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1. Homework Assignment # 1

1. Let p : X̃ → X be covering map which sends x̃0 ∈ X̃ to x0 ∈ X. Show that the induced
map

p∗ : πn(X̃, x̃0) −→ πn(X, x0)

is injective for n ≥ 1. Hint: use the homotopy lifting property for the covering map p.

Proof. Since the induced map p∗ is a homomorphism, it suffices to show that the kernel of p∗ is

trivial. So let f̃ : (In, ∂In)→ (X̃, x̃0) be a map of pairs representing an element in the kernel

of p∗. In other words, there is a homotopy H between the map p ◦ f̃ : (In, ∂In) → (X, x0)
and the constant map x0 : (In, ∂In)→ (X, x0). More explicitly this means that we have that
H is a map H : In × I → X with

H(s, 0) = p ◦ f̃(s) for s ∈ In

H(s, t) = x0 for s ∈ ∂In or t = 1.

In particular, the outer square of the diagram

In × 0� _

��

f̃ // X̃

p
��

In × I

H̃

77

H // X̃
1
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commutes. By the homotopy lifting property for the covering space X̃ → X, there is a

map H̃ making the whole diagram commutative. We claim that H̃ is the desired homotopy

between f̃ : (In, ∂In)→ (X̃, x̃0) and the constant map x̃0 : (In, ∂In)→ (X̃, x̃0). So we need
to show that

• H̃(s, t) = x̃0 for all s ∈ ∂In and t ∈ I.

• H̃(s, 1) = x̃0 for all s ∈ In and

To prove the first property suppose that F ⊂ ∂In is one of the (n − 1)-dimensional faces
that form the boundary of In. The map H maps all of F × I to the base point x0 ∈ X, and

hence the lift H̃ maps F × I to the fiber p−1(x0) ⊂ X̃. Since F × I is connected, H̃ maps
all of F × I to a connected component of p−1(x0), that is, to one point of the discrete space

p−1(x0). Since H̃ maps (s, 0) to x̃0, it maps every point of p−1(x0) to x̃0. This proves the
first property above.

The second property follows by the same argument applied to H̃In×{1}: since H̃ is a lift

of H and H maps In × {1} to the basepoint x0 ∈ X, H̃ maps the connected space In × {1}
to one point of the fiber p−1(x0). This point must be x̃0, since H̃ maps the boundary of
In × {1} to x̃0 by the first property. �

2. a) Calculate the homology groups of the surface Σg of genus g ≥ 1. Hint: Use the standard
description of Σg, the connected sum T# . . .#T of g copies of the torus, as a polygon with
boundary identifications.

b) Calculate the homology groups of the connected sum Xk = RP2# . . .#RP2 of k copies
of the real projective plane. Hint: Use the standard description of Xk as a polygon with
boundary identifications. For calculating the homology of the associated chain complex it
will be useful to work with a convenient basis for the free Z-module C1, which is not the
obvious basis given by the edges of polygonal pattern we use for the calculation.

c) According to the Classification Theorem for closed connected surfaces, every closed con-
nected surface is homeomorphic to either Σg for some g ≥ 0 or homeomorphic to Xk for
some k > 0. Based on your calculations in part (a) and (b), make a conjecture on how the
orientability of a closed connected surface Σ is determined by its homology groups (we recall
that Σg is orientable, but Xk is not).
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Proof. Part a). We recall that the surface Σg of genus g can be described as the quotient
of the 4g-gon with edge identifications given by the picture

a1

b1

a1

b1
ag

bg

ag

bg

f

The resulting pattern of polygons Γ on Σg (enhanced by the orientations shown in the
picture) has one vertex v, 2g edges ai, bi for 1 ≤ i ≤ g and one face f . Hence the associated
chain complex C∗(Σ,Γ) looks as follows:

Zv Za1 ⊕ Zb1 · · · ⊕ Zag ⊕ Zbg
∂1oo Zf∂2oo

Since there is only one vertex v involved, we have ∂1(e) = v − v = 0 for any edge e = ai, bi
and hence ∂1 ≡ 0. We note that

∂2(f) = a1 + b1 − a1 − b1 + · · ·+ ag + bg − ag − bg = 0,

and hence ∂2 ≡ 0 as well. In other words, C∗(Σg,Γ) is a chain complex with trivial differential,
and hence

Hk(Σg) =Hk(C∗(Σ,Γ)) = Ck(Σg,Γ)

=


Zv for k = 0

Za1 ⊕ Zb1 ⊕ · · · ⊕ Zag ⊕ Zbg for k = 1

Zf for k = 2

0 otherwise

∼=


Z for k = 0, 2

Z2g for k = 2

0 otherwise

Part b). We recall that the connected sum RP2# . . .#RP2 of k copies of the projective
plane RP2 can be described as the quotient of the 2k-gon with edge identifications given by
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the picture

(1)

RP2# . . .#RP2︸ ︷︷ ︸
k

≈
ak

ak

a1

a1

a2

a2

. . .

f

The resulting pattern given by this polygon on the surface P# . . .#P has one vertex v,
k edges a1, . . . , ak and one face f . Hence the chain complex associated to this pattern looks
like

Zv Za1 ⊕ · · · ⊕ Zak
∂1oo Zf∂2oo

Since there is only one vertex involved, we have ∂1(ai) = v−v = 0 for any edge ai and hence
∂1 ≡ 0. To determine ∂2(f) we notice that every edge label occurs exactly twice, with arrows
pointing in the same direction as the arrow for f . Hence ∂2(f) = 2a1 + 2a2 + · · · + 2ak. It
follows that H0 = Z, H2 = 0, and

H1 =
Za1 ⊕ · · · ⊕ Zak
Z2(a1 + · · ·+ ak)

.

To identify this quotient group, we choose a different basis of the free abelian group C1,
namely a1, . . . , ak−1, c, with c = a1 + · · ·+ ak. Then we see

H1 =
Za1 ⊕ · · · ⊕ Zak−1 ⊕ Zc

Z2c
∼= Z⊕ · · · ⊕ Z︸ ︷︷ ︸

k−1

⊕Z/2Z.

Part c). We observe that for the orientable surfaces Σg the homology group H2(Σg) is
isomorphic to Z, while H2(Xk) = 0 for the non-orientable surfaces Xk. �

3. Let Σ be a closed surface, which is not necessarily connected. Then Σ has finitely many
connected components Σ1, . . . ,Σk each of which is a closed connected surface.

a) How can the homology group Hq(Σ) be expressed in terms of the homology groups
Hq(Σi)? Hint: If Γi is a pattern of polygons on Σi (enhanced by orientations), and Γ
is the resulting pattern of polygons on Σ, how is the chain complex C∗(Σ,Γ) related
to the chain complexes C∗(Σi,Γi)? What does that imply for the homology groups?
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b) What is the group H0(Σ)?
c) Taking the results of problem 2 and 3(a), you have now calculated the homology

groups of all closed surfaces. We also know the Euler characteristic of all closed
surfaces (note that the Euler characteristic of the disjoint union ΣqΣ′ of two closed
surfaces Σ, Σ′ is given by χ(Σ q Σ′) = χ(Σ) + χ(Σ′)). Based on these calculations,
come up with a conjecture that expresses the Euler characteristic of a closed surface
Σ in terms of its homology groups H∗(Σ), and prove that conjecture.

Remark: Later we will define the Euler characteristic of more general topological spaces in
terms of their homology groups. We will generalize the description of the Euler characteristic
as an alternating sum of the number of vertices, edges and faces to an important class of
spaces known as “CW complexes”.

Proof. Part a). We recall that the homology group Hk(Σ) is defined as the k-th homology
group of the chain complex (C∗(Σ,Γ), ∂). Here Γ is a pattern of polygons on the surface Σi,
equipped with an orientation for all edges and faces. The group Ck(Σi,Γi) is the free abelian
group generated by the vertices (for k = 0) resp. edges (for k = 1) resp. faces (for k = 2).
For an oriented edge e ∈ C1(Σ) the boundary ∂1(e) ∈ C0(Σ,Γ) is tip(e) − tail(e). For an
oriented face f ∈ C2(Σ) the boundary ∂2(f) is

∑
±e, where the sum runs over all edges e

which are edges of the polygon f ; the sign is positive if the orientations of e and f agree,
and negative otherwise.

Given a pattern of polygons with orientations Γi on each surface Σi, the union of all these
vertices, oriented edges and faces can be viewed as providing us with a pattern of polygons
Γ on Σ (with orientations on edges and faces). Denoting by V i the set of vertices of Γi, and
by V the corresponding sets for the pattern of polygons Γ on Σ whose restriction to Σi ⊂ Σ
is Γi. Then the set V is the disjoint union V 1 q · · · q Vk of the sets V i and it follows that

C0(Σ,Γ) = Z[V ] = Z[V 1 q · · · q V k] ∼=
k⊕
i=1

Z[V i] =
k⊕
i=1

C0(Σi,Γ
i),

where the middle isomorphism comes from the map

Z[V 1 q · · · q V k]
∼=−→

k⊕
i=1

Z[Vi]

which sends the generator v ∈ V j ⊂ V 1 q · · · q V k ⊂ Z[V 1 q · · · q V k] to the element
(c1, . . . , ck) where ci ∈ Z[V i] is the trivial element for i 6= j and ci = v ∈ V i ⊂ Z[V i] for
i = j. Similarly, we have

C1(Σ,Γ) ∼=
k⊕
i=1

C1(Σi,Γ
i) and C2(Σ,Γ) ∼=

k⊕
i=1

C2(Σi,Γ
i)

for the 1-chains and 2-chains consisting of linear combinations of edges and faces.
Concerning the boundary homomorphisms ∂n : Cn(Σ,Γ)→ Cn−1(Σ,Γ) for n = 1, 2, if e is

an edge or f is a face for the pattern Γ, then e is an edge or f is a face belonging to the
pattern Γi on Σi for some i, and hence

∂1(e) = ∂i1(e) and ∂2(f) = ∂i2(f)
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where ∂in : Cn(Σi,Γi) → Cn−1(Σi,Γi) is the boundary homomorphism for the pattern Γi on
Σi. It follows that the diagram

Cn(Σ,Γ)
∂k //

∼=
��

Cn−1(Σ,Γ)

∼=
��⊕k

i=1Cn(Σi,Γ
i)

⊕
∂in //

⊕k
i=1Cn−1(Σi,Γ

i)

is commutative. We summarize this discussion by saying that the chain complex (C∗(Σ,Γ), ∂∗)
is isomorphic to the direct sum chain complex⊕

i∈I Cn−1(Σi,Γ
i)oo

⊕
i∈I Cn(Σi,Γ

i)
⊕
∂inoo

⊕
i∈I Cn+1(Σi,Γ

i)

⊕
∂in+1oo oo

Lemma 1. Let (Ci
∗, ∂

i
∗), i ∈ I be a collection of chain complexes parametrized by some index

set I (not necessarily finite). Then the n-th homology group of the direct sum chain complex⊕
i∈I C

i
n−1

⊕
∂in−1oo

⊕
i∈I C

i
n

⊕
∂inoo

⊕
i∈I C

i
n+1

⊕
∂in+1oo

⊕
∂in+1oo

is isomorphic to
⊕

i∈I Hn(Ci
∗, ∂

i
∗).

Proof. Let us write Zi
n for the n-cycles of the chain complex Ci

∗, and Zn for the n-cycles
of the direct sum chain complex. Similarly, let Bi

n, Bn be the n-boundaries of the chain
complex Ci

∗ resp. the direct sum chain complex. Then

Zn = ker

(⊕
i∈I

∂in :
⊕
i∈I

Ci
n −→ Ci

n−1

)
∼=
⊕
i∈I

ker ∂in =
⊕
i∈I

Zi
n

Similarly, Bn
∼=
⊕

i∈I B
i
n and hence

Hn(sum chain complex) =
Zn
Bn

∼=
⊕

Zi
n⊕

Bi
n

∼=
⊕ Zi

n

Bi
n

=
⊕

Hn(Ci
∗)

�

This finishes the proof of part (a).

Part b). By the Classification Theorem for surfaces, any connected closed surface is home-
omorphic to either the sphere, or a connected sum of tori or real projective planes. Our
calculations show that for all these surfaces the homology group H0(Σ) is isomorphic to
Z. Part (a) implies that H0(Σ) for a not necessarily connected surface is the direct sum
of Z’s with each copy of Z corresponding to a connected component of Σ. In other words,
H0(Σ) ∼= Zk, where k is the number of connected components of Σ.

Part c). Can the Euler characteristic of a compact connected surface be expressed in terms
of its homology groups?

First let us look at the Euler characteristic and the homology groups of all connected closed
surfaces Σ. By the Classification Theorem, it suffices to consider Σ = Σg (the surface of
genus g) and Σ = Xk (the connected sum of k copies of the real projective plane RP2).
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Σ χ(Σ) H0(Σ) H1(Σ) H2(Σ)

Σg 2− 2g Z Z2g Z
Xk 2− k Z Zk−1 ⊕ Z/2 0

In the case of Σ = Σg, #V = rkH0(Σ), #E = rkH1(Σ), and #F = rkH2(Σ), and hence

χ(Σ) = #V −#E + #F = rkH0(Σ)− rkH1(Σ) + rkH2(Σ).

In the case of Σ = Xk, #V = 1 = rkH0(Σ), but #E = k 6= k − 1 = rkH1(Σ), and
#F = 1 6= 0 = rkH2(Σ). However, the above equation is still true! So, summarizing, we
have proved that for all connected closed surfaces Σ,

(2) χ(Σ) =
2∑
q=0

(−1)q rkHq(Σ);

in other words, the Euler characteristic of Σ is the alternating sum of the ranks of the
homology groups of Σ.

If Σ is the disjoint union of connected closed surfaces Σ1, . . . ,Σk,

χ(Σ) =
k∑
i=1

χ(Σi) and Hq(Σ) ∼=
k⊕
i=1

Hq(Σi).

It follows that rkHq(Σ) =
∑k

i=1 rkHq(Σi), and hence

2∑
q=0

(−1)q rkHq(Σ) =
2∑
q=0

(−1)q

(
k∑
i=1

rkHq(Σi)

)

=
k∑
i=1

(
2∑
q=0

(−1)q rkHq(Σi)

)

=
k∑
i=1

χ(Σi) = χ(Σ)

which proves that equation (2) holds for any closed surface Σ.

�
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4. Let Σ be the closed connected surface described as polygon with edge identification by
the following picture:

a

b

c

a

b

c

a) Calculate the homology groups of Σ using the enhanced pattern Γ on Σ given by the
picture above (pick the orientation of the face to be clockwise). Describe an explicit
basis {e1, . . . , ek} of the free part of H1(Σ) in terms of the edges a, b, c.

b) Consider the map g : Σ→ Σ that is given by clockwise rotation by 60 degrees of the
hexagon above. It maps the pattern Γ to itself (reversing the orientation of some of
the edges) and hence produces a commutative diagram

C0(Σ,Γ) C1(Σ,Γ) C2(Σ,Γ)

C0(Σ,Γ) C1(Σ,Γ) C2(Σ,Γ)

g#

∂1

g#

∂2

g#

∂1 ∂2

where the homomorphisms g# are determined by the effect of g on vertices, edges and
faces, respectively. The maps g# then in turn determine homomorphisms g∗ : Hq(Σ)→
Hq(Σ) for q = 0, 1, 2. Write g∗(ei) ∈ H1(Σ) as a linear combination of the basis {ei}.
Write down the k × k-matrix corresponding to g∗.

c) What is the order of the automorphisms g∗ : H1(Σ) → H1(Σ), i.e., the smallest
natural number n such that gn∗ is the identity on H1(Σ)?

Proof. Part (a) We note that up to equivalence, there are two vertices, which we denote v
resp. w. We also pick an orientation of the face f . All of these data are indicated in the
following picture.

a

b

c

a

b

c

v

wv

w

v w

f
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From this picture we can directly read off the chain complex C∗(Σ,Γ) associated to this
enhanced polygonal pattern on Σ:

Zv ⊕ Zw Za⊕ Zb⊕ Zc Zf ;
∂1 ∂2

the differentials are given by

∂1(a) = w − v ∂1(b) = v − w ∂1(c) = w − v ∂2(f) = a+ b+ c− a− b− c = 0

It follows that

H0(Σ) =
Z0

B0

=
Zv ⊕ Zw
Z(v − w)

= Z[v]

H1(Σ) =
Z1

B1

=
Z(a− c)⊕ Z(b+ c)

0
= Z[a− c]⊕ Z[b+ c]

H2(Σ) =
Z2

B2

=
Zf
0

= Z[f ]

Here we write e.g. [a−c] ∈ H1 = Z1/B1 for the equivalence class of a−c ∈ Z1. In particular,
a basis for the free Z-module H1(Σ) is given by the elements α := [a − c] and β := [b + c].
Here we write [x] ∈ H1 = Z1/B1 for the homology class of a cocycle x ∈ Z1 (a kind of picky
notation in this particular case, since B1 happens to be trivial...).

Part (b). The homomorphism g# : Cq(Σ,Γ) → Cq(Σ,Γ) is determined by the action of
clockwise rotation of the hexagon by 60 degrees on vertices, edges and faces:

g#(v) = w g#(w) = v g#(a) = b g#(b) = c g#(c) = −a g#(f) = f ;

in particular

g∗(α) =g∗([a− c]) = [g#(a− c)] = [g#(a)− g#(c)] = [b− (−a)] = [(a− c) + (b+ c)] = α + β

g∗(β) =g∗([b+ c]) = [g#(b+ c)] = [g#(b) + g#(c)] = [c− a] = −α

It follows that with respect to the basis {α, β} of H1(Σ) the matrix corresponding to g∗ is

G =

(
1 −1
1 0

)
and hence G2 =

(
0 −1
1 −1

)
G3 =

(
−1 0
0 −1

)
This shows that G2 and G3 are not the identity matrix, but G6 = (G3)2 is, and hence G and
g∗ have order 6. �

2. Homework Assignment # 2

1. Show that the singular chain complex of a topological space X is in fact a chain complex;
i.e., that ∂q ◦ ∂q+1 = 0, where ∂q : Cq(X)→ Cq−1(X) is the boundary map.
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Proof. It will suffice to show that ∂q ◦ ∂q+1 = 0 on the generators of Cq+1 since ∂q and ∂q+1

are both homomorphisms. Consider σ : ∆q+1 → X in Cq+1(X).

∂q ◦ ∂q+1(σ)

=∂q

(
q∑
j=0

(−1)j∂q+1(σ) ◦ [e0, ..., êj, ..., eq+1]

)

=

q∑
i=0

(−1)i

(
q+1∑
j=0

(−1)jσ ◦ [e0, ..., êj, ..., eq+1] ◦ [e0, ..., êi, ..., eq]

)
=

∑
0≤i<j≤q+1

(−1)i+jσ ◦ [e0, ..., êi, ..., êj, ..., eq+1]

+
∑

0≤j<i≤q+1

(−1)i+j+1σ ◦ [e0, ..., êj, ..., êi, ..., eq+1]

=
∑

0≤i<j≤q+1

(−1)i+jσ ◦ [e0, ..., êi, ..., êj, ..., eq+1]

−
∑

0≤j<i≤q+1

(−1)i+jσ ◦ [e0, ..., êj, ..., êi, ..., eq+1]

=0.

Hence, since ∂q ◦∂q+1 = 0 on the generators of Cq+1(X), ∂q ◦∂q+1 = 0, and the singular chain
complex of a topological space X is in fact a chain complex. �

2. Show that the Hurewicz map

h : π1(X, x0)→ H1(X) given by [γ] 7→ [[γ]]

is a homomorphism. Explanation: for a based loop γ : (I, ∂I)→ (X, x0), we denote by [γ] is
the homotopy class of γ. In other words [γ] is the element of the fundamental group π1(X, x0)
represented by the loop γ. Considering γ as a singular 1-simplex in X, we note that it is a
cycle, since ∂γ = γ(1)−γ(0) = x0−x0 = 0, and we denote by [[γ]] ∈ Z1(X)/B1(X) = H1(X)
the homology class it represents.

Proof. Let [γ], [γ′] ∈ π1(X, x0), and let γγ′ denote the concatenation of paths γ and γ′. To
show that h is a homomorphism, we need to verify that h([γ][γ′]) = h([γ]) + h([γ′]); i.e.,
[[γγ′]] = [[γ]] + [[γ′]]. We will do so by showing that γ + γ′ − γγ′ ∈ B1(X) which will then
imply that [[γγ′]] = [[γ + γ′]] = [[γ]] + [[γ′]], as desired. Consider the singular 2-simplex,
σ : ∆2 → X, defined as the composition

∆2
[e0,

1
2

(e0+e1),e1]
//∆1 γγ′ //X

Notice that ∂2(σ) = γ′ − γγ′ + γ, so γ′ − γγ′ + γ ∈ B1(X) as desired. Thus, h is indeed a
homomorphism. �

3. The goal of this problem is to show that the homomorphism

h̄ : πab1 (X, x0)→ H1(X)
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induced by the Hurewicz homomorphism h is in fact an isomorphism for a path connected
space X; here πab1 (X, x0) is the abelianized fundamental group of X. The idea is to construct
an inverse to h̄ as follows. Choose for every point x ∈ X a path λx from x0 to x. Define the
map

Ψ: C1(X)/B1(X) −→ πab1 (X, x0) by [[γ]] 7→ [λγ(0) ∗ γ ∗ λ̄γ(1)]

for any singular 1-simplex γ, also known as path γ : I → X. Here λγ(0) ∗ γ ∗ λ̄γ(1) is the
concatenation of the path λγ(0) (from x0 to γ(1)), the path γ (from γ(0) to γ(1)) and the
path λ̄γ(1) (from γ(1) to x0, obtained by running the path λγ(1) from x0 to γ(1) backwards;
as in class we have chosen for every point x ∈ X a path λx from the basepoint x0 to x).
In class we proved that the map Ψ above is well-defined. Show that the restriction of Ψ to
H1(X) ⊂ C1(X)/B1(X) provides an inverse to the map h̄.

Proof. We need to show:

(a) Ψ|H1(X) ◦ h̄ = idπab1 (X,x0);

(b) h̄ ◦Ψ|H1(X) = idH1(X).

To prove (a), let [γ : (I, ∂I)→ (X, x0)] ∈ πab1 (X, x0). Then

Ψ|H1(X) ◦ h̄([γ]) = Ψ|H1(X)([[γ]])

= [λγ(0)γλγ(1)] = [λx0γλx0 ]

= [λx0 ][γ][λx0 ] = [λx0 ][λx0 ][γ] = [γ],

which shows Ψ|H1(X) ◦ h̄ = idπab1 (X,x0).

To prove (b), we will use the following statements:

(i) If γ, γ′ : I → X are paths with γ(1) = γ′(0), and γγ′ : I → X their concatenation,
then γ′ − γγ′ + γ ∈ B1(X).

(ii) γ̄ + γ ∈ B1(X).

Statement (i) we proved in problem # 2 (note that the argument used there does not require
γ and γ′ to be based loops; it is only necessary that γ(1) = γ′(0) in order to be able to have
the concatenated path γγ′). To deduce the second claim, we apply part (i) for γ′ = γ̄ which
implies γ̄ − γγ̄ + γ ∈ B1(X). We note that γγ̄ is a loop based at γ(0) which is homotopic
to the constant loop. Hence its image under the Hurewicz map [[γγ̄]] ∈ H1(X) is trivial. In
other words, γγ̄ ∈ B1(X), which proves (ii).

With these preliminaries, we can calculate for any path γ:

(3)

h̄ ◦Ψ([[γ]]) = h̄([λγ(0)γλ̄γ(1)] = [[λγ(0)γλ̄γ(1)]]

= [[λγ(0)]] + [[γ]] + [[λ̄γ(1)]] = [[λγ(0)]] + [[γ]]− [[λγ(1)]]

= [[γ]] + [[λ(∂(γ))]],

where λ : C0(X) → C1(X) is given on generators by x 7→ λx (and hence λ maps ∂γ =
γ(1) − γ(0) to λγ(0) − λγ(1)). Since formula (3) holds for the generators γ ∈ C1(X), it hold
for every element z ∈ C1(X); in particular, if z is a cycle, we have h̄ ◦Ψ([[z]]) = [[z]], which
is what we wanted to prove. �
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4. Calculate the reduced homology groups of the subspace X ⊂ R3 which is the union of the
sphere S2 and the x-axis.

Proof. The natural idea is to apply the Mayer-Vietoris sequence to X = U∪V , where U = S2,
and V is the x-axis. Unfortunately, this doesn’t work since these aren’t open subsets of X
as required by the Mayer-Vietoris Theorem. The way around this problem is to work with
larger open subsets U ′, V ′ ⊂ X that contain U resp. V as deformation retracts. This means
that there is a map

rU : U ′ → U such that rU ◦ iU = idU and iU ◦ rU ∼ idU ′ ,

where iU : U → U ′ is the inclusion map, and similarly for V . There are many possible choices
for U ′, V ′, for example we can take

U ′ := S2 ∪ x-axis without the origin V ′ := x-axis ∪ {(x, y, z) ∈ S2 | x 6= 0}.

The maps rU , rV , the homotopy between iU ◦rU and idU ′ , and the homotopy between iV ◦rV
and idV ′ can be written down explicitly in formulas, but it might be more helpful to describe
them in a geometric way as follows: the subset {±1} ⊂ R\{0} is a deformation retract (take
the linear homotopy between the identity on R \ {0} and the map x 7→ x/|x|). It follows
that U = S2 is a deformation retract of U ′ := S2 ∪ x-axis without the origin.

Similarly, V ′ is the union of the x-axis and the two open disks given by the left resp.
right hemisphere of S2. The center of each of these disks is a deformation retract of the
disk. These deformation retractions and homotopies fit together to show that V = x-axis
is a deformation retract of V ′. Finally, using both retractions (for the x-axis without 0 and
the two disks), we obtain the set U ∩ V = {(−1, 0, 0), (1, 0, 0)} as a deformation retract of
U ′ ∩ V ′.

These homotopy equivalences allow us in particular to calculate the reduced homology
groups of U ′, V ′ and U ′ ∩ V ′ as

H̃k(U
′) ∼= H̃k(U) ∼=

{
Z k = 2

0 k 6= 2

H̃k(V
′) ∼= H̃k(V ) ∼= H̃k(pt) = 0

H̃k(U
′ ∩ V ′) ∼= H̃k(U ∩ V ) ∼=

{
Z k = 0

0 k 6= 0

These calculations show that in the Mayer-Vietoris sequence for X = U ′∪V ′, there are only
two non-trivial reduced homology groups of U ′, V ′ or U ′ ∩ V ′ that contribute. Here are the
relevant portions of the Mayer-Vietoris sequence:

0 = H̃2(U ′ ∩ V ′) // H̃2(U ′)⊕H2(V ′) // H̃2(X)
∂ // H̃1(U ′ ∩ V ′) = 0

The exactness of the sequence implies that the middle map is an isomorphism, and hence

H̃2(X) ∼= H̃2(U ′)⊕H2(V ′) ∼= Z.

0 = H̃1(U ∩ V ) // H̃1(X)
∂ // H̃0(U ′ ∩ V ′) // H̃0(U ′)⊕H0(V ′) = 0
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The exactness of the sequence implies that ∂ is an isomorphism, and hence H̃1(X) ∼= H̃0(U ′∩
V ′) ∼= Z. For k 6= 1, 2 the exactness of the Mayer-Vietoris sequence implies that H̃k(X) = 0.
Summarizing our result, we find

H̃k(X) ∼=

{
Z k = 1, 2

0 k 6= 1, 2

�

3. Homework Assignment # 3

1. Let x1, . . . , xl be distinct points of Rn. Calculate the reduced homology groups of the
space Rn \ {x1, . . . , xl}. Hint: Compare the homology groups of Rn \ {x1, . . . , xl} with those
of Rn via the Mayer-Vietoris sequence.

Proof. Let D1, . . . , Dl ⊂ Rn be disjoint open disks with center x1, . . . , xl. Let

U := D1 ∪ · · · ∪Dl and V := Rn \ {x1, . . . , xl}.

Hk(U ∩ V ) = Hk(qli=1(Di \ {xi}) ∼=
l⊕

i=1

Hk(Di \ {xi}) ∼=
l⊕

i=1

Hk(S
n−1) ∼=

{
Zl k = 0, n− 1

0 k 6= 0, n− 1

Hk(U) = Hk(qli=1(Di) ∼=
l⊕

i=1

Hk(Di) ∼=

{
Zl k = 0

0 k 6= 0

We note that that the inclusion map iU : U ∩V → U is a bijection on connected components,
and hence it induces an isomorphism on H0. Next we consider the Mayer-Vietoris sequence
for the decomposition of Rn as the union of the open subsets U and V :

// H̃k+1(Rn)
∂ // H̃k(U ∩ V )

iU∗ ⊕iV∗ // H̃k(U)⊕ H̃k(V ) // H̃k(Rn) //

Since Rn is contractible, its the reduced homology groups H̃k(Rn) vanish, and hence the map
iU∗ ⊕ iV∗ is an isomorphism by exactness of the Mayer-Vietoris sequence. For k = 0 the map

iU∗ is an isomorphism on the homology group Hk as noted above, and hence also on H̃k. It

follows that H̃0(V ) = 0. For k > 0, the vanishing of H̃k(U) implies

H̃k(V ) ∼= Hk(U ∩ V ) ∼=

{
Zl k = 0, n− 1

0 k 6= 0, n− 1

So, summarizing, we have

H̃k(Rn \ {x1, . . . , xl}) ∼=

{
Zl k = n− 1

0 k 6= n− 1

�
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2. (a) Show that Sn−1 is no retract of Dn, that is, there is no continuous map r : Dn → Sn−1

whose restriction to Sn−1 is the identity.
(b) Prove the Brouwer Fixed Point Theorem: Any continuous map f : Dn → Dn from the
closed n-disk to itself has a fixed point, that is, there is some point x0 ∈ Dn such that
f(x0) = x0.

Hint: Prove by contradiction. More precisely, assuming that f has no fixed point, construct
a map r : Dn → Sn−1 whose restriction to Sn−1 is the identity.

Proof. Part (a) Assume that r : Dn → Sn−1 is a retraction. Then we have commutative
diagrams

Sn−1 Dn Sn−1i

id

r and H̃q(S
n−1) H̃q(D

n) H̃q(S
n−1)

i∗

id∗

r∗ .

This is the desired contradiction, since H̃n−1(Sn−1) is isomorphic to Z and hence the identity

map on H̃n−1(Sn−1) cannot factor through H̃q(D
n) = 0.

Part (b) Assuming that f has no fixed point, the line through x and f(x) intersects the
sphere Sn−1 in exactly two points. Let r(x) ∈ Sn−1 be the intersection point closer to x
than to f(x). If x is a point on the sphere, then x is clearly that intersection point; in other
words, the map r : Dn → Sn−1 restricted to Sn−1 is the identity on Sn−1. It remains to show
that r is continuous.

The idea is to write down a formula for r(x), and to argue that r is a composition of basic
functions that we know are continuous from calculus. To derive the formula for r(x), we
note that every point of the line through f(x) and x is of the form

x+ t(x− f(x)) for t ∈ R.

Moreover, the point r(x) = x+t(x−f(x)) is characterized by the two conditions ||r(x)||2 = 1
and t ≥ 0. The first condition is a quadratic equation for t. Explicitly, setting v = v(x) =
x− f(x) we have

||r(x)||2 = 〈r(x), r(x)〉 = 〈tv + x, tv + x〉 = ||v||2t2 + 2〈v, x〉t+ ||x||2

and hence the quadratic formula gives us the following non-negative solution for t:

(4) t =
−b+

√
b2 − 4ac

2a
where a = ||v(x)||2, b = 2〈v(x), x〉, c = ||x||2 − 1.

We note that the functions a(x), b(x), c(x) are continuous maps Dn → R, since they are
expressed as compositions of functions that are well-known to be continuous. This implies
that the function t = t(x) defined by equation (4) is a continuous function: the only thing to
make sure is that the denominator function a(x) = ||v(x)||2 is nowhere 0 (this is guaranteed
by the assumption that v(x) = x− f(x) 6= 0 for all x ∈ Dn), and that the expression under
the square root is positive (this follows geometrically since we have always two intersection
points of the line through x and f(x) and the sphere; this is equivalent to having two solutions



SOLUTIONS TO HOMEWORK PROBLEMS 15

of the quadratic equation; this in turn is equivalent to a positive expression under the square
root in the quadratic formula). Putting everything together, we conclude that the map

r : Dn −→ Sn−1 given by r(x) = x+ t(x)(x− f(x))

is continuous since t(x) and f(x) are continuous maps. �

3. Let 0 → A∗
f∗−→ B∗

g∗−→ C∗ → 0 be a short exact sequence of chain complexes. Show
that the sequence

... −→ Hq(A)
f∗−→ Hq(B)

g∗−→ Hq(C)
∂−→ Hq−1(A) −→ ...

is exact at Hq(C) and Hq(B).

Proof. Exactness at Hq(C). We need to show im g∗ = ker ∂. Recall that for q ∈ Z, the
chain map g∗ induces a map g∗ : Hq(B) −→ Hq(C) where g∗([b]) = [g(b)]. Let g∗([b]) ∈
im g∗ ⊂ Hq(C), where [b] ∈ Hq(B) (so b ∈ Zq(B)), then ∂g∗([b]) = ∂([g(b)]). Recall the
construction of ∂: ∂ map the homology class represented by a cycle c (which is g(b) in our
case) to the homology class [a] of an element a ∈ Aq−1 for which f(a) = ∂(b′), with b′

chosen so that c = g(b) = g(b′) for b ∈ Bq. Since we showed that the choice of such a b′

is irrelevant, we can then choose b′ to be b. Hence, f(a) = ∂(b) = 0 since b ∈ Zq(B). The
map fq is injective (by the exactness of the given sequence), so we have that a = 0, whence
∂g∗([b]) = ∂([g(b)]) = [0]. Therefore, im g∗ ⊂ ker ∂ at Hq(C).

To show im g∗ ⊃ ker ∂, let [c] ∈ ker ∂ ⊂ Hq(C). Using the notation from the construction
of ∂, there exists a b ∈ Bq such that g(b) = c and an a ∈ Aq−1 for which f(a) = ∂(b), and
since [c] ∈ ker ∂, ∂a′ = a for some a′ ∈ Aq. We notice that the element b − f(a′) ∈ Bq is a
q-cycle since

∂(b− f(a′)) = ∂b− ∂f(a′) = f(a)− f∂a′ = 0,

whence [b− f(a′)] ∈ Hq(B). Furthermore, by the exactness of the original sequence, gf = 0,
so

g(b− f(a′)) = g(b)− gf(a′) = g(b)− 0 = g(b) = c.

Thus, [c] = [g(b− f(a′))] = g∗([b− f(a′)]) ∈ im g∗, and im g∗ ⊃ ker ∂.

Exactness at Hq(B). To show im f∗ ⊂ ker g∗, let f∗([a]) = [f(a)] ∈ im f∗ ⊂ Hq(B),
where a ∈ Zq(A). Then, by the exactness of the original sequence, gf = 0, so g∗([f(a)]) =
[gf(a)] = [0]. Hence, im f∗ ⊂ ker g∗.

To show im f∗ ⊃ ker g∗, let [b] ∈ Hq(B) such that g∗([b]) = [0]; i.e., g(b) ∈ im(∂ : Cq+1 →
Cq). Therefore, ∃c ∈ Cq+1 such that ∂(c) = g(b). Since g is onto (by the exactness of the
given sequence), ∃b′ ∈ Bq+1 such that g(b′) = c. The commutativity of the diagram (of the
chain complexes, chain maps, and boundary maps) yields:

g∂(b′) = ∂g(b′) = ∂(c) = g(b).
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Since each g is a homomorphism, we then have g(b− ∂(b′)) = 0, so b− ∂(b′) ∈ ker g = im f .
Thus, ∃a ∈ Aq such that f(a) = b − ∂(b′). Again, by the commutativity of the diagram,
f(∂a) = ∂f(a) = ∂b − ∂∂b′ = ∂b = 0, so a = 0 since f is injective (ker f = 0). Thus,
a ∈ Zq(A) and [a] ∈ Hq(A). Moreover, since b−f(a) = ∂(b′), f∗([a]) = [f(a)] = [b] ∈ Hq(B).
Thus, im f∗ ⊃ ker g∗.

To recap, we now have that:

... −→ Hq(A)
f∗−→ Hq(B)

g∗−→ Hq(C)
∂−→ Hq−1(A) −→ ...

is exact at Hq(C) and Hq(B). �

4. Suppose the following diagram of abelian groups and group homomorphisms is commu-
tative with exact rows:

−−−→ Cq+1
∂q+1−−−→ Aq

fq−−−→ Bq
gq−−−→ Cq

∂q−−−→ Aq−1 −−−→
cq+1

y aq

y bq

y cq

y aq−1

y
−−−→ C ′q+1

∂′q+1−−−→ A′q
f ′q−−−→ B′q

g′q−−−→ C ′q
∂′q−−−→ A′q−1 −−−→

Assuming in addition that the maps cq are isomorphisms show that there is a long exact
sequence of the form

Aq A′q ⊕Bq B′q Aq−1 A′q−1 ⊕Bq−1 B′q−1

αq βq γq αq−1 βq−1

First define carefully the homomorphisms in the above sequence. Then prove exactness at
each location.

Proof. We define the maps in the above sequence as follows:

αq : Aq −→ A′q ⊕Bq a 7→ (aq(a), fq(a))

βq : A′q ⊕Bq −→ B′q (a′, b) 7→ f ′q(a
′)− bq(b)

γq : B′q −→ Aq−1 b′ 7→ ∂qc
−1
q g′q(b

′)

Exactness at B′q. First we show γqβq = 0. For (a′, b) ∈ A′q ⊕Bq we have

γqβq(a
′, b) = ∂qc

−1
q g′q(f

′
qa
′ − bqb) = −∂qc−1

q g′qbqb = ∂qgqb = 0

Here the second equality holds due to g′qf
′
q = 0, the third follows from the commutativity of

the third square, and the last is due to ∂qgq = 0.
To show ker γq ⊂ imβq let b′ ∈ B′q with γqb

′ = ∂qc
−1
q g′qb

′ = 0. By exactness at Cq there is

an element b ∈ Bq such that gqb = c−1
q g′qb

′ or equivalently

g′qb
′ = cqgqb = g′qbqb,

where the second equality follows from commutativity of the third square. It follows that
b′ − bqb is in the kernel of g′q and hence by exactness at B′q, there is an element a′ ∈ A′q with
f ′qa
′ = b′ − bqb. This implies

βq(a
′,−b) = f ′qa

′ + bqb = b′
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which shows that b′ is in the image of βq.
Exactness at A′q ⊕Bq. First we show βqαq = 0. For a ∈ Aq we have

βqαqa = βq(aqa, fqa) = f ′qaqa− bqfqa = 0

due to the commutativity of the second square.
To show ker βq ⊂ imαq, let (a′, b) ∈ A′q ⊕Bq with

βq(a
′, b) = f ′qa

′ − bqb = 0.

Then we have

cqgqb = g′qbqb = g′qf
′
qa
′ = 0,

where the first equality is due to the commutativity of the third square, and the last is due
to exactness at B′q. Since cq is an isomorphism, this implies gqb = 0 and hence by exactness
at Bq, there is an element a ∈ Aq with fqa = b. If we could show aqa = a′, we would be
done. However we can only say the following:

f ′q(aqa− a′) = f ′qaqa− f ′qa′ = bqfqa− bqb = 0

where the second equality follows from the commutativity of the second square and our
assumption f ′qa

′ = bqb. Since f ′q is not necessarily injective, we can’t conclude that aqa = a′,
but thanks to exactness at A′q, it implies that there is an element c′ ∈ C ′q+1 with ∂q+1c

′ =
aqa − a′. Moreover, since cq+1 is an isomorphism, there is a c ∈ Cq+1 with cq+1c = c′. Now
we modify the element a ∈ Aq by defining ā := a− ∂q+1c. We calculate

fqā = fq(a− ∂q+1c) = fqa = b

aqā = aq(a− ∂q+1c) = aqa− ∂′q+1cq+1c = aqa− (aqa− a′) = a′

This shows that αq(ā) = (a′, b) as desired.
Exactness at Aq. First let us show αq ◦ γq+1 = 0. For b′ ∈ B′q+1 we have

αqγq+1b
′ = αq(∂q+1c

−1
q+1g

′
q+1b

′)

= (aq∂q+1c
−1
q+1g

′
q+1b

′, fq∂q+1c
−1
q+1g

′
q+1b

′)

= (∂′q+1g
′
q+1b

′, 0) = (0, 0)

since the compositions fq∂q+1 and ∂′q+1g
′
q+1 are zero due to the exactness at Aq resp. A′q.

To show kerαq ⊂ imγq+1, let a ∈ Aq with αqa = (aqa, fqa) = (0, 0). By exactness at Aq
there is an element c ∈ Cq+1 with ∂q+1c = a. Then

∂′q+1cq+1c = aq∂q+1c = aqa = 0

and hence by exactness at C ′q+1, there is an element b′ ∈ B′q+1 with g′q+1b
′ = cq+1c. This

implies

γq+1b
′ = ∂q+1c

−1
q+1g

′
q+1b

′ = ∂q+1c = a,

which shows that a is in the image of γq+1. �
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4. Homework Assignment # 4

1. Let X be a topological space and let ΣX be the suspension of X which is defined as the
quotient space X × [0, 1]/ ∼, where the equivalence relation is generated by (x, 0) ∼ (x′, 0)
and (x, 1) ∼ (x′, 1) for all x, x′ ∈ X.

(a) Show that ΣSn is homeomorphic to Sn+1.

(b) Construct an isomorphism Hq+1(ΣX)
∼=−→ Hq(X) (this is called the suspension iso-

morphism).
Hint for (b): Think of the suspension isomorphism as a generalization of the isomorphism

H̃q+1(Sn+1) ∼= H̃q(S
n) proved in class. That proof used the decomposition of Sn+1 as a union

of U = Sn+1 \ north pole and V = Sn+1 \ south pole. In this more general situation, the
subspaces U = {[x, t] ∈ Σ | 0 ≤ t < 1} and V = {[x, t] ∈ Σ | 0 < t ≤ 1} of ΣX play an
analogous role.

Proof. Part (a) The map Rn+1 × [0, 1]→ Rn+2 given by (x, t) 7→ (x sin πt, cosπt) ∈ Rn+1 ×
R = Rn+2 is continuous, since all its components are continuous. It restricts to a continuous
map f : Rn+1× [0, 1] ⊃ Sn× [0, 1]→ Sn+1 ⊂ Rn+2. Moreover, f maps the subspace Sn×{0}
to the “north pole” (0, 1) ∈ Sn+1 ⊂ Rn+1 × R and Sn × {1} to the “south pole” (0,−1).
Hence f induces a well-defined continuous map f̄ : ΣSn → Sn+1.

It is easy to check that this map is a bijection. Moreover, f̄ is an open map (i.e., it sends
open sets of the domain to open sets of the codomain), since its domain ΣSn is compact
(as quotient of the product of compact spaces Sn × I), and its codomain Sn+1 is Hausdorff.
Hence the inverse of f̄ is continuous and consequently f̄ is a homeomorphism.

Part (b) We apply the Mayer-Vietoris sequence for the decomposition of the suspension
ΣX as the union of the two open subspaces U and V . We note that the spaces U and V
(can be pictured as “cones”) are both contractible, i.e., homotopy equivalent to the 1-point
space pt. To see this, let i : pt → ΣX be the inclusion map that sends pt to the “cone
point” [x, 0] ∈ U , and let r : ΣX → pt be the unique projection map. Then r ◦ i = idpt, and
i ◦ r : U → U sends every point to the cone point, and it remains to show that this map is
homotopic to the constant map. A homotopy

H : ΣX × I −→ ΣX is given by ([x, t], s) 7→ [x, st]

The argument for V is analogous. We claim that the inclusion map i : X → U ∩ V , x 7→
[x, 1/2], is a homotopy equivalence. To see this, let r : U ∩ V → X be the projection map
given by [x, t] 7→ x. Then r ◦ i = idX , and i ◦ r is homotopic to idU∩V via the homotopy

H : (U ∩ V )× I −→ U ∩ V H([x, t], s) = [x, (1− s)1

2
+ st]

We remark that (1− s)1
2

+ st is the linear path from 1/2 (for s = 0) to t (for s = 1). Writing
down the Mayer-Vietoris sequence for reduced homology groups we have

// H̃k(U)⊕ H̃k(V ) // H̃k(ΣX)
∂ // H̃k−1(U ∩ V ) //

∼= r∗
��

H̃k−1(U)⊕ H̃k−1(V ) //

0 H̃k−1(X) 0
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The exactness of the sequence implies that ∂ is an isomorphism, and hence the composition

r∗ ◦ ∂ : H̃k(ΣX)→ H̃k−1(X) is the desired isomorphism. �

2. A map f : X → Y determines a map Σf : ΣX → ΣY between the suspensions of X resp.
Y , defined by ΣX 3 [x, t] 7→ [f(x), t] ∈ ΣY .

(a) We recall that the suspension ΣSn is homeomorphic to Sn+1. Show that for a map

f : Sn → Sn, the degree of the map Sn+1 = ΣSn
Σf−→ ΣSn = Sn+1 is equal to the

degree of f .
(b) Let rn : Sn → Sn be the reflection map (x0, . . . , xn) 7→ (−x0, . . . , xn). Show that

deg(rn) = −1. Hint: Using part (a), proceed by induction over n, starting at n = 0.

Proof. Part (a) The key arguments of problem 1(b) show that the maps

H̃n+1(ΣX) H̃n(U ∩ V ) H̃n(X)∂
∼=

r∗
∼=

are both isomorphisms (we use the same notation as in the solution of problem # 1). Let
f : X → X be a map, and Σf : ΣX → ΣX its suspension. Then inspection of the definition
of Σf shows that Σf maps the subspace U ∩ V ⊂ ΣX to itself, and is compatible with the
retraction map r : U ∩ V → X in the sense that the diagram

U ∩ V X

U ∩ V X

Σf|U∩V

r

f

r

is commutative. By functoriality of homology and the naturality of the boundary homomor-
phism of the Mayer-Vietoris sequence we then obtain the following commutative diagram

H̃n+1(ΣX) H̃n(U ∩ V ) H̃n(X)

H̃n+1(ΣX) H̃n(U ∩ V ) H̃n(X)

∂
∼=

(Σf)∗

r∗
∼=

(Σf|U∩V )∗ f

∂
∼=

r∗
∼=

Specializing to X = Sn and hence ΣX ≈ Sn+1 (by part (a)), we conclude from the above
diagram that deg(Σf) = deg(f).

�

3. Prove the following statements for the local degree.
(a) Show that if f : Rn → Rn is a linear isometry (i.e., f belongs to the orthogonal group

On), then deg(f, 0) = deg(f|Sn−1). Hint: apply the statement deg(Σg) = deg(g) from
the previous problem to g = f|Sn−1 , and calculate the degree of Σg using the theorem
expressing the degree of a map as a sum of local degrees.

(b) Show that if f : Rn → Rn is a linear isomorphism, then deg(f, 0) = sign det(f).
Hint: By homotopy invariance of deg(f, 0), it only depends on [f ] ∈ π0GLn (here
π0GLn denotes the set of connected components of the space GLn, and [f ] ∈ π0GLn
is the connected component that contains the point f). Recall that GLn has two
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components; moreover, there is a bijection π0GLn → {±1} given by [f ] 7→ sign det(f).
Use part (a) and problem 2(b) to construct a linear isometry f with deg(f, 0) = −1.

(c) Let f : Rn → Rn be a continuous map which is differentiable at the point x0 ∈ Rn. Let
Dfx0 be the derivative at x0 (which is a linear mapDfx0 : Rn → Rn; the corresponding
matrix is the Jacobian of f at the point x0). Show that if Dfx0 is invertible, then

deg(f, x0) = sign det(Dfx0).

Hint: Use the assumption that f is differentiable at x0 to write f(x) in the form
f(x) = f(x0) +Dfx0(x− x0) + e(x− x0) where the error term e(h) is o(h) for h→ 0.
Use the homotopy ft(x) := f(x0) + Dfx0(x − x0) + te(x − x0) to argue (carefully!)
that the local degrees of f0 and f1 = f at x0 agree.

Proof. Part (a). Following the hint,

deg(f|Sn−1) = deg(g) = deg(Σg) = deg(Σg, c−),

where Σg : ΣSn−1 → ΣSn−1 is the suspension of g, and c− = [x, 0] ∈ ΣSn−1 is the bottom
cone point (I’m thinking of the suspension ΣSn−1 as the union of the two cones C− = {[x, t] ∈
ΣSn−1 | t ∈ [0, 1/2]} with cone point c− = [x, 0] and C− = {[x, t] ∈ ΣSn−1 | t ∈ [1/2, 1]} with
cone point c+ = [x, 1]). The last equality follows from the theorem expressing the degree of
the map Σg as the sum of the local degree of Σg at the points of (Σg)−1(c−) = {c−}. To

show that deg(Σg, c−) = deg(f, 0) we will construct a homeomorphism h : C−
≈−→ Dn which

maps c− to 0 such that the diagram

C−
h

≈
//

Σg|C−
��

Dn

f|Dn

��
C−

h

≈
// Dn

commutes. The induced diagram of local homology groups

Hn(C−, C− \ c−)
h∗
∼=
//

(Σg|C− )∗
��

Hn(Dn, Dn \ 0)

(f|Dn )∗
��

Hn(C−, C− \ c−)
h∗
∼=
// Hn(Dn, Dn \ 0)

then implies deg(Σg, c−) = deg(f, 0). We define the map

h : C− −→ Dn by h([x, t]) = 2tx

This is evidently a continuous bijection. Since C− is compact (as quotient of the prod-
uct of the compact spaces Sn−1 and [0, 1/2]) and Dn is Hausdorff, it follows that h is a
homeomorphism.

Part(b). Let r : Rn → Rn be the linear isometry given by (x1, . . . , xn) 7→ (−x1, x2, . . . , xn).
Its restriction to Sn−1 ⊂ Rn according to problem 2(b) has degree −1 (r|Sn−1 is the re-
flection map denoted rn−1 in problem 2(b)). Hence by part (a) it follows that deg(r, 0) =
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deg(r|Sn−1) = −1. This is sufficient to conclude the equation

deg(f, 0) = sign det(f) for every f ∈ GLn,

since both, deg(f, 0) and sign det(f) depend only on the connected component [f ] ∈ GLn,
and hence it suffices to check the equality for one element f in each of the two components
of GLn. It is clear that the above equation holds for f = idRn , and we just proved that it
also holds for f the reflection map, which lives in the other component.

Part(c). To prove part (c), we note that the assumption that f is differentiable at x0 means
that f(x) can be written in the form

f(x) = f(x0) +Dfx0(x− x0) + e(x− x0),

where the ‘error term’ e(h) is o(h) for h→ 0, which means

(5) lim
h→0

e(h)

|h|
= 0.

We define

f(x)t := f(x0) +Dfx0(x− x0) + te(x− x0),

and want to argue that ft is a map of pairs

ft : (Bε(x0), Bε(x0) \ {x0}) −→ (Rn,Rn \ f(x0)),

for sufficiently small ε > 0, where Bε(x0) is the ball of radius ε around x0. In other words,
we want to argue that f−1

t (f(x0))∩Bε(x0) = {x0}, or equivalently, that Dfx0(h) + te(h) 6= 0
for all h with 0 < h < ε. The idea is to show that for 0 < h < ε the norm of Dfx0(h) is large
compared to the norm of te(h).

To make this precise, let m := minh∈Sn−1 ||Dfx0(h)||. We note that m > 0, since m =
||Dfx0(h0)|| for some h0 ∈ Sn−1, and Dfx0(h0) 6= 0 due to our assumption that Dfx0 is

invertible. Now the statement (5) allows us to choose ε > 0 such that ||e(h)||
|h| < m for

||h|| < ε. This implies that for 0 < ||h|| < ε we have

||te(h)|| ≤ ||e(t)|| < m||h|| ≤ ||Dfx0(
h

||h||
)|| ||h|| = ||Dfx0(h)||

and hence Dfx0(h) + te(h) 6= 0 as desired. We conclude that f = f1 is homotopic to g = f0

as maps from (Bε(x0), Bε(x0) \ {x0}) to (Rn,Rn \ f(x0)) and hence deg(f, x0) = deg(g, x0).

Finally, we want to compare deg(g, x0) and deg(D, 0), where D = Dfx0 . We note that by
construction of g the following diagram is commutative

Bε(0)
Dfx0 //

Tx0 ≈
��

Rn

Tf(x0) ≈
��

Bε(x0)
g // Rn

where Tx0 , Tf(x0) are translation maps defined for v ∈ Rn by Tv : Rn → Rn, w 7→ w+ v. The
corresponding diagram of local homology groups then implies deg(Dfx0 , 0) = deg(g, x0).

�
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4. Let (X, V,A) be a triple of topological spaces (i.e., A ⊂ V ⊂ X). Show that there is a
long exact sequence of homology groups

. . . −→ Hq(V,A) −→ Hq(X,A) −→ Hq(X, V )
∂−→ Hq−1(V,A) −→ . . .

Hint: use the algebraic fact that a short exact sequence of chain complexes leads to a long
exact sequence of homology groups.

Proof. Let i : (V,A)→ (X,A) and j : (X,A)→ (X, V ) be the maps of pairs induced by the
inclusion map V → X resp. the identity on X. The induced maps on singular q-chains

Cq(V,A)
iq // Cq(X,A)

jq // Cq(X, V )

Cq(V )/Cq(A) Cq(X)/Cq(A) Cq(X)/Cq(V )

form a short exact sequence since jq is an epimorphism whose kernel is equal to Cq(V )/Cq(A) ⊂
Cq(X)/Cq(A).

This implies that

C∗(V,A)
i∗ //C∗(X,A)

j∗ //C∗(X, V )

is a short exact sequence of chain complexes which implies the desired long exact sequence
of homology groups. �

5. Homework Assignment # 5

2. Show that the complex projective space CPn is a CW complex with one cell of dimension
2i for 0 ≤ i ≤ n.

Proof. It suffices to show that CP n is obtained from CP n−1 by attaching a cell of dimension
2n. Define

Φ: D2n −→ CP n

z = (z0, . . . , zn−1) 7→ [z0, z1, . . . , zn−1,
√

1− ||z||2],

and let ϕ : S2n−1 → CP n−1 be the natural projection map given by (z0, . . . , zn−1) 7→ [z0, z1, . . . , zn−1].
We note that these maps are compatible in the sense that the following diagram is commu-
tative

S2n−1 ϕ //

j
��

CP n−1

i
��

D2n Φ // CP n,

where i, j are the obvious inclusion maps. It follows that the map

CP n−1 ∪ϕ D2n i∪Φ−→ CP n

is well-defined and continuous. We note that this map is surjective, since if [z0, . . . , zn] ∈ CP n

with zn 6= 0, then multiplying all components by the unit complex number z−1
n ||zn||, we can
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assume w.l.o.g. that zn is a positive real number. Injectivity is obvious and it follows that
f = i ∪ Φ is a continuous bijection. It follows that f is a homeomorphism since the domain
of f is compact and its range is Hausdorff. �

2. (a) Show that Sm × Sn is a CW-complex. There are many choices; try to be economical
in the sense of trying to minimize the numbers of cells of the decomposition. Hint: think
about the CW-structure on S1 × S1 (here we can visualize things...).

(b) Compute the homology groups of Sm × Sn assuming that m ≥ 2 and n ≥ m+ 2.

(c) If X and Y are CW complexes (with finitely many cells to avoid point set topology
issues), is there an associated CW structure for the product X×Y ? Hint: show that X×Y
has a CW structure whose cells correspond to pairs of cells (with one cell from X and the
other cell from Y ). More precisely, if ekα is a k-cell of X and e`β is an `-cell of Y , show that

there is corresponding cell denoted ekα × e`β of dimension k + ` for the product X × Y . It is
useful here to replace disks Dn by cubes In, thanks to the pleasant property Im× In = Im+n

(which is only true up to homeomorphism for disks).

Proof. Part (a). It will be convenient to identify Sm with Dm/∂Dm, and Sn with Dn/∂Dn.
Moreover, let x0 ∈ Sm = Dm/∂Dm be the basepoint obtained by collapsing all the points in
∂Dm to one point, and similarly let y0 be the basepoint of Sn = Dn/∂Dn.

We define the skeleta Xk of X := Sm × Sn, by setting

X0 = {(x0, y0)} Xm = Sm × {y0} Xn = Sm × {y0} ∪ {x0} × Sn Xm+n = Sm × Sn.

For k /∈ S := {0,m, n,m + n}, we define Xk := X`, where ` = min{s ∈ S | s ≤ k}. It
remains to show that

(1) Xm is obtained by attaching an m-cell to X0,
(2) Xn is obtained by attaching an n-cell to Xm, and
(3) Xm+n is obtained by attaching an (m+ n)-cell to Xn.

Since Xm is an m-sphere, (1) is clear. Similarly, Xn is a wedge of an m-sphere and an
n-sphere which implies (2). To show (3), we need to write down the characteristic map
Φ: Dm+n → X for the alleged (m+n)-cell. To construct this map it is useful to identify the
disk Dm+n with the product Dm ×Dn by any homeomorphism. We define

Φ: Dm+n = Dm ×Dn −→ X = Dm/∂Dm ×Dn/∂Dn (x, y) 7→ [x, y].

This map sends ∂(Dm ×Dn) = (Dm × ∂Dn)∪ (∂Dm ×Dn) to Xn, and hence we can define
the attaching map

φ := Φ∂Dm+n : ∂(Dm ×Dn) −→ Xn.

By construction, the diagram

∂(Dm ×Dn) Xn

Dm ×Dn X

φ

i

Φ
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commutes, and hence the continuous map iqΦ: XnqDm×Dn −→ X induces a well-defined
continuous map h : Xn ∪φ (Dm × Dn) −→ X. It is clear that h is a bijection, and hence a
homeomorphism, since the domain of h is compact and its codomain is Hausdorff.

Part (b). By part (a), X = Sm × Sn has a CW structure with one cell each in dimension
0,m, n,m+ n. Hence the cellular chain complex CCW

∗ (X) is given by

CCW
k (X) =

{
Zek for k = 0,m, n,m+ n

0 otherwise

The assumptions on m, n guarantee that if CCW
k (X) is non-trivial, then CCW

k−1(X) is zero.
Hence all differentials in this chain complex are zero and hence HCW

k (X) = CCW
k (X). The

singular homology groups Hk(X) are isomorphic to the cellular homology groups HCW
k (X)

by the Theorem from class. It follows that

Hk(X) ∼=

{
Z for k = 0,m, n,m+ n

0 otherwise

Part (c). Let ekα be a k-cell of X, let e`β be an `-cell of Y , and let

Φk
α : Ik −→ Xk Φ`

α : I` −→ X`

be their characteristic maps. This suggests that the characteristic map for the product cell
ekα × e`β should be the product map

Ik+` = Ik × I` Xk × Y `
Φkα×Φ`β

The requirement that the characteristic map of an n-cell has the n-skeleton as codomain
then forces us to define the n-skeleton of X × Y as

(X × Y )n :=
⋃

k+`=n

Xk × Y ` ⊂ X × Y.

Then (X × Y )0 = X0 × Y 0 is the product of two discrete topological spaces and hence
discrete.

It remains to show that the characteristic maps Φk
α × Φ`

β for k + ` = n indeed provide a
homeomorphism from the (n−1)-skeleton of X×Y with n-cells attached via attaching maps

ϕk,`α,β := (Φk
α ×Φ`

β)|∂(Ik×I`) to the n-skeleton of X × Y . More precisely, let Ak be the set that
parametrizes k-cells of X, and let B` be the set that parametrizes `-cells of Y . Consider the



SOLUTIONS TO HOMEWORK PROBLEMS 25

following commutative diagram.

(X × Y )n−1
∐

k+`=n
α∈Ak, β∈B`

Ikα × I`β (X × Y )n

(X × Y )n−1
∐

k+`=n
α∈Ak, β∈B`

Ikα × I`β

 / ∼

in−1
∐

Φkα×Φ`β

h

Here ∼ is the equivalence relations that identifies a point in ∂(Ikα×`β) with its image in

(X × Y )n−1 under the attaching map ϕk,`α,β. The map in−1 is the inclusion map of the
(n − 1)-skeleton of X × Y to the n-skeleton. The horizontal map is by construction a
continuous surjective map. The points identified by the equivalence relation ∼ map to the
same points in (X × Y )n, and hence the horizontal map induces a well-defined continuous
surjection h. Moreover, h is injective, since by construction of the equivalence relation,
two points in the disjoint union get identified if and only if they map to the same point in
(X × Y )n. Hence h is a continuous bijection. Induction over skeleta can be used to argue
that the domain of h is compact and the codomain is Hausdorff. This implies that h is a
homeomorphism as required. �

3. (a) Show that if 0 // Ck
∂ // Ck−1

∂ // . . .
∂ // C0

// 0 is a chain complex of

finitely generated abelian groups with homology groups Hq := Hq(C∗), then

k∑
q=0

(−1)q rkCq =
k∑
q=0

(−1)q rkHq.

Hint: Use the fact that if 0 → A → B → C → 0 is a short exact sequence of finitely
generated abelian groups, then rkB = rkA + rkC. Show that if Zq (resp. Bq) are the
q-cycles (resp. q-boundaries) of C∗, then there are short exact sequences

0→ Zq → Cq → Bq−1 → 0 and 0→ Bq → Zq → Hq → 0.

(b) Show that if X is a finite CW complex, then

k∑
q=0

(−1)q rkHq(X) =
k∑
q=0

(−1)q#{q-cells of X}.

The alternating sum on the left is known as the Euler characteristic of the topological space
X, denoted χ(X). The statement above shows that if X is a surface, this definition agrees
with our previous definition as the alternating sum of the number of vertices, edges and faces
of a pattern of polygons on X (since we can now interpret such a pattern as providing a CW
structure for the surface X).
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Proof. Part (a). By definition of Bq−1 it is the image of the homomorphism ∂ : Cq → Cq−1;
the kernel of the surjective map ∂ : Cq → Bq−1 is, again by definition, the group of q-cycles
Zq. This gives the first exact sequence. The second sequence is exact since the homology
group Hq by definition is the quotient group Zq/Bq. Now we calculate ranks

rkCq = rkZq + rkBq−1 = rkHq + rkBq + rkBq−1.

Hence∑
q

(−1)q rkCq =
∑
q

(−1)q rkHq +
∑
q

(−1)q rkBq +
∑
q

(−1)q rkBq−1 =
∑
q

(−1)q rkHq,

since the last two sums cancel.

Part (b). Applying part (a) to the cellular chain complex CCW
∗ (X), we have

k∑
q=0

(−1)q rkHq(X) =
k∑
q=0

(−1)q rkHq(C
CW
∗ (X))

=
k∑
q=0

(−1)q rkCCW
q (X) =

k∑
q=0

(−1)q#{q-cells of X}.

�

4. (a) Let Σ be a surface of genus g, and let Σ̃ be a surface which is a d-fold covering of

Σ. Show that χ(Σ̃) = dχ(Σ). Hint: Use our definition of the Euler characteristic χ(Σ) of a
surface Σ as the alternating sum of the number of vertices, edges and faces of a pattern of
polygons on Σ.

(b) For Σ and Σ̃ as in (a), show that the genus g̃ of Σ̃ is given by the formula g̃ = dg−d+ 1.

(c) According to the formula above, the surface of genus 4 is a 3-fold covering of the surface
of genus 2; in particular, there is a free action of the cyclic group C3 of order three on the
surface of genus 4. Draw a picture of a surface of genus 4 which has an obvious C3-symmetry.

Proof. Part (a). Let Γ be a pattern of polygons on Σ. Let V (resp. E resp. F ) be the
set of vertices (resp. edges resp. faces) of Γ. Then Γ determines a pattern of polygons

on the covering space Σ̃ whose vertices (resp. edges resp. faces) are the preimages of the

vertices/edges/faces of Γ under the the d-fold covering map π : Σ̃ → Σ. There are exactly

d vertices/edges/faces in Γ̃ which are the preimages of a given vertex/edge/face of Γ, and
hence

#Ṽ = d#V #Ẽ = d#E #F̃ = d#F,

where Ṽ (resp. Ẽ resp. F̃ ) denotes the set of vertices (resp. edges resp. faces) of Γ̃. It follows
that

χ(Σ̃) = #Ṽ −#Ẽ + #F̃ = d#V − d#E + d#F = dχ(Σ).

Part (b). From class we know that the Euler characteristic χ(Σ) of a closed connected
surface of genus g is given by

χ(Σ) = 2− 2g.



SOLUTIONS TO HOMEWORK PROBLEMS 27

Hence using part (a), it follows that

g̃ = 1− χ(Σ̃))

2
= 1− dχ(Σ)

2
= 1− d(2− 2g)

2
= 1− d+ dg.

Part (c). Here is the picture of a surface Σ̃ of genus 4 with a rotational C3-symmetry. Note

that the C3-action on this surface is free, and that the quotient space Σ = Σ̃/C3 is a surface
of genus 2. Thinking of the surface of genus 2 as the connected sum to two tori, the circle

separating the two tori is triply covered by the three circles in Σ̃ which separate the “central
hole” from the three “outer holes”.

�

6. Homework Assignment # 6

1. Prove the following statement which is known as the 5-lemma. Suppose we have a
commutative diagram of abelian groups and group homomorphisms

A1
f1 //

h1
��

A2
f2 //

h2
��

A3
f3 //

h3
��

A4
f4 //

h4
��

A5

h5
��

B1
g1 // B2

g2 // B3
g3 // B4

g4 // B5

such that the rows are exact sequences. Show that if the vertical maps h1, h2, h4, and h5

are isomorphisms, then also the middle map h3 is an isomorphism.
Remark: the assumptions that the maps h1, h2, h4, h5 are all isomorphisms are slightly

stronger than needed for the proof. What weaker assumptions will do?

Proof. We first prove that h3 is injective. Let a3 ∈ A3 such that h3a3 = 0 ∈ B3. Then by the
commutativity of the diagram, we have h4f3a3 = g3h3a3 = g3(0) = 0, so f3(a3) ∈ ker h4 = 0
since h4 is injective. Hence, a3 ∈ ker f3 = im f2, so there is an a2 ∈ A2 such that f2(a2) = a3.



28 SOLUTIONS TO HOMEWORK PROBLEMS

Again, by the commutativity of the diagram, we have g2h2(a2) = h3f2(a2) = h3(a3) = 0, so
h2(a2) ∈ ker g2 = im g1. Thus, there is an element b1 ∈ B1 such that g1(b1) = h2(a2). More-
over, since h1 is surjective, there is some a1 ∈ A1 with h1a1 = b1. It follows that h2f1a1 =
g1h1a1 = g1b1 = h2a2. Thus, since h2 is injective, a2 = f1a1, so a3 = f2a2 = f2f1a1 = 0.
Therefore, h3 is injectiv.

To show surjectivity of h3, let b3 ∈ B3. Since h4 is surjective, there is some a4 ∈ A4

with h4a4 = g3b3 ∈ A4 and by commutativity, h5f4a4 = g4h4a4 = g4g3b3 = 0. Since h5 is
injective, this implies f4a4 = 0. By exactness of the top row at A4, there is an a3 ∈ A3 such
that f3(a3) = a4. Hence,

g3(h3(a3)− b3) = h4f3a3 − g3b3 = h4a4 − g3b3 = 0.

By the exactness of the lower row at B3, this implies that there exists b2 ∈ B2 such that
g2(b2) = h3(a3)− b3. Since h2 is surjective, there is some a2 ∈ A2 with h2a2 = b2 and hence

h3(a3 − f2a2) = h3a3 − h3f2a2 = h3a3 − g2h2a2 = b3,

which shows that b3 is in the image of h3. Since b3 was arbitrary, this shows that h3 is
surjective.

We see that we’ve used the assumptions that h4, h2 are injective, and that h1 is surjective
to show injectivity of h3. Our proof that h3 is surjective required the assumptions that h2,
h4 are surjective, and that h5 is injective. So it is sufficient to assume that h2 and h4 are
isomorphisms, that h1 is an epimorphism, and that h5 is a monomorphism. �

2. (a) Show that the relation “chain homotopic” is transitive. In other words, show that if
f, g, h : C∗ → D∗ are chain maps, and f is chain homotopic to g, and g is chain homotopic
to h, then f is chain homotopic to h.

(b) Let f, g : C∗ → D∗ and h, k : D∗ → E∗ be chain maps. Show that if f is chain
homotopic to g and h is chain homotopic to k, then h ◦ f is chain homotopic to k ◦ g.

Proof. Let S : Cq → Dq+1 be a chain homotopy from f to g and let T : Cq → Dq+1 be a chain
homotopy from g to h, that is,

∂S + S∂ = g − f and ∂T + T∂ = h− g.

Then ∂(S + T ) + (S + T )∂ = ∂S + ∂T + S∂ + T∂ = g − f + h − g = h − f , which shows
that S + T : Cq → Dq+1 is a chain homotopy from f to h. This proves part (a).

To prove part (b), let S : Cq → Dq+1 be a chain homotopy from f to g, and let T : Dq →
Eq+1 be a chain homotopy from h to k, that is

∂S + S∂ = g − f and ∂T + T∂ = k − h.

Then

∂hS + hS∂ = h∂S + hS∂ = h(∂S + S∂) = h(g − f) = hg − hf
∂Tg + Tg∂ = ∂Tg + T∂g = (∂T + T∂)g = (k − h)g = kg − hg.
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Here both second equalities follow from our assumption that h (resp. g) are chain maps.
Adding both terms, we obtain

∂(hS + Tg) + (hS + Tg)∂ = kg − hf,
which proves that hS + Tg : Cq → Eq+1 is a chain homotopy from hf to kg. �

3. Let f, g : C∗ → D∗ be two chain maps which are chain homotopic. Show that the induced
maps in homology f∗, g∗ : Hq(C∗)→ Hq(D∗) are equal.

Proof. Let T : Cq → Dq+1 be a chain homotopy from g to f , that is, ∂T + T∂ = f − g. Let
z ∈ Zq(C∗) be a q-cycle representing the homology class [z] ∈ Hq(C∗). Then

f∗([z]) = [fz] = [∂Tz + T∂z + gz] = [∂Tz + gz] = [gz] = g∗([z]).

Here the second equation holds since ∂z = 0, and the third equation holds since adding the
boundary ∂Tz to the cycle gz does not change the homology class it represents. �

4. In class we outlined the proof of the statement that the inclusion map ι : CU∗ (X)→ C∗(X)
is a chain homotopy equivalence. Here CU∗ (X) is the subchain complex of C∗(X) generated
by all simplices which are contained in one of the open subsets of the open cover U . The
idea is to use barycentric subdivision to construct a chain map ρ : C∗(X) → CU∗ (X) such
that ρ ◦ ι = id and ι ◦ ρ is chain homotopic to id. The purpose of this problem is to provide
some of the steps in the proof of this statement (more precisely, to prove Lemmas A, B

and C we mentioned in class). As in class let L̃C∗(Y ) ⊂ C̃∗(Y ) be the augmented chain
complex generated by affine linear simplices λ = [w0, . . . , wq] : ∆q → Y , wi ∈ Y for a convex
subset Y of some vector space. Recall that for any point b ∈ Y , we define the linear map

b : L̃Cq(Y ) → L̃Cq+1(Y ) which sends an affine linear simplex [w0, . . . , wq] to the “cone”
[b, w0, . . . , wq]. Recall further that ∂b = id−b∂; in other words, b is a chain homotopy from
0 to id.

(a) Show that the linear map S : L̃Cq(Y )→ L̃Cq(Y ) defined inductively by Sλ := λ for
q = −1, 0 and Sλ := bλ(S∂λ) is a chain map. Here bλ = 1

q+1
(w0, . . . , wq) ∈ Y is the

barycenter of the affine linear simplex λ = [w0, . . . , wq].

(b) Show that the linear map T : L̃Cq(Y ) → L̃Cq+1(Y ) defined inductively by Tλ := 0
for q = −1 and Tλ := bλ(λ− T∂λ) is a chain homotopy from S to id.

(c) Extend the subdivision operator S and the chain homotopy T to the singular chain
complex of any topological space X by defining for any singular simplex σ : ∆q −→ X

Sσ = σ#(Sλq) and Tσ = σ#(Tλq),

where λq : ∆q −→ ∆q is the tautological affine q-simplex in ∆q given by the identity
map. Show that S : Cq(X) → Cq(X) is a chain map and T : Cq(X) → Cq+1(X) is a
chain homotopy from S to the identity.

Proof. Part (a). We will prove that ∂Sλ = S∂λ for all λ ∈ L̃Cq(Y ) by induction over q.

So let us assume that this holds for all elements of L̃Ck(Y ) for k < q and let λ ∈ L̃Cq(Y ).
Then

∂Sλ = ∂(bλS∂λ) = S∂λ− bλ∂S∂λ = S∂λ− bλ(S∂2λ) = S∂λ,
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where the second equality follows from the equation ∂b = id−b∂, and the third equality

follows from our inductive assumption since ∂λ ∈ L̃Cq−1(Y ).

Part (b). Again we use induction to prove this statement. So let us assume that we have

the equality ∂T + T∂ = id−S of endomorphisms of L̃Ck(Y ) for k < q. Then for an affine
linear q-simplex λ = [w0, . . . , wq] we have

∂Tλ = ∂(bλ(λ− T∂λ)) = λ− T∂λ− bλ(∂λ− ∂T∂λ)

= λ− T∂λ− bλ(S∂λ− T∂2λ) = λ− T∂λ− bλS∂λ = λ− T∂λ− Sλ.
Here the second equality follows from the equation ∂b = id−b∂, the third equality from

our inductive assumption since ∂λ ∈ L̃Cq−1(Y ), and the last equality from the inductive
definition of Sλ.

Part (c). We observe first that the linear maps S, T constructed this way are natural in
the sense that for any map f : X → Y we have

Sf# = f#S and Tf# = f#T,

where f# : C∗(X) → C∗(Y ) is the chain map induced by f . To prove the first equation we
calculate for a q-simplex σ : ∆q → X

(6) Sf#σ = S(f ◦ σ) = (f ◦ σ)#Sλq = f#σ#Sλq = f#Sσ.

Here the first equality is the definition of f#(σ), the second and last is the definition of S on
general simplices and the third holds by the functor property of the assignment X 7→ C∗(X).
The equation Tf# = f#T holds by the same argument, we just need to replace the letter S
by the letter T .

Next we prove that S is a chain map. Let σ : ∆q → X be a q-simplex. Then

∂Sσ = ∂σ#Sλq by definition of S on C∗(X)

= σ#∂Sλq since σ# is a chain map

= σ#S∂λq since S is a chain map on L̃C∗(∆
q)

= Sσ#∂λq by equation (6)

= S∂σ#λq since σ# is a chain map

= S∂σ by definition of the induced map σ#

This shows that S is a chain map. Similarly,

∂Tσ = ∂σ#Tλq by definition of T on C∗(X)

= σ#∂Tλq since σ# is a chain map

= σ#(T∂λq − λq + Sλq) since ∂T + T∂ = id−S on L̃C∗(∆
q)

= Tσ#∂λq − σ#λq + Sσ#λq by equation (6)

= T∂σ#λq − σ#λq + Sσ#λq since σ# is a chain map

= T∂σ − σ + Sσ by definition of the induced map σ#

�
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7. Homework Assignment # 7

1. (a) Show that Z/k ⊗ Z/` ∼= Z/ gcd(k, `).

(b) Write down a free resolution M
ε←M∗ for the Z-module M = Z/k.

(c) Calculate TorZq (Z/k,Z/`) := Hq(M∗ ⊗ Z/`) (this turns out to be independent of the
choice of the resolution M∗).

Proof. Proof of part (a). The homomorphism

Z/k ⊗ Z/` −→ Z/ gcd(k, `) given by m⊗ n 7→ mn

is a well defined surjective map. To show that this is in fact an isomorphism, it remains to
show that the element 1⊗ 1 ∈ Z/k ⊗ Z/` multiplied by g := gcd(k, `) is zero in Z/k ⊗ Z/`.
To show this, write g in the form g = ak + b` for k, ` ∈ Z. Then

g(1⊗ 1) = ak(1⊗ 1) + b`(1⊗ 1) = a(k ⊗ 1) + b(1⊗ `) = 0.

Proof of part (b). A free resolution M∗ of Z/k is given by

Z/k M0 = Zεoo M1 = Zkoo M2 = 0oo oo

Proof of part (c). Tensoring the free resolution M∗ from part (b) with Z/` results in the
chain complex

degree 0 1 2

Z⊗ Z/` Z⊗ Z/`k⊗idoo 0oo oo

Let Φ: Z⊗ Z/`
∼=−→ Z/` be the isomorphism given by Φ(m⊗ [n]) := [mn] ∈ Z/`, and write

k = gk′, ` = g`′ for integers k′, `′ which are relatively prime. Then we have a commutative
diagram

Z⊗ Z/` Z⊗ Z/`

Z/` Z/`

Z/` Z/`

Φ ∼=

k⊗id

Φ ∼=

·k

·k′ ∼=

·g

whose vertical maps are isomorphisms (multiplication by k′ is an isomorphism of Z/`, since
gcd(k′, `) = 1. The kernel and cokernel of the bottom horizontal map are both cyclic groups
of order g (generated by [`′] ∈ Z/` resp. [1] ∈ Z/`). Hence

TorZ0 (Z/k,Z/`) = coker(k ⊗ id) ∼= coker(·g) ∼= Z/g
TorZ1 (Z/k,Z/`) = ker(k ⊗ id) ∼= ker(·g) ∼= Z/g

�
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2. Let Xk be the connected sum of k copies of the real projective plane RP2, k ≥ 1. Compute
the homology groups Hq(Xk;Z/2) in the following two different ways:
(a) As the homology groups of CCW

∗ (Xk)⊗Z/2, where CCW
∗ (Xk) is the cellular chain complex

associated to the standard CW structure on Xk obtained by regarding Xk as a quotient of
the 2k-gon.
(b) Via the Universal Coefficient Theorem, using the fact that

Hq(Xk) =


Z q = 0

Zk−1 ⊕ Z/2 q = 1

0 otherwise

.

Proof. Part (a). We recall that the connected sum of k copies of RP2 is homeomorphic
to the quotient obtained from a 2k-gon with edges labeled a1a1a2a2 . . . akak. As discussed

in class, we interpret this as a CW decomposition of Xk with 0-skeleton X
(0)
k given by the

vertex v. The 1-skeleton X
(1)
k consists of the quotient ∂P/ ∼ of the boundary ∂P of the

polygon P obtained by identifying those edges with the same label; this gives a bouquet∨k
i=1 S

1
i of k circles labeled ai that have the point v in common. The open 2-cell e is the

interior of the polygon; its attaching map is given by the projection map

S1 = ∂P → ∂P/ ∼ = X
(1)
k .

We note that the composition of this map with the projection onto S1
i has degree 2 (since this

loop runs twice through each of the circles S1). Hence according to our theorem describing
the boundary map ∂ of the cellular chain complex, we have

∂e = 2a1 + 2a2 + · · ·+ 2ak.

Summarizing, the cellular chain complex CCW
∗ (Xk) looks as follows.

degree 0 1 2

CCW
∗ (Xk) Zv Za1 ⊕ · · · ⊕ Zak

∂oo Ze∂oo

0 ai 2(a1 + · · ·+ ak)
�oo e�oo

Tensoring with Z/2 we obtain the chain complex

CCW
∗ (Xk)⊗ Z/2 ∼= Z/2 Z/2⊕ · · · ⊕ Z/2oo Z/2oo

with trivial differential. It follows that

Hq(Xk) =


Z/2 q = 0, 2

(Z/2)k q = 1

0 otherwise
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Part (b). According to the Universal Coefficient Theorem,

H∗(Xk;Z/2) ∼= H∗(Xk)⊗ Z/2 ⊕ Tor1(H∗(Xk),Z/2).

The following table gives all relevant graded Z-modules by showing all their non-trivial
homogeneous pieces sorted by degree.

q Hq(Xk) Hq(Xk)⊗ Z/2 Tor1(Hq−1(Xk),Z/2) Hq(Xk;Z/2)
0 Z Z/2 0 Z/2
1 Zk−1 ⊕ Z/2 (Z/2)k 0 (Z/2)k

2 0 0 Z/2 Z/2
�

3. Let 0 → A → B → C → 0 be a short exact sequence of Z-modules. Show that for any
topological space X there is a corresponding long exact sequence of homology groups

// Hq(X;A) // Hq(X;B) // Hq(X;C)
∂ // Hq−1(X;A) // Hq−1(X;B) // .

Hint: Recall that a short exact sequence of chain complexes induces a long exact sequence
of homology groups. Use the fact that the tensor product of a short exact sequence of
Z-modules with a free Z-module is again exact.

Proof. Tensoring the short exact sequence 0 → A → B → C → 0 with the chain complex
C∗(X) leads to the sequence

(7) 0 // C∗(X)⊗ A // C∗(X)⊗B // C∗(X)⊗ C // 0

of chain complexes. Looking at the submodule of homogenous elements of degree q of these
chain complexes we have the sequence

(8) 0 // Cq(X)⊗ A // Cq(X)⊗B // Cq(X)⊗ C // 0

Since tensoring with any Z-module is right-exact, this sequence is exact except possibly at
the term Cq(X)⊗A. However, since the Z-module Cq(X) is free, with basis S ⊂ Cq(X) (given
by the set S = Sq(X) of singular q-simplices in X), we can write Cq(X) = Z[S] =

⊕
s∈S Zs

(where the subscript s just distinguishes the many copies of Z). It follows that

Cq(X)⊗ A ∼=

(⊕
s∈S

Zs

)
⊗ A =

⊕
s∈S

Zs ⊗ A ∼=
⊕
s∈S

As.

Hence the map idCq(X)⊗f : Cq(X)⊗ A −→ Cq(X)⊗ A can be identified with the map⊕
s∈S

fs :
⊕
s∈S

As −→
⊕
s∈S

Bs.

The injectivity of f : A→ B implies that the direct sum of many copies of f (parametrized by
s ∈ S) is also injective, and hence is the map idCq(X)⊗f . In other words, (7) is a short exact
sequence of chain complexes which results in the desired long exact sequence of homology
groups. �
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4. (a) Let M , N be right R-modules, and let εM : M∗ →M , εN : N∗ → N be free resolutions.
Show that if f : M → N is an R-linear map, then one can construct a morphism f∗ : M∗ → N∗
of dg R-modules such that the diagram

(9) M

f
��

M∗
εMoo

f∗
��

N N∗
εNoo

is commutative. Hint: Unpacking the definitions, the morphism f∗ amounts to a collection
of R-linear maps fq : Mq → Nq such that the diagram

M

f
��

M0

f0
��

εMoo M1

f1
��

oo M2

f2
��

oo . . .oo

N N0
εNoo N1

oo N2
oo . . .oo

is commutative. Note that the top and bottom row are exact sequences of R-modules by
definition of “free resolution”. Construct the maps fq inductively using the following property
of a free module: if g : A→ B is an R-module map whose domain A is a free module, then g
factors through any R-linear surjection h : C → B; i.e., there is an R-linear map ĝ : A→ C
making the following diagram commutative:

C

����
h
��

A
g //

ĝ
??

B

(b) Show that the R-linear chain map f∗ : M∗ → N∗ constructed in part (a) is unique up to
R-linear chain homotopies, i.e., if f ′∗ : M∗ → N∗ is another solution to (a), show that there
is a chain homotopy T between them.

(c) Show that if M is a right R-module, and P is a left R-module, then the Z-module
TorqR(M,P ) is independent of the choice of a free resolution of M in the sense that if M∗ →M
and M ′

∗ →M are free resolutions of M , then there is an isomorphism between Hq(M∗⊗RP )
and Hq(M

′
∗ ⊗R P ) which is natural in M and P .

Proof. Part (a). Since M0 is a free R-module, the module map f ◦ εM : M0 → N factors
through the surjective map εN : N0 → N ; i.e., there is an R-linear map f0 : M0 : N0 making
the first square commutative. We will construct the fq’s by induction. Let us assume
that we already constructed R-linear maps f0, . . . , fq making all diagrams to the left of fq
commutative. We note that this implies in particular that fq maps ker(Mq → Mq−1) to
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ker(Nq → Nq−1). Now we want to construct fq+1 such that the following diagram commutes:

ker(Mq →Mq−1)

fq
��

Mq+1

fq+1

��

dMq+1oo

ker(Nq → Nq−1) Nq+1

dNq+1oo

This map exists sinceMq+1 is free and the map dNq+1 is surjective by exactness of the resolution
N∗ at Nq.
Part (b). Assume that f ′∗ : M∗ → N∗ is another chain map lifting the map f . Our goal is
to construct a chain homotopy T between them; i.e., we want R-linear maps Tq : Mq → Nq+1

with

(10) dNq+1Tq + Tq−1d
M
q = fq − f ′q

where the modules Mq, Nq are interpreted as the trivial modules for q < 0. We will construct
the Tq’s inductively. To construct T0, we note that

εN ◦ f0 = f ◦ εM = εN ◦ f ′0
implies that the range of f0 − f ′0 is contained in ker εN , and hence there is a map T0 making
the diagram

M0

f0−f ′0
��

T0

""
ker εN N1

dN1

oo

commutative since M0 is free and the horizontal map is surjective.
Now let us assume that we have constructed T0, . . . , Tk−1 satisfying equation (10) for q < k.

To construct Tk, we consider this equation for q = k and put the term Tk−1d
M
k on the right

side of the above equation and try to solve for Tk. We note that the image of

g := fk − f ′k − Tk−1d
M
k : Mk → Nk

is contained in the kernel of dNk since

dNk (fk − f ′k − Tk−1d
M
k ) = fk−1d

M
k − f ′k−1d

M
k − dNk Tk−1d

M
k

=fk−1d
M
k − f ′k−1d

M
k − (Tk−2d

M
k−1d

M
k − fk−1d

M
k − f ′k−1d

M
k ) = 0

Here the first equation holds since f∗, f
′
∗ are chain maps, and the second equation follows

from the inductive assumption.
Now we can construct Tk making the diagram

Mk

Tk

$$
g
��

ker dNk Nk+1
dNk+1

oo
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commutative, since Mk is free and dNk+1 is surjective onto the kernel of dNk by the exactness
of N∗. �

8. Homework Assignment # 8

1. Let Xk be the the connected sum of k copies of the real projective plane RP2. Calculate
the homology groups of Xk ×X` in two ways:
(a) As the homology groups of the cellular chain complex

CCW
∗ (Xk ×X`) ∼= CCW

∗ (Xk)⊗ CCW
∗ (X`).

Hint: The chain complex CCW
∗ (Xk) was calculated in problem 2(a) of assignment # 7.

Decompose CCW
∗ (Xk) as the direct sum of k + 1 chain complexes of the type ΣmZ and

ΣmMZ/n defined in class to make the tensor product CCW
∗ (Xk)⊗ CCW

∗ (X`) manageable.
(b) Via the Künneth Theorem.

Proof. Part (a). By inspection of the chain complex CCW
∗ (Xk) written down explicitly in

problem 2(a) in homework assignment # 7, we see that it decomposes as a direct sum of sub
chain complexes

CCW
∗ (Xk) ∼= Z⊕ ΣZ⊕ · · · ⊕ ΣZ︸ ︷︷ ︸

k−1

⊕ΣMZ/2.

Here Z-modules are interpreted as a chain complex concentrated in degree 0 (like the sum-
mand Z in the decomposition above, generated by the 0-cell v). For any chain complex C∗
we denote by ΣC∗ the suspension of C∗, the dg Z-module obtained from C∗ by shifting all
degrees by declaring (ΣC∗)q := Cq−1; for example, ΣZ is a chain complex concentrated in de-
gree +1. The k−1 summands ΣZ in the decomposition above are generated by a1, . . . , ak−1.
Finally, MZ/` denotes the chain complex consisting of one copy of Z in degree 0 and 1 with
a differential that is multiplication by `; MZ/` is trivial in all other degrees. The summand
ΣMZ/2 is generated by e in degree 2 and a1 + · · ·+ ak in degree 1.

Then we have the following isomorphisms of dg Z-modules:

CCW
∗ (Xk)⊗ CCW

∗ (X`)

∼=

Z⊕ ΣZ⊕ · · · ⊕ ΣZ︸ ︷︷ ︸
k−1

⊕ΣMZ/2

⊗
Z⊕ ΣZ⊕ · · · ⊕ ΣZ︸ ︷︷ ︸

`−1

⊕ΣMZ/2


∼= Z⊕

⊕
k+`−2

ΣZ ⊕
⊕

2

ΣMZ/2 ⊕
⊕

(k−1)(`−1)

Σ2Z ⊕
⊕
k+`−2

Σ2MZ/2 ⊕ ΣMZ/2⊗ ΣMZ/2

The homology groups of the chain complexes Z and M/Z/2 can be read off directly to obtain

Hq(Z) =

{
Z q = 0

0 q 6= 0
Hq(MZ/2) =

{
Z/2 q = 0

0 q 6= 0
.

This implies

Hq(Σ
kZ) =

{
Z q = k

0 q 6= k
Hq(Σ

MZ/2) =

{
Z/2 q = k

0 q 6= k
.
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To it only remains to understand the homology of the chain complex ΣMZ/2⊗ ΣMZ/2 ∼=
Σ2(MZ/2⊗MZ/2). One way to calculate this is via the Künneth Theorem.

q Hq(MZ/2) (H∗(MZ/2)⊗H∗(MZ/2))q Tor1(H∗(MZ/2), H∗(MZ/2))q−1 Hq(MZ/2⊗MZ/2)

0 Z/2 Z/2 0 Z/2
1 0 0 Z/2 Z/2

This implies that Hq(Σ
2(MZ/2⊗MZ/2)) =

{
Z/2 q = 2, 3

0 q 6= 2, 3
.

Forming the direct sum of the homology of the all the summands in the direct sum
decomposition of CCW

∗ (Xk)⊗ CCW
∗ (X`), we obtain

Hq(Xk ×X`) ∼=


Z q = 0

Zk+`−2 ⊕ (Z/2)2 q = 1

Z(k−1)(`−1) ⊕ (Z/2)k+`−1 q = 2

Z/2 q = 3

Part (b). According to the Künneth Theorem,

Hq(Xk ×X`) ∼= (H∗(Xk)⊗H∗(X`))q ⊕ Tor1(H∗(Xk), H∗(X`))q−1,

where we use the shorthand notation

(H∗(Xk)⊗H∗(X`))q :=
⊕

m+n=q

Hm(Xk)⊗Hn(X`)

Tor1(H∗(Xk), H∗(X`))q−1 :=
⊕

m+n=q−1

Tor1(Hm(Xk), Hn(X`)).

The following table shows all these graded Z-modules.

q Hq(Xk) (H∗(Xk)⊗H∗(X`))q Tor1(H∗(Xk), H∗(X`))q−1 Hq(Xk ×X`)

0 Z Z 0 Z
1 Zk−1 ⊕Z/2 Zk+`−2 ⊕ (Z/2)2 0 Zk+`−2 ⊕ (Z/2)2

2 0 Z(k−1)(`−1) ⊕ (Z/2)k+`−2 0 Z(k−1)(`−1) ⊕ (Z/2)k+`−1

3 0 0 Z/2 Z/2

The third and fourth columns are obtained from the second by using linearity in each slot
of −⊗− resp. Tor1(−,−) to write H∗(Xk)⊗H∗(X`) and Tor1(H∗(Xk), H∗(X`)) as a sum of
terms of the form M ⊗N (resp. Tor1(M,N) where M , N are Z or Z/2. �

2. For a topological space X with finitely generated homology groups its Poincaré series
(resp. its Poincaré series with coefficients in a field K) are defined to be the power series

P (X) :=
∞∑
q=0

rkHq(X)tq ∈ Z[[t]] resp. P (X;K) :=
∞∑
q=0

dimKHq(X;K)tq ∈ Z[[t]],
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where dimKHq(X;K) is the dimension of the vector space Hq(X;K) over K.
Remark. The Poincaré series P (X;K) determines the homology groups H∗(X;K) up to
isomorphism, since two finite dimensional vector spaces are isomorphic if and only if they
have the same dimension.
(a) Show that

TorZi (Z/pk,K) =

{
K If char(K) = p and i = 0, 1

0 otherwise

(b) Show that P (X;K) = P (X) if char(K) = 0.
(c) Show that if X and Y are spaces with finitely generated homology groups, then so is
X × Y with Poincaré series given by

P (X × Y ;K) = P (X;K) · P (Y : K)

(d) Calculate H∗(CP;K) and write the Poincaré series P (CPn;K) and P (CPm ×CPn;K) as
rational functions of t (i.e., as quotients of polynomials).

Proof. Part (a). A free resolution of the Z-module Z/pk is given by the chain complex

M∗ =

(
M0 = Z M1 = Zpk

)
. Hence

TorZi (Z/pk,K) = Hi

(
Z⊗K Z⊗Kpk⊗idK

)
.

Identifying Z ⊗ K with K via the map n ⊗ k 7→ nk ∈ K, the map pk ⊗ idK corresponds to
the map K→ K given by multiplication by pk, and hence

TorZ0 (Z/pk,K) = coker

(
K Kpk

)
TorZ1 (Z/pk,K) = ker

(
K Kpk

)
.

If char(K) = p, then multiplication by pk is trivial. Hence kernel and cokernel are K, which
implies TorZi (Z/pk,K) = K for i = 0, 1. If char(K) 6= p, then multiplication by p, and
hence multiplication by pk is an isomorphism. Hence kernel and cokernel are trivial and so
TorZi (Z/pk,K) = 0 for i = 0, 1.

Part (b). According to the Universal Coefficient Theorem, we have

Hq(X;K) ∼= Hq(X)⊗K ⊕ Tor1(Hq−1(X),K).

Decomposing the finitely generated Z-module Hq−1(X) as a sum of copies of Z and Z/pk
(for a prime p), we conclude that Tor1(Hq−1(X),K) = 0, since Tor1(Z,M) = 0 for any
Z-module M , and Tor1(Z/pk,K) = 0 for a field of characteristic 0 by part (a). Similarly, if
we decompose Hq in this way, we see by part (a) again that any summands of Hq(X) do not
contribute to Hq(X;K). Hence if the rank of Hq(X) is r, then

Hq(X)⊗K = (Z⊕ · · · ⊕ Z︸ ︷︷ ︸
r

)⊗K ∼= K⊕ · · · ⊕K︸ ︷︷ ︸
r

.

If follows that dimKHq(X;K) = rkHq(X) and hence P (X;K) = P (X).
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Part (c). By the Künneth Theorem,

Hq(X × Y ) ∼=
⊕
k+`=q

Hk(X)⊗H`(Y ) ⊕
⊕

k+`=q−1

Tor1(Hk(X), H`(Y )).

In particular, Hq(X×Y ) is a finite direct sum of terms of tensor and tor-products of finitely
generated Z-modules and hence it is finitely generated.

By the Künneth Theorem for homology with coefficients in the field K we have

Hq(X × Y ;K) ∼=
⊕

m+n=q

Hm(X;K)⊗Hn(Y ;K)

Writing Pk(X;K) = dimKHk(X;K) for the coefficient of tk in the Poincaré series P (X;K)
we obtain

Pq(X × Y ;K) = dimKHq(X × Y ;K)

= dimK(
⊕

m+n=q

Hk(X;K)⊗H`(Y ;K))

=
∑

m+n=q

dimK(Hm(X;K)⊗Hn(Y ;K))

=
∑

m+n=q

dimKHm(X;K) · dimKHn(Y ;K)

=
∑

m+n=q

Pm(X;K) · Pn(Y ;K).

We recognize the last sum as the expression giving the coefficient of tq of the power series
P (X;K) · P (Y ;K), which shows that P (X × Y ;K) = P (X;K) · P (Y ;K).

Part (d). We recall that

Hq(CPn) =

{
Z q = 0, 2, . . . , 2n

0 otherwise

and hence P (CPn) = 1 + t2 + t4 + · · ·+ t2n = 1−t2n+2

1−t2 . By part (a) it follows that

P (CPm × CPn) = P (CPm) · P (CPn) =
(1− t2m+2)(1− t2n+2)

(1− t2)2
.

�

3. The lens space L2n−1(Z/k) is the quotient of the sphere S2n−1 ⊂ R2n = Cn given by
identifying any point (z1, . . . , zn) ∈ S2n−1 with (ζz1, . . . , ζzn) for any kth root of unity ζ ∈ S1.
For k = 2, this is just the real projective space RP2n−1. Like this projective space, the lens
space L2n−1(Z/k) for any k has a CW structure with exactly one cell eq for 0 ≤ q ≤ 2n− 1.
Hence its cellular chain complex is given by CCW

q (L2n−1(Z/k)) = Zeq for 0 ≤ i ≤ 2n− 1 (it

is zero for all other q). It can be shown that the boundary map d is given by d(eq) = keq−1

for 0 < q ≤ 2n, q even, and d(eq) = 0 otherwise.
(a) Calculate H∗(L

2n−1(Z/k)).
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(b) CalculateH∗(L
2n−1(Z/k);K) for a field K and write down the Poincaré series P (L2n−1(Z/k);K).

Proof. Part (a). Writing out the cellular chain complex CCW
∗ (L2n−1(Z/k)) explicitly, we

get

0 1 2 3 4 . . . 2n− 3 2n− 2 2n− 1

Z Z Z Z Z . . . Z Z Z0 k 0 k 0 k 0

This shows that the chain complex CCW
∗ (L2n−1(Z/k) has a direct sum decomposition of the

form:

CCW
∗ (L2n−1(Z/k)) = Z⊕ ΣMZ/k ⊕ Σ3MZ/k ⊕ · · · ⊕ Σ2n−3MZ/k ⊕ Σ2n−1Z.

Since we know that the homology groups of ΣmZ and ΣmMZ/k are trivial for degree 6= m and
isomorphic to Z resp. Z/k in degree m, we can read of the homology groups of L2n−1(Z/k)
from the decomposition above and obtain

Hq(L
2n−1(Z/k)) =


Z q = 0, 2n− 1

Z/k 0 < q < 2n− 1, q odd

0 otherwise

Part (b). There are two ways to calculate H∗(L
2n−1(Z/k);K), by the Universal Coeffi-

cient Theorem, or as the homology of the cellular chain complex CCW
∗ (L2n−1(Z/k);K) :=

CCW
∗ (L2n−1(Z/k))⊗K with coefficients in K. Doing the latter, tensoring the chain complex

CCW
∗ (L2n−1(Z/k)) described explicitly in part (a) with K, every summand Z gets replaced

by Z⊗K = K and hence we obtain the chain complex

0 1 2 3 4 . . . 2n− 3 2n− 2 2n− 1

K K K K K . . . K K K0 k 0 k 0 k 0

If char(K) divides k, then multiplication by k is trivial in K, hence all boundary maps in
CCW
∗ (L2n−1(Z/k);K) are trivial, and consequently

Hq(L
2n−1(Z/k);K) =

{
K 0 ≤ q ≤ 2n− 1

0 otherwise

If char(K) does not divide k, then multiplication by k is an isomorphism K → K. Hence
only the copies of K in degree 0 and 2n− 1 contribute to the homology and hence

Hq(L
2n−1(Z/k);K) =

{
K q = 0, 2n− 1

0 otherwise

From this we can read off the Poincaré series:

P (L2n−1(Z/k);K) =

{
1 + t+ t2 + · · ·+ t2n−2 + t2n−1 if char(K) divides k

1 + t2n−1 otherwise
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�

4. We recall that a space X is of bounded finite type if all its homology groups are finitely
generated and Hq(X) = 0 for q sufficiently large. For such a space X its Euler characteristic
is defined as the alternating sum

χ(X) =
∞∑
q=0

(−1)q rkHq(X)

of the ranks of the homology groups of X (note that this is a finite sum). More generally,
for a field K we define

χ(X) =
∞∑
q=0

(−1)q dimKHq(X;K).

(a) Show that χ(X;K) = χ(X). Hint: for a fixed prime p, decompose Hq(X) as a direct
sum of Z-modules Aq, Bq, Cq, where Aq is free, and Bq, Cq are finite Z-modules, with the
order of Bq a power of p, and the order of Cq prime to p. Then use the universal coefficent
theorem.
(b) How can χ(X;K) be expressed in terms of the Poincaré series P (X;K)?
(c) Use part (a) to show that χ(X × Y ) = χ(X) · χ(Y ) for bounded spaces X, Y of finite
type.

Proof. If K has characteristic 0, then by the proof of problem 2(b), rkHq(X) = dimkHq(X;K),
and consequently, χ(X) = χ(X;K). From now on we assume that char(K) = p. By the
Universal Coefficient Theorem,

(11) Hq(X;K) ∼= Hq(X)⊗K ⊕ Tor1(Hq−1(X),K).

The finitely generated Z-module Hq(X) can be decomposed as a direct sum

Hq(X) ∼= Aq ⊕Bq ⊕ Cq,

where Aq is a sum of Z’s, Bq is a sum of finite cyclic groups whose order is a power of p,
and Cq is a sum of finite cyclic groups of order prime to p. Let us write aq (resp. bq) for the
number of summands in Aq (resp. Bq). We note that aq is the rank of Hq(X).

The results of problem 1(a) then imply

dimHq(X)⊗K = dimAq ⊗K + dimBq ⊗K + dimCq ⊗K = aq + bq

dim Tor1(Hq−1(X),K) = dim Tor(Aq−1,K) + dim Tor(Bq−1,K) + dim Tor(Cq−1,K) = bq−1

Hence the Universal Coefficient Theorem (11) implies Hence by the Universal Coefficient

dimHq(X;K) = dim (Hq(X)⊗K) + dim Tor1(Hq−1(X),K) = (aq + bq) + bq−1.
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It follows that

χ(X;K) =
∞∑
q=0

(−1)q(aq + bq + bq−1)

=
∞∑
q=0

(−1)qaq +
∞∑
q=0

(−1)qbq +
∞∑
q=0

(−1)qbq−1

=
∞∑
q=0

(−1)qaq =
∞∑
q=0

(−1)q rkHq(X) = χ(X).

Part (b). We note that the assumption that the homology group Hq(X) is zero for suffi-
ciently large q means that the Poincaré series P (X) is a polynomial. In particular, we can
evaluate P (X) for any complex number t. For t = −1 we obtain

P (X)(−1) =
∞∑
q=0

rkHq(X)(−1)q = χ(X).

Part (c). Using problem 2(c) and part (b) of this problem, we obtain

χ(X × Y ) = P (X × Y ;K)(−1) = (P (X;K) · P (Y ;K))(−1)

= (P (X;K)(−1)) · (P (Y ;K)(−1)) = χ(X) · χ(Y ).

�

9. Homework Assignment # 9

1. (a) Calculate Ext1
Z(Z/k,Z/`).

(b) Calculate Ext1
Z(Z/k,Z).

Proof. We recall that ExtqZ(M,N) for Z-modules M , N is defined as

ExtqZ(M,N) = Hq(HomZ(M∗, N)),

where M∗ is a free resolution of M .
Part (a). For M = Z/k, a free resolution is given by

degree 0 1

Z Z∂

,

where the map ∂ : Z→ Z is multiplication by k. Then HomZ(M∗,Z/`) is given by

degree 0 1

Hom(Z,Z/`) Hom(Z,Z/`δ

,
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where δ maps f ∈ Hom(Z,Z/`) to f ◦ ∂ ∈ Hom(Z,Z/`). As discussed in class, the map
Hom(Z,Z/`) → Z/`, f 7→ f(1) is an isomorphism. We claim that the following diagram is
commutative:

Hom(Z,Z/`) Hom(Z,Z/`)

Z/` Z/`

∼=

δ

∼=

k

where k denotes multiplication by k. It follows that Ext1
Z(Z/k,Z/`) (defined as the cokernel

of δ, i.e., the codomain of δ modulo the image of δ) is isomorphic to the cokernel of k : Z/`→
Z/`, i.e., the quotient of Z/` modulo the ideal generated by k, which is isomorphic to Z
modulo the ideal generated by ` and k. The latter is the ideal in Z generated by gcd(k, `).
It follows that

Ext1
Z(Z/k,Z/`) ∼= Z/ gcd(k, `).

Part (b). Following the same line of argument as in part (a), we have

Ext1
Z(Z/k,Z) = H1

(
Hom(Z,Z) Hom(Z,Z)δ

)
= cokernel of

(
Z Zk

)
∼= Z/k

�

2. Calculate H∗(CPn;Z) (we recall that we calculated the cellular chain complex CCW
∗ (CPn)

and the homology groups H∗(CPn) of the complex projective space CPn).

Proof. We recall that

Hq(CPn) =

{
Z for q even, 0 ≤ q ≤ 2n

0 otherwise

In particular, all homology groups of CPn are free. Hence the terms Ext1
Z(Hq−1(CPn),Z)

and the cohomology UCT simplifies to the statement that the evaluation map

Hq(CPn;Z) Hom(Hq(CPn),Z)ev

is an isomorphism. It follows that

Hq(CPn;Z) ∼=

{
Z for q even, 0 ≤ q ≤ 2n

0 otherwise

�

3. Let Σg be the surface of genus g and let Xk be the connected sum of k copies of the real
projective plane RP2. We recall that we calculated the homology groups Hq(Σg), Hq(Xk),
and Hq(Xk;Z/2).

(a) Calculate the cohomology groups Hq(Σg;Z).
(b) Calculate the cohomology groups Hq(Xk;Z/2).
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Proof. Part (a). We recall that

Hq(Σg;Z) =


Z q = 0, 2

Z2g q = 1

0 otherwise

These homology groups are all free and hence Ext1
Z(Hq−1(Σ),Z) = 0 for all q. The UCT for

cohomology then implies that the evaluation map

ev : Hq(Σ;Z) −→ Hom(Hq(Σ),Z)

is an isomorphism, and hence

Hq(Σg;Z) ∼=


Hom(Z,Z) ∼= Z q = 0, 2

Hom(Z2g,Z) ∼= Z2g q = 1

0 otherwise

Part (b). There are two versions of the UCT for cohomology that we could use to calculate
H∗(Xk;Z/2), one expressing these cohomology groups in terms of H∗(Xk;Z), the other in
terms of H∗(Xk;Z/2). Using the latter is simpler, since the UCT for (co)homology with
coefficients in a field K simply says that Hq(Xk;K) is the vector space dual to Hq(Xk;K).

We recall that

Hq(Xk;Z/2) ∼=


Z/2 q = 0, 2

(Z/2)k q = 1

0 otherwise

.

Applying the UCT for (co)homology with coefficients Z/2 we obtain

Hq(Xk;Z/2) ∼=


HomZ/2(Z/2,Z/2) ∼= Z/2 q = 0, 2

HomZ/2((Z/2)k,Z/2) ∼= (Z/2)k q = 1

0 otherwise

�

4. Recall that there are two geometric versions of the UCT computing the cohomology
H∗(X;K) with coefficients in a field K: the first version expresses H∗(X;K) in terms of
the homology H∗(X;Z) with integer coefficients, the second version expresses it in terms of
the homology H∗(X;K) with coefficients in K. We further recall the computations of the
homology of the lens space L2n−1(Z/k) from problem (3) of assignment # 8:

Hq(L
2n−1(Z/k)) =


Z q = 0, 2n− 1

Z/k q = 1, 3, . . . 2n− 3

0 otherwise

Hq(L
2n−1(Z/k);K) =


K q = 0, 2n− 1

K 1 ≤ q ≤ 2n− 2 and char(K) divides k

0 otherwise
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(a) Use the first version to calculate H∗(L2n−1(Z/k);K).
(b) Use the second version to calculate H∗(L2n−1(Z/k);K).

Proof. Part (a). By the Universal Coefficient Theorem for cohomology we have

Hq(L2n−1(Z/k);K) ∼= Hom(Hq(L
2n−1(Z/k)),Z)⊕ Ext1(Hq−1(L2n−1(Z/k)),K).

We recall from problem 1 on this assignment that Ext1
Z(Z/k,K) = K if char(K) is a divisor

of k, and Ext1
Z(Z/k,K) = 0 otherwise.

We first look at the case where char(K) divides k (just writing L instead of L2n−1(Z/k)
for typographical reasons)

q Hq(L) HomZ(L,K) Ext1
Z(Hq(L),K) Hq(L;K)

q = 0, 2n− 1 Z K 0 K
0 < q < 2n− 1, q odd Z/k K K K
0 < q < 2n− 1, q even 0 0 0 K
q ≥ 3 0 0 0 0

If char(K) is not a divisor of k, then the Ext-term vanishes and the short exact sequence of
the UCT reduces to the isomorphism

Hq(L2n−1(Z/k);K) ∼= Hom(Hq(L
2n−1(Z/k)),K).

Moreover, HomZ(Z/k,K) = 0, and hence

Hq(L2n−1(Z/k);K) ∼=

{
K q = 0, 2n− 1

0 otherwise

Part (b). The version of the UCT for coefficients in a field K gives an isomorphism

Hq(L2n−1(Z/k);K) ∼= HomK(Hq(L
2n−1(Z/k);K),K).

Using HomK(K,K) ∼= K, we immediately obtain

Hq(L2n−1(Z/k);K) ∼=


K q = 0, 2n− 1

K 1 ≤ q ≤ 2n− 2 and char(K) divides k

0 otherwise

�

10. Homework Assignment # 10

1. Show that the map

∪ : C∗(X)⊗ C∗(X) −→ C∗(X) given by φ⊗ ψ 7→ φ ∪ ψ

is cochain map, that is, δ(φ ∪ ψ) = δφ ∪ ψ + (−1)|φ|φ ∪ δψ.
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Proof. For σ : ∆k+l+1 → X we have

(δϕ ∪ ψ)(σ) =
k+1∑
i=0

(−1)iϕ(σ ◦ [e0, . . . , êi, . . . , ek+1])ψ(σ ◦ [ek, . . . , ek+`+1])

(−1)k(ϕ ∪ δψ)(σ) =
k+`+1∑
i=k

(−1)iϕ(σ ◦ [e0, . . . , ek])ψ(σ ◦ [ek, . . . , êi, . . . , ek+`+1])

Adding these two expressions, the last term of the first sum cancels the first term of the
second sum, and the remaining terms are exactly

δ(ϕ ∪ ψ) = (ϕ ∪ ψ)(∂σ)

since

∂σ =
k+`+1∑
i=0

(−1)iσ ◦ [e0, . . . , êi, . . . , ek+`+1].

�

2. (a) For a continuous map f : X → Y , construct an induced homomorphism

f ∗ : Hq(Y ;M)→ Hq(X;M)

for cohomology with coefficients in a Z-module M . Hint: first construct a cochain map
f# : C∗(Y ;M)→ C∗(X;M) (make sure to check compatibility with the differential δ).

(b) Show that the cup product is compatible with pull-back of cohomology classes in the
sense that for a map f : X → Y and cohomology classes α ∈ Hk(Y ;R), β ∈ H l(Y ;R) we
have

f ∗(α ∪ β) = (f ∗α) ∪ (f ∗β).

Hint: Show first the analogous statement for cochains.

Proof. Part (a). We recall that f : X → Y induces a chain map f# : Cq(X)→ Cq(Y ). We
define a map f# : C∗(Y ;M)→ C∗(X;M) by

(f#ϕ)(c) := ϕ(f#c) for ϕ ∈ Cq(Y ;M) = Hom(Cq(Y ),M) and c ∈ Cq(X).

We need to show that f# is a cochain map, i.e., that the diagram

Cq(Y ;M) Cq+1(Y ;M)

Cq(X;M) Cq+1(X;M).

f#

δ

f#

δ

is commutative. So let ϕ ∈ Cq(Y ;M), and let c ∈ Cq+1(M). Then

(f#δϕ)(c)
(1)
= δϕ(f#c)

(2)
= ϕ(∂f#c)

(3)
= ϕ(f#∂c)

(4)
= (f#ϕ)(∂c)

(5)
= δf#ϕ(c)

Here equations (1)&(2) hold by definition of f#, equations (2)&(5) by definition of δ, and
equation (3) is a consequence of the fact that f# is a chain map.

Since f# : C∗(Y ;M) → C∗(X;M) is a cochain map it induces a well-defined homomor-
phism f ∗ : Hq(Y ;M)→ Hq(X;M) defined by f ∗([ϕ]) = [f#ϕ] for a cocycle ϕ ∈ Zq(Y ;M).
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Part (b). For ϕ ∈ Ck(Y ;R), ψ ∈ C`(Y ;R) and σ : ∆k+` → X we have

(f#(ϕ ∪ ψ))(σ) = (ϕ ∪ ψ)(f ◦ σ)

= ϕ(f ◦ σ ◦ [e0 . . . , ek])ψ(f ◦ σ ◦ [ek, . . . , ek+`])

= (f#ϕ)(σ ◦ [e0 . . . , ek])(f
#ψ)(σ ◦ [ek, . . . , ek+`])

= (f#ϕ ∪ f#ψ)(σ)

If the cohomology classes α, β are represented by the cocycles ϕ resp. ψ, we obtain

f ∗(α ∪ β) = f ∗([ϕ ∪ ψ)]) = [f#(ϕ ∪ ψ)]

= [f#ϕ ∪ f#ψ] = [f#ϕ] ∪ [f#ψ]

= f ∗α ∪ f ∗β

�

3. The goal of this and the next problem is to calculate the cup product in the cohomology
of the torus T , using a refinement of the methods we used in class to calculate the cup
product in H∗(X2;Z/2) for X2 = RP2#RP2. We use our standard picture of the torus as
the quotient space of the square by identifying the edges with the same label. Furthermore,
we subdivide the square into two affine 2-simplices f1 and f2 and we pick two loops A, B on
T as indicated in the following picture.

a

a

b b
c

v

f1

f2

A

B

(a) Write down explicitly the sub chain complex C∗ of the singular chain complex C∗(T )
generated by the singular simplices in the picture above (i.e., v, a, b, c, f1, f2; use these
names!). Identify a 2-cycle t ∈ C2 that represents a generator of H2(T ) ∼= Z.

(b) Let C∗ := Hom(C∗,Z) be the cochain complex corresponding to C∗. Let {α, β} be
the basis of H1(T ;Z) which is dual to the basis {[a], [b]} of H1(T ;Z) given by the
cycles a, b ∈ C1 via the evaluation pairing

〈−,−〉 : H1(T ;Z)×H1(T ;Z) −→ Z.

Construct cocycles φ, ψ ∈ C1 with [φ] = α and [ψ] = β.
Hint: Use the loop A to construct φ, and the loop B to construct ψ. Warning:

Care is needed to adapt the “intersection number” construction used in class to this
situation, since here we are talking about cochains with values in Z rather than Z/2.
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Proof. Part (a) The sub chain complex C∗ ⊂ C∗(T ) consists of the q-simplices, 0 ≤ q ≤ 2
which are visible in the picture, e.g., the point v yields a 0-simplex in T . More care is
needed to define the singular 1-simplices corresponding to the oriented edges a, b, c and the
2-simplices corresponding to the triangles f1, f2, since a singular q-simplex is a map ∆q → T ,
and we need to be precise about how that map is defined. To do so, let π : S � T be the
projection map from the square S to the torus T = S/ ∼. We will describe each simplex as
the composition

∆q S Tσ π ,

where the first map is an affine linear map, i.e., σ = [x0, . . . , xq] for points xi ∈ S. To do
so, it is useful to label the vertices of the square; we will use the labeling indicated by the
following picture:

a

a

b b
c

v0

v1

v3

v2

f1

f2

A

B

(1) We interpret each oriented edge from a point x to a point y as a 1-simplex given by
π◦[x, y] : ∆1 → T . For example, the top edge labeled a yields the 1-simplex π◦[v1, v2].
The lower edge labeled a yields π ◦ [v0, v3] which is the same simplex in T , and use
the notation a for this 1-simplex. Similarly, b := π ◦ [v1, v0], and c := π ◦ [v0, v2].

(2) To identify each triangle fi with a 2-simplex fi : ∆2 → T , we need to identify the
0th, first and second vertex of each triangle. This is done using the orientation of the
boundary edges by looking for the two consecutive edges in each triangle that are
consistently oriented, e.g., the edges b and c for the triangle f1. This determines an
ordering of the vertices of f1 as v1, v0, v2, and hence a 2-simplex f1 := π ◦ [v1, v0, v2].
Similarly, f2 := π ◦ [v0, v2, v3].

It is clear that the boundary map ∂ applied to a, b, c is trivial.

∂f1 = ∂(π ◦ [v1, v0, v2] = π ◦ [v0, v2]− π ◦ [v1, v2] + π ◦ [v1, v0] = c− a+ b

∂f2 = ∂(π ◦ [v0, v2, v3] = π ◦ [v2, v3]− π ◦ [v0, v3] + π ◦ [v0, v2] = b− a+ c

This shows that the following chain complex C∗

degree 0 1 2

Zv Za⊕ Zb⊕ Zc Zf1 ⊕ Zf2
∂≡0 ∂

is a subcomplex of C∗(T ). We see that t := f2 − f1 is a generator of Z2 ⊂ C2.
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Part (b) For any edge e = a, b, c, we define cochains φ, ψ ∈ C1 := Hom(C1,Z) via the signed
intersection number

φ(e) := A ∩ e ∈ Z ψ(e) := B ∩ e ∈ Z.

This requires us to choose orientations on A and B, and we do so as indicated in the picture
(these orientations are chosen so that the cocycles φ, ψ we construct this way indeed represent
a basis of H1(T ) dual to the basis H1(T ) with respect to the evaluation pairing). The integer
A ∩ e is defined as the sum

A ∩ e :=
∑
x∈A∩e

εx( ~A,~e)

where ~A is a tangent vector to the curve A at x pointing in the direction determined by the
orientation of A, and analogously for ~e. Then εx( ~A,~e) ∈ {±1} is +1 if and only if the basis

{ ~A,~e} of TxS = R2 represents the standard orientation of R2.
Consulting the picture above we calculate:

(12)
φ(a) =A ∩ a = +1 φ(b) =A ∩ b = 0 φ(c) =A ∩ c = +1

ψ(a) =B ∩ a = 0 ψ(b) =B ∩ b = +1 ψ(c) =B ∩ c = −1

Next we check that φ and ψ are cocycles:

δφ(f1) =φ(∂f1) = φ(c− a+ b) = 0 δφ(f2) =φ(∂f2) = φ(b− a+ c) = 0

δψ(f1) =ψ(∂f1) = ψ(c− a+ b) = 0 δψ(f2) =ψ(∂f2) = ψ(b− a+ c) = 0

Finally, we calculate the evaluation pairings of the cohomology classes α := [φ] and β := [ψ]
in H1(T ) with the homology classes [a], [b] ∈ H1(T ) that form a basis of H1(T ).

〈α, [a]〉 =φ(a) = A ∩ a = 1 〈α, [b]〉 =φ(b) = A ∩ b = 0

〈β, [a]〉 =ψ(a) = B ∩ a = 0 〈β, [b]〉 =ψ(b) = B ∩ b = 1

�

4. This is a continuation of the previous problem using the same notation.

(a) Calculate the numbers

〈α ∪ β, [t]〉 〈α ∪ α, [t]〉 〈β ∪ β, [t]〉.

(b) Calculate the cup products α∪β, α∪α and β∪β in H2(T ;Z), by expressing them as
multiples of the generator γ ∈ H2(T ;Z) which is dual to [t] ∈ H2(T ;Z) with respect
to the evaluation pairing.

Proof. Part (a) The cochain level cup product is defined in terms of front k-faces and back
`-faces of simplices that we evaluate the cup product on. So we first record ff(fi), bf(fi) ∈ C1,
the front (resp. back) 1-face of our 2-simplex fi:

ff(f1) = b bf(f1) = c ff(f2) = c bf(f2) = b
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Using (12) we obtain

〈α ∪ β, [t]〉 =〈φ ∪ ψ, f2 − f1〉 = φ(ff(f2))ψ(bf(f2))− φ(ff(f1))ψ(bf(f1))

=φ(c)ψ(b)− φ(b)ψ(c) = 1 · 1− 0 · 1 = 1

〈α ∪ α, [t]〉 =〈φ ∪ φ, f2 − f1〉 = φ(ff(f2))φ(bf(f2))− φ(ff(f1))φ(bf(f1))

=φ(c)φ(b)− φ(b)φ(c) = 1 · 0− 0 · 1 = 0

〈β ∪ α, [t]〉 =〈ψ ∪ φ, f2 − f1〉 = ψ(ff(f2))φ(bf(f2))− ψ(ff(f1))φ(bf(f1))

=ψ(c)φ(b)− ψ(b)φ(c) = −1 · 0− 1 · 1 = −1

〈β ∪ β, [t]〉 =〈ψ ∪ ψ, f2 − f1〉 = ψ(ff(f2))ψ(bf(f2))− ψ(ff(f1))ψ(bf(f1))

=ψ(c)ψ(b)− ψ(b)ψ(c) = −1 · 1− 1 · (−1) = 0

Part (b) The generator γ ∈ H2(T ) ∼= Z is characterized by the property 〈γ, [t]〉 = 1. Hence
the calculation of 〈α ∪ β, [t]〉 and the evaluation of the other cup products on [t] from part
(a) immediately implies

α ∪ β = γ α ∪ α = 0 β ∪ β = −γ β ∪ β = 0

�

11. Homework assignment # 11

1. The Kummer surface is the submanifold of CP3 of (real) dimension 4 given by

K := {[z0, z1, z2, z3] ∈ CP3 | z4
0 + z4

1 + z4
2 + z4

3 = 0}
It can be shown that

• K is simply connected (i.e., K is connected and its fundamental group π1(K) is
trivial)
• its Euler characteristic is given by χ(K) = 24.

Use these facts to calculate the homology groups Hq(K) and the cohomology groups
Hq(K) for all q. Hint: use the Universal Coefficient Theorem and Poincaré duality to
relate homology and cohomology groups. Make sure to provide an argument for why the
assumptions of the Poincaré Duality Theorem are satisfied.

Proof. The fact that K is simply connected implies that H0(K) ∼= Z (since K is path con-
nected), and that H1(K) = 0 (since H1(K) ∼= π1(K)ab = 0 by the Hurewicz isomorphism).

In order to apply Poincaré duality we need to make sure that the manifold K is compact
and oriented.

K is compact: The subspace

K̂ := {(z0, z1, z2, z3) ∈ S7 ⊂ C4 | z4
0 + z4

1 + z4
2 + z4

3 = 0} ⊂ S7

is closed since K̂ = f−0 for the continuous map f : S7 → C given by f(z0, z1, z2, z3) =
z4

0 + z4
1 + z4

2 + z4
3 . Since S7 ⊂ C4 = R8 is compact by Heine-Borel, the closed

subspace K̂ ⊂ S7 is compact. Since K is the image of K̂ under the projection map
π : S7 → CP3, it is compact.



SOLUTIONS TO HOMEWORK PROBLEMS 51

K is orientable: We recall that an orientation for a manifold M is a section of the dou-
ble covering M̃ → M whose fiber M̃x for a point x ∈ M is the set consisting of
the two orientations of the tangent space TxM . If M is simply connected, like the
Kummer surface, this double covering is isomorphic to the trivial double covering.
In particular, M is orientable.

Next we calculate the cohomology group Hq(K) in two ways in terms of the homology
groups of K:

• by Poincaré duality, Hq(K) ∼= H4−q(K);
• by the Universal Coefficient Theorem, Hq(K) ∼= Hom(Hq(K),Z)⊕Ext1

Z(Hq−1(K),Z).

The homology group H2(K) can be written in the form H2(K) = Zr ⊕ T , where T is a
torsion group. It will be convenient to collect our knowledge about the various (co)homology
groups in the following table.

q Hq(K) Hq(K) ∼= H4−q(K) Hom(Hq(K),Z) Ext1
Z(Hq−1(K),Z)

0 Z Z Z 0
1 0 0 0 0
2 Zr ⊕ T Zr Zr 0
3 0
4 Z

Here the colors of the entries indicate in which logical order we calculate these groups –
black entries first, then blue entries, and finally red entries. The information we start with is
H0(K) = Z, H1(K) = 0 and H2(K) = Zr⊕T (with r a to be determined integer, and T a to
be determined torsion group) in the second column of the table. These black entries in the
second column immediately determine the black entries in the other columns of the table.
By the UCT, the sum of the last two rows is isomorphic to the third row. In particular, we
obtain the three blue entries in third row that way.

The Poincaré duality isomorphism Hq(K) ∼= H4−q(K) for q = 0, 1 results in the two
red entries in the second column. For q = 2, this isomorphism becomes an isomoprhism
Zr ∼= Zr ⊕ T , which implies that the torsion group T must be trivial. Finally, to determine
r = rkH2(K), we use the fact that the Euler characteristic of K is 24, which implies the
equation

24 = χ(K) =
4∑
q=0

(−1)q rkHq(K) = 1− 0 + r − 0 + 1 = 2 + r,

and hence r = 22. Summarizing our results, we have

Hq(K) =


Z q = 0, 4

Z22 q = 2

0 q 6= 0, 2, 4

�

2. (a) Using the cup product structure, show there is no map g : RPn → RPm inducing a
nontrivial map H1(RPm;Z/2)→ H1(RPn;Z/2) if n > m.
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(b) Prove the Borsuk-Ulam theorem according to which for every map f : Sn → Rn there
exists a point x ∈ Sn with f(x) = f(−x) by the following argument. Hint: suppose on the
contrary that f : Sn → Rn satisfies f(x) 6= f(−x) for all x. Then define

g : Sn → Sn−1 by g(x) =
f(x)− f(−x)

|f(x)− f(−x)|
,

so g(−x) = −g(x) and g induces a map ḡ : RPn → RPn−1. Show that this yields a contra-
diction, discussing separately the cases n = 1 (easy), n = 2 (consider the map induced by ḡ
on the fundamental group) and n ≥ 3 (apply part (a) to the map ḡ).

Note that the Borsuk-Ulam Theorem implies for example that at each point in time there
are two places on earth where the temperature and the barometric pressure are exactly the
same.

Proof. Part (a) We will use proof by contradiction. Assume g : RPn → RPm is a map for
some n > m which induces a nontrivial map H1(RPm;Z/2)→ H1(RPn;Z/2).

We recall that the cohomology algebra H∗(RPm;Z/2) is isomorphic to Z/2[α]/(αm+1),
where |α| = 1. As shown in a previous homework problem the induced map in cohomology

g∗ : H∗(RPm;Z/2) −→ H∗(RPn;Z/2)

is compatible with cup products. In other words, it is a homomorphism of graded algebras.
Let β ∈ H1(RPn;Z/2) be the non-trivial element. The assumption that the induced map g∗

on the first cohomology is non-trivial implies that g∗(α) = β, and hence g∗(αn) = βn. This
is the desired contradiction, since βn 6= 0 ∈ Hn(RPn;Z/2), while αn ∈ Hn(RPm;Z/2) = 0
due to n > m.

Part (b) As suggested in the hint, assume that f(x) 6= f(−x) for all x ∈ Sn, and consider
the associated map g : Sn → Sn−1 with the property g(−x) = −g(x); in other words, g
is equivariant with respect to the antipodal action of Z/2 on domain and codomain. Let
ḡ : RPn → RPn−1 be the induced map between the quotient spaces of this action.

(1) For n = 1 we have a map g : S1 → S0. The property g(−x) = −g(x) implies that
g : S1 → S0 is surjective, but the image g(S1) of the connected space S1 must be
connected subset of S0. This is the desired contradiction.

(2) For n = 2, we have a map ḡ : RP2 → RP1 and we consider the induced map
ḡ∗ : π1(RP2) → π1(RP1) on fundamental groups. By covering space theory, the gen-
erator of π1(RP2) ∼= Z/2 is given by a loop γ̄ : [0, 1] → RP2 that lifts to a path
γ : [0, 1] → S2 from a point x0 ∈ S2 to its antipodal point −x0. The equivariance
of g implies that g ◦ γ is a path in S1 from g(x0) to −g(x0); in particular, the loop
ḡ ◦ π ◦ γ in RP1 is not homotopic to the constant loop since its lift g ◦ γ : [0, 1]→ S1

to the double covering S1 → RP1 is not a loop. In other words, ḡ∗([π ◦ γ]) is a non-
trivial element in π1(RP1), and the induced homomorphism ḡ∗ : π1(RP2)→ π1(RP1)
is non-trivial. This is a contradiction since π1(RP2) ∼= Z/2, π1(RP1) ∼= π1(S1) ∼= Z,
and there are no non-trivial homomorphisms Z/2→ Z.

(3) For n ≥ 3, the argument in (2) shows that the induced homomorphism ḡ∗ : π1RPn →
π1RPn−1 is non-trivial, and hence an isomorphism, since both fundamental groups
have order 2.
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Consider the commutative diagram

π1RPn H1(RPn;Z) H1(RPn;Z/2)

π1RPn−1 H1(RPn−1;Z) H1(RPn−1;Z/2),

h

ḡ∗ ḡ∗ ḡ∗

h

where h is the Hurewicz isomorphism and the unlabeled maps are induced by the
homomorphism Z → Z/2. The Hurewicz Theorem resp. the UCT imply that the
horizontal maps are isomorphisms, and hence the induced map ḡ∗ on H1(−;Z/2) is
an isomorphism. By the UCT the induced map ḡ∗ on H1(−;Z/2) is just the vector
space dual to ḡ∗ and hence it is also an isomorphism. Then applying part (a) to the
map ḡ : RPn → RPn−1 yields the desired contradiction.

�

3. (a) Let X, Y be connected topological spaces equipped with basepoints x0 ∈ X, y0 ∈ Y .
Let X ∨ Y be their wedge product, and let π1 : X ∨ Y � X, π2 : X ∨ Y � Y be the natural
projection maps. Show that if α ∈ H∗(X;R), β ∈ H∗(Y ;R) with |α| ≥ 1 and |β| ≥ 1, then
π∗1α ∪ π∗2β = 0.
(b) Show that RP3 is not homotopy equivalent to RP2 ∨ S3. Hint: use problem 2 (a).

Proof. Part (a). The additivity property for cohomology implies that the map

(13) Hq(X ∨ Y ;R) −→ Hq(X;R)⊕Hq(Y ;R) γ 7→ (i∗1(γ), i∗2(γ))

is an isomorphism for q ≥ 1. We note that

i∗1(π∗1α ∪ π∗2β) = (i∗1π
∗
1α) ∪ (i∗1π

∗
2β) = (π1 ◦ i1)∗α ∪ (π2 ◦ i1)∗β

by compatibility between the cup product and induced maps. Moreover, the map

X X ∨ Y Y
i1 π2

factors through a point, and hence (π2 ◦ i1)∗β = 0, since β ∈ Hq(Y ;R) for q > 0. It follows
that i∗1(π∗1α ∪ π∗2β) = 0. An analogous argument shows i∗2(π∗1α ∪ π∗2β) = 0 and hence (13)
implies π∗1α ∪ π∗2β = 0.

Part (b). Assume on the contrary that there is a homotopy equivalence f : RP3 → RP2∨S3.
Then f induces in particular an isomorphism on cohomology with Z/2-coefficients. It follows
that the composition

RP3 RP2 ∨ S3 RP2f π1

induces an isomorphism on H1(−;Z/2), since H1(S3;Z/2) = 0. By problem 2 (a) this is
impossible. �

4. The construction of the fundamental class of a closed oriented manifold is based on the
following
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Proposition 2. Let M be a manifold of dimension n, and K ⊂M a compact subset. Then
the homology Hi(M,M −K) is zero for i > n and an element α ∈ Hn(M,M −K) is trivial
if and only if it is in the kernel of the map

Hn(M,M −K) −→ Hn(M,M − x)

induced by the inclusion (M,M −K)→ (M,M − x) for every x ∈ K.

A crucial step in the proof of this proposition is to show that if this statement holds for
compact subsets K1, K2 and their intersection K1 ∩K2, then is also holds for K = K1 ∪K2.
Prove this step. Hint: note that

(M,M −K) = (M,M −K1) ∩ (M,M −K2)

(M,M − (K1 ∩K2)) = (M,M −K1) ∪ (M,M −K2),

and use without proof that there is a version of the Meyer-Vietoris sequence for pairs of
spaces.

Proof. We will use the Meyer-Vietoris sequence for the suggested pairs of spaces which takes
the form

// Hi+1(M,M −K1 ∩K2)
∂ // Hi(M,M −K)

// Hi(M,M −K1)⊕Hi(M,M −K2) //

This exact sequence implies that if the statement holds for K1, K2, and K1 ∩ K2, then
Hi(M,M − K) vanishes for i > 0, since the adjacent terms in the long exact sequence
both vanish. Now suppose that α ∈ Hn(M,M − K) which is in the kernel of the map
Hn(M,M −K) −→ Hn(M,M − x) for every x ∈ K. We need to show α = 0.

Since the term to the left of Hn(M,M − K) in the exact sequence above vanishes, it
follows that the map Φ in the sequence is injective (for i = n), and hence it suffices to show
that Φ(α) = 0. Now by construction of the Meyer-Vietoris sequence, Φ(α) = (j1

∗(α), j2
∗(α)),

where
jk : (M,M −K) −→ (M,M −Kk)

is the inclusion map of pairs. To show that jk∗ (α) = 0, suppose x ∈ Kk, and consider the
following commutative diagram of pairs

(M,M −K)
jk //

((

(M,M −Kk)

��
(M,M − x)

The corresponding diagram of homology groups of degree n shows that jk∗ (α) is in the kernel
of the map Hn(M,M −Kk)→ Hn(M,M − x). Since this holds for every point x ∈ Kk, this
implies that jk∗ (α) = 0. This holds for both, k = 1 and k = 2, and hence Φ(α) = 0. The
exact sequence then implies α = 0 as desired. �
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