, and then defining U to be those subsets of
X that can be written as unions of subsets belonging to B. We’ve done this already when
defining the metric topology: Let X be a metric space and let B be the collection of subsets
of X of the form Bε(x) := {y ∈ X | d(y, x) < ε} (we call these subsets balls in X). A subset
of X is open (in the sense of Definition 12) if and only if it is a union of balls in X.

Lemma 18. Let B be a collection of subsets of a set X satisfying the following conditions

1. Every point x ∈ X belongs to some subset B ∈ B.

2. If B1, B2 ∈ B, then for every x ∈ B1 ∩ B2 there is some B ∈ B with x ∈ B and
B ⊂ B1 ∩B2.

Then U := {unions of subsets belonging to B} is a topology on X.

If the above conditions are satisfied, the collection B is called a basis for the topology U

or B generates the topology U. It is easy to check that the collection of balls in a metric
space satisfies the above conditions and hence the collection of open subsets is a topology as
claimed by Lemma 14.

The Product topology

Definition 19. The product topology on the Cartesian product X×Y = {(x, y) | x ∈ X, y ∈
Y } of topological spaces X, Y is the topology with basis

B = {U × V | U ⊂
open

X, V ⊂
open

Y }

The collection B obviously satisfies property (1) of a basis; property (2) holds since (U ×
V )∩ (U ′ × V ′) = (U ∩U ′)× (V ∩ V ′). We note that the collection B is not a topology since
the union of U ×V and U ′×V ′ is typically not a Cartesian product (e.g., draw a picture for
the case where X = Y = R and U,U ′, V, V ′ are open intervals).

Lemma 20. The product topology on Rm × Rn (with each factor equipped with the metric
topology) agrees with the metric topology on Rm+n = Rm × Rn.

Proof: homework.

Lemma 21. Let X, Y1, Y2 be topological spaces. Then the projection maps pi : Y1×Y2 → Yi
is continuous and a map f : X → Y1 × Y2 is continuous if and only if the component maps

X
f // Y1 × Y2

pi // Yi

are continuous for i = 1, 2.
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Proof: homework

Lemma 22. 1. Let A ⊂ Rn and let f, g : A→ R be continuous maps. Then f+g and f ·g
continuous maps from A to R. If g(x) 6= 0 for all x ∈ A, then also f/g is continuous.

2. Any polynomial function f : Rn → R is continuous.

3. The multiplication map GLn(R)×GLn(R)→ GLn(R) is continuous.

Proof. To prove part (1) we note that the map f + g : A→ R can be factored in the form

A
f×g−→ R× R a−→ R

The map f × g is continuous by Lemma 21 since its component maps f, g are continuous;
the map a is continuous by Example 7, and hence the composition f + g is continuous. The
argument for f · g is the same, with a replaced by m. To prove that f/g is continuous, we
factor it in the form

A
f×g //R× R×

p1×(I◦p2) //R× R× m //R,

where p1 (resp. p2) is the projection to the first (resp. second) factor of R×R× and I : R× →
R× is the inversion map x 7→ x−1. By Lemma 21 the pi’s are continuous, in calculus we
learned that I is continuous, and hence again by Lemma 21 the map p1×(I◦p2) is continuous.

To prove part (2), we note that the constant map Rn → R, x = (x1, . . . , xn) 7→ a is
obviously continuous, and that the projection map pi : Rn → R, x = (x1, . . . , xn) 7→ xi
is continuous by Lemma 21. Hence by part (1) of this lemma, the monomial function
x 7→ axi11 · · ·xinn is continuous. Any polynomial function is a sum of monomial functions and
hence continuous.

For the proof of (3), let Mn×n(R) = Rn2
be the set of n× n matrices and let

µ : Mn×n(R)×Mn×n(R) −→Mn×n(R) (A,B) 7→ AB

be the map given by matrix multiplication. By Lemma 21 the map µ is continuous if and
only if the composition

Mn×n(R)×Mn×n(R)
µ−→Mn×n(R)

pij−→ R

is continuous for all 1 ≤ i, j ≤ n, where pij is the projection map that sends a matrix A to
its entry Aij ∈ R. Since the pij(µ(A,B)) = (A · B)ij is a polynomial in the entries of the
matrices A and B, this is a continuous map by part (2) and hence µ is continuous.

Restricting µ to invertible matrices, we obtain the multiplication map

µ| : GLn(R)×GLn(R) −→ GLn(R)
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that we want to show is continuous. We will argue that in general if f : X → Y is a
continuous map with f(A) ⊂ B for subsets A ⊂ X, B ⊂ Y , then the restriction f|A : A→ B
is continuous. To prove this, consider the commutative diagram

A
f|A //

i
��

B

j

��
X

f // Y

where i, j are the obvious inclusion maps. These inclusion maps are continuous w.r.t. the
subspace topology on A, B by Lemma 17. The continuity of f and i implies the continuity
of f ◦ i = j ◦ f|A which again by Lemma 17 implies the continuity of f|A.

Quotient topology. Let X be a topological space, let ∼ be an equivalence relation on X,
let X/ ∼ be the set of equivalence classes and let

p : X → X/ ∼ x 7→ [x]

be the projection map that sends a point x ∈ X to its equivalence class [x]. The quotient
topology onX/ ∼ is the collection of subsets U = {U ⊂ X/ ∼| p−1(U) is an open subset of X}.
The set X/ ∼ equipped with the quotient topology is called the quotient space.

Lemma 23. The projection map p : X → X/ ∼ is continuous and a map f : X/ ∼→ Y to a
topological space Y is continuous if and only if the composition p ◦ f : X → Y is continuous.

Example 24. 1. Let A be a subset of a topological space X. Define a equivalence relation
∼ on X by x ∼ y if x = y or x, y ∈ A. We use the notation X/A for the quotient space
X/ ∼.

(a) We claim that the quotient space [−1,+1]/{±1} is homeomorphic to S1 via the
map f : [−1,+1]/{±1} → S1 given by [t] 7→ eπit. Here we use that a continuous
bijection f : X → Y from a compact space to a Hausdorff space is a homeomor-
phism (see Corollary 32).

(b) More generally, Dn/Sn−1 is homeomorphic to Sn. (proof: homework)

2. quotients of the square by various equivalence relations gives: torus, Klein bottle, real
projective plane D2/ ∼= S2/ ∼. We can obtain a surface of genus 2 from an 8-gon
with suitable boundary identifications (first redraw 8-gon as a union of squares with a
corner chipped off; identifying boundaries on each square leads to punctured torus).

3. The real projective space

RPn := {1-dimensional subspaces of Rn+1} = Sn/v ∼ ±v

Homework: RP1 ≈ S1; RP3 ≈ SO(3)
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4. The complex projective space

CPn := {1-dimensional subspaces of Cn+1} = S2n+1/v ∼ zv, z ∈ S1

homework: CP1 ≈ S2

5. The Grassmann manifold Gk(Rn+k) := {k-dimensional subspaces of Rn+k}. There is a
surjective map

Vk(Rn+k) = {isometries f : Rk → Rn+k}� Gk(Rn+k) f 7→ im(f)

Two isometries f, f ′ have the same image if and only if there is some isometry g : Rk →
Rk such that f ′ = f ◦ g. In other words, we get a bijection Vk(Rn+k)/ ∼↔ Gk(Rn+k)
if we define an equivalence relation ∼ on the Stiefel manifold by f ∼ f ′ if and only if
there is some isometry g : Rk → Rk such that f ′ = f ◦ g. This the quotient topology
on Vk(Rn+k)/ ∼ then gives Gk(Rn+k) a topology (note that for k = 1, Vk(Rn+k) = Sn,
and this agrees with how we put a topology on the projective space RPn = G1(Rn+1).

6. If X is a topological space and a group H acts X (say from the right via X ×H → X,
(x, h) 7→ xh; requirement: (xh)h′ = x(hh′) for x ∈ X, h, h′ ∈ H). The group action
defines an equivalence relation ∼ on X via x′ ∼ x if and only if there is some h ∈ H
such that x′ = xh. Equivalence classes are called the orbits of the action; the quotient
space X/ ∼ is the orbit space, denoted X/H.

(a) Gk(Rn+k) = Vk(Rn+k)/O(k)

(b) homogeneous spaces G/H for topological groups G. Explanation: a topological
group is a group G equipped with a topology such that the multiplication map
G×G→ G and the inversion map G→ G, g 7→ g−1 are continuous. A subgroup
H ≤ G act on G via the multiplication map G × H → G, (g, h) 7→ gh. The
orbit space is denoted G/H (or H\G if we use the corresponding left H-action
on G), and is called homogeneous space. Warning: there is difference between the
homogeneous space G/H and the quotient space of G obtained by collapsing the
subspace H to a point (Example 24 (1)), which we also would denote by G/H
(unfortunately, both notations are standard; fortunately, it is usually clear from
the context which version of G/H we are talking about, since the homogeneous
space makes only sense if H is a subgroup of a topological group G).

We want to show that many topological spaces we’ve discussed so far are actually homo-
geneous spaces. To do that we use the following result.

Proposition 25. (Recognition principle for homogeneous spaces) Let G be a compact
topological group that acts continuously and transitively on a topological space X. Then X is
homeomorphic to the homogeneous space G/H where H = {g ∈ G | gx0 = x0} is the isotropy
subgroup of some point x0 ∈ X.
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Proof. Let
f : G/H −→ X be defined by [g] 7→ gx0

This map is surjective by the transitivity assumption; it is injective since if gx0 = g′x0, then
x0 = g−1g′x0 and hence h := g−1g′ belongs to the isotropy subgroup H. This implies g′ = gh,
and hence [g′] = [g] ∈ G/H.

To show that f is continuous it suffices to show that the composition f ◦ p : G → X,
g 7→ gx0 is continuous. To see this, we factor f ◦ p in the form

G = G× {x0} ↪→ G×X µ−→ X

where µ is the action map

Examples of homogeneous spaces.

1. spheres Sn ≈ O(n+ 1)/O(n)
(take the action O(n+ 1)× Sn → Sn, (f, v) 7→ f(v) and x0 = (0, . . . , 0, 1) ∈ Sn)

2. Stiefel manifold Vk(Rn+k) ≈ O(n+ k)/O(n)
(take the action O(n+ k)× Vk(Rn+k)→ Vk(Rn+k), (g, f) 7→ g ◦ f and x0 : Rk → Rn+k,
v 7→ (0, v)).

3. Grassmann manifold Gk(Rn+k) ≈ O(n+ k)/O(n)×O(k) (homework problem).

2.3 Properties of topological spaces

Definition 26. Let X be a topological space, xi ∈ X, i = 1, 2, . . . a sequence in X and
x ∈ X. Then x is the limit of the xi’s if for all open subsets U ⊂ X containing x there is
some N such that xi ∈ U for all i ≥ N .

Caveat: If X is a topological space with the indiscrete topology, every point is the limit
of every sequence. The limit is unique if the topological space has the following property:

Definition 27. A topological space X is Hausdorff if for every x, y ∈ X, x 6= y, there are
disjoint open subsets U, V ⊂ X with x ∈ U , y ∈ V .

Note: if X is a metric space, then the metric topology on X is Hausdorff (since for x 6= y
and ε = d(x, y)/2, the balls Bε(x), Bε(y) are disjoint open subsets).

Warning: The notion of Cauchy sequences can be defined in metric spaces, but not in
general for topological spaces (even when they are Hausdorff).

Lemma 28. Let X be a topological space and A a closed subspace of X. If xn ∈ A is a
sequence with limit x, then x ∈ A.
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Proof. Assume x /∈ A. Then x is a point in the open subset X \ A and hence by the
definition of limit, all but finitely many elements xn must belong to X \A, contradicting our
assumptions.

Definition 29. An open cover of a topological space X is a collection of open subsets of
X whose union is X. If for every open cover of X there is a finite subcollection which also
covers X, then X is called compact.

Some books (like Munkres’ Topology) refer to open covers as open coverings, while newer
books (and wikipedia) seem to prefer to above terminology, probably for the same reasons
as me: to avoid confusions with covering spaces, a notion we’ll introduce soon.

Now we’ll prove some useful properties of compact spaces and maps between them, which
will lead to the important Corollaries 34 and 32.

Lemma 30. If f : X → Y is a continuous map and X is compact, then the image f(X) is
compact.

In particular, if X is compact, then any quotient space X/ ∼ is compact, since the
projection map X → X/ ∼ is continuous with image X/ ∼.

Proof. To show that f(X) is compact assume that {Ua}, a ∈ A is an open cover of the
subspace f(X). Then each Ua is of the form Ua = Va ∩ f(X) for some open subset Va ∈ Y .
Then {f−1(Va)}, a ∈ A is an open cover of X. Since X is compact, there is a finite subset
A′ of A such that {f−1(Va)}, a ∈ A′ is a cover of X. This implies that {Ua}, a ∈ A′ is a
finite cover of f(X), and hence f(X) is compact.

Lemma 31. 1. If K is a closed subspace of a compact space X, then K is compact.

2. If K is compact subspace of a Hausdorff space X, then K is closed.

Proof. To prove (1), assume that {Ua}, a ∈ A is an open covering of K. Since the Ua’s
are open w.r.t. the subspace topology of K, there are open subsets Va of X such that
Ua = Va ∩K. Then the Va’s together with the open subset X \K form an open covering of
X. The compactness of X implies that there is a finite subset A′ ⊂ A such that the subsets
Va for a ∈ A′, together with X \K still cover X. It follows that Ua, a ∈ A′ is a finite cover
of K, showing that K is compact.

The proof of part (2) is a homework problem.

Corollary 32. If f : X → Y is a continuous bijection with X compact and Y Hausdorff,
then f is a homeomorphism.

Proof. We need to show that the map g : Y → X inverse to f is continuous, i.e., that
g−1(U) = f(U) is an open subset of Y for any open subset U of X. Equivalently (by passing



2 APPENDIX ON POINTSET TOPOLOGY 19

to complements), it suffices to show that g−1(C) = f(C) is a closed subset of Y for any
closed subset C of C.

Now the assumption that X is compact implies that the closed subset C ⊂ X is compact
by part (1) of Lemma 31 and hence f(C) ⊂ Y is compact by Lemma 30. The assumption
that Y is Hausdorff then implies by part (2) of Lemma 31 that f(C) is closed.

Lemma 33. Let K be a compact subset of Rn. Then K is bounded, meaning that there is
some r > 0 such that K is contained in the open ball Br(0) := {x ∈ Rn | d(x, 0) < r}.

Proof. The collection Br(0) ∩K, r ∈ (0,∞), is an open cover of K. By compactness, K is
covered by a finite number of these balls; if R is the maximum of the radii of these finitely
many balls, this implies K ⊂ BR(0) as desired.

Corollary 34. If f : X → R is a continuous function on a compact space X, then f has a
maximum and a minimum.

Proof. K = f(X) is a compact subset of R. Hence K is bounded, and thus K has an infimum
a := inf K ∈ R and a supremum b := supK ∈ R. The infimum (resp. supremum) of K is the
limit of a sequence of elements in K; since K is closed (by Lemma 31 (2)), the limit points
a and b belong to K by Lemma 28. In other words, there are elements xmin, xmax ∈ X with
f(xmin) = a ≤ f(x) for all x ∈ X and f(xmax) = b ≥ f(x) for all x ∈ X.

In order to use Corollaries 32 and 34, we need to be able to show that topological spaces
we are interested in, are in fact compact. Note that this is quite difficult just working from
the definition of compactness: you need to ensure that every open cover has a finite subcover.
That sounds like a lot of work...

Fortunately, there is a very simple classical characterization of compact subspaces of
Euclidean spaces:

Theorem 35. (Heine-Borel Theorem) A subspace X ⊂ Rn is compact if and only if X
is closed and bounded.

We note that we’ve already proved that if K ⊂ Rn is compact, then K is a closed subset
of Rn (Lemma 31(2)), and K is bounded (Lemma 33).

There two important ingredients to the proof of the converse, namely the following two
results:

Lemma 36. A closed interval [a, b] is compact.

This lemma has a short proof that can be found in any pointset topology book, e.g.,
[Mu].

Theorem 37. If X1, . . . , Xn are compact topological spaces, then their product X1×· · ·×Xn

is compact.
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For a proof see e.g. [Mu, Ch. 3, Thm. 5.7]. The statement is true more generally for a
product of infinitely many compact space (as discussed in [Mu, p. 113], the correct definition
of the product topology for infinite products requires some care), and this result is called
Tychonoff’s Theorem, see [Mu, Ch. 5, Thm. 1.1].

Proof of the Heine-Borel Theorem. Let K ⊂ Rn be closed and bounded, say K ⊂ Br(0).
We note that Br(0) is contained in the n-fold product

P := [−r, r]× · · · × [−r, r] ⊂ Rn

which is compact by Theorem 37. So K is a closed subset of P and hence compact by Lemma
31(1).
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