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These are incomplete notes based on a second semester basic topology course I taught in
the Spring of 2016. A basic reference is Allen Hatcher’s book [Ha].
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1 Introduction

The following is an attempt at explaining what ‘topology’ is.

e Topology is the study of qualitative/global aspects of shapes, or — more generally —
the study of qualitative/global aspects in mathematics.

A simple example of a ‘shape’ is a 2-dimensional surface in 3-space, like the surface of a
ball, a football, or a donut. While a football is different from a ball (try kicking one...), it
is qualitatively the same in the sense that you could squeeze a ball (say a balloon to make
squeezing easier) into the shape of a football. While any surface is locally homeomorphic
R? (i.e., every point has an open neighborhood homeomorphic to an open subset of R?) by
definition of ‘surface’, the ‘global shape’ of two surfaces might be different meaning that they
are not homeomorphic (e.g. the surface of a ball is not homeomorphic to the surface of a
donut). The French mathematician Henry Poincaré (1854-1912) is regarded as one of the
founders of topology, back then known as ‘analysis situ’. He was interested in understanding
qualitative aspects of the solutions of differential equation.
There are basically three flavors of topology:

1. Point set Topology: Study of general properties of topological spaces

2. Differential Topology: Study of manifolds (ideally: classification up to homeomor-
phism/diffeomorphism).

3. Algebraic topology: trying to distinguish topological spaces by assigning to them al-
gebraic objects (e.g. a group, a ring, ...).

Let us go in more detail concerning algebraic topology, since that is the topic of this course.
Before mentioning two examples of algebraic objects associated to topological spaces, let us
make the purpose of assigning these algebraic objects clear: if X and Y are homeomorphic
objects, we insist that the associated algebraic objects A(X), A(Y') are isomorphic. That
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means in particular, that if we find that A(X) and A(Y") are not isomorphic, then we can
conclude that the spaces X and Y are not homeomorphic. In other words, the algebraic
objects help us to distinguish homeomorphism classes of topological spaces.

Here are two examples of algebraic objects we can assign to topological spaces, which
satisfy this requirement. We will discuss them in more detail below:

Homotopy groups To any topological space X equipped with a distinguished point xgy €
X (called the base point), we can associate groups m,(X,zg) for n = 1,2,... called
homotopy groups of X. These are abelian groups for n > 2.

Homology groups To any topological space X we can associate abelian groups H, (X) for
n=20,1,..., called homology groups of X.

The advantages/disadvantages of homotopy versus homology groups are
e homotopy groups are easy to define, but extremely hard to calculate;

e homology groups are harder to define, but comparatively easier to calculate (with the
appropriate tools in place, which will take us about half the semester)

Let us illustrate these statements in a simple example. We will show (in about a month)
that the homology group of spheres look as follows:

Z k=0,n
H’“(Sn):{o k0,0

The homotopy groups of spheres are much more involved; for example:
k12345 | 6 [ 7T]8]09
(5% wo) |0 | Z | Z | Z/2 | Z/2 | Z/12 | Z/2 | Z/2 | Z/3

It is perhaps surprising that these homotopy groups are not known for large k (not only
in the sense that we don’t have a ‘closed formula’ for these groups, but also in the sense
that we don’t have an algorithm that would crank out these groups one after another on a
computer if we just give it enough time...). This holds not only for S?, but for any sphere
S™ (except n = 1). In fact, the calculation of the homotopy groups of spheres is something
akin to the ‘holy grail’ of algebraic topology.

1.1 Homotopy groups

Suppose f and g are continuous maps from a topological space X to a topological space
Y. Then true to the motto that in topology we are interested in ‘qualitative’ properties we
shouldn’t try to distinguish between f and g if they can be ‘deformed’ into each other in
the sense that for each ¢ € [0,1] there is a map f;: X — Y such that fy = f and f; = ¢,
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and such that the family of maps f; ‘depends continuously on t’. The following definition
makes precise what is meant by ‘depending continuously on ¢’ and introduces the technical
terminology ‘homotopic’ for the informal ‘can be deformed into each other’.

Definition 1.1. Two continuous maps f,g: X — Y between topological spaces X, Y are
homotopic if there is a continuous map H: X x [0,1] — Y such that H(z,0) = f(z) and
H(z,1) = g(x) for all z € X. The map H is called a homotopy between f and g. We will
denote by [X,Y] the set of homotopy classes of maps from X to Y.

We note that if H is a homotopy, then we have a family of maps f;: X — Y parametrized
by t € [0, 1] interpolating between f and g, given by fi(x) = H(t,x). Conversely, if f;: X —
Y is a family of maps parametrized by t € [0, 1], then we can define amap H: [0,1]x X — Y
by the above formula. We note that the continuity requirement for H implies not only that
each map f; is continuous, but also implies that for fixed x € X the map t — f(x) is
continuous. In other words, our idea of requiring that f; should ‘depend continuously on t’
is made precise by requiring continuity of H.

Examples of homotopic maps.

1. Any two maps f,g: X — R are homotopic; in other words, [X,R] is a one point set.
A homotopy H: X x [0,1] — R is given by H(z,t) = (1 —t)f(z) + tg(xz). We note
that for fixed x the map [0,1] — R given by t — (1 —¢) f(x) + tg(x) is the affine linear
path (aka straight line) from f(z) to g(x). For this reason, the homotopy H is called
a linear homotopy. The construction of a linear homotopy can be done more generally
for maps f,g: X — Y if Y is a vector space, or a convex subspace of a vector space.

2. A map S! — Y is aloop in the space Y. Physically, we can think of it as the trajectory
of a particle that moves in the topological space Y, returning to its original position
after some time. In general, there are maps f,g: S — Y that are not homotopic. For
example, given an integer k € Z, let

fi: St = St be the map given by fu(z) = 2%

Physically that describes a particle that moves |k| times around the circle, going coun-
terclockwise for k& > 0 and clockwise for £ < 0. We will prove that f, and f, are
homotopic if and only if k& = ¢. Moreover, we will show that any map f: S* — S! is
homotopic to fi for some k € Z. In other words, we will prove that there is a bijection

Z +s [S', SY] given by k— f

This fact will be used to prove the fundamental theorem of algebra.



1 INTRODUCTION )

Sometimes it is useful to consider pairs (X, A) of topological spaces, meaning that X is
a topological space and A is a subspace of X. If (Y, B) is another pair, we write

f:(X,A) — (YV,B)

if f is a continuous map from X to Y which sends A to B. Two such maps f,g: (X, A) —
(Y, B) are homotopic if there is a map

H: (X xI,AxI)—s (Y,B)

with H(z,0) = f(z) and H(z,1) = g(z). We will use the notation [(X, A), (Y, B)] for the
set of homotopy classes of maps from (X, A) to (Y, B).

Definition 1.2. Let X be a topological space, and let zy be a point of X. Then the n-th
homotopy group of (X, z¢) is by definition

(X, xg) = [(I",0I"), (X, z0)].

Here I™ := I x --- x I C R" is the n-dimensional cube, and 9I" is its boundary.
—_—

n

A map f: (I,0) — (X, xg) is geometrically a path in X parametrized by the unit interval
I = [0, 1] with starting point f(0) = zo and endpoint f(1) = zy. Such maps are also called
based loops. Similarly, a map f: (I?,0I*) — (X, o) is geometrically a membrane in X
parametrized by the square I, such that the boundary of the square maps to the base point
ZIg.

As suggested by the terminology of the above definition, the set [(I",01"), (X, z)] has
in fact the structure of a group. Given two maps f,g: (I",0I") — (X, x¢), their product
fxg: (I",0I") — (X, z0) is given by

1
(f*g)(th’tn) — {f(2t17t2,...,tn> for (1) S tl S
g(2t1—1,t2,...,tn> f0r§§t1§1
We note that this is a well-defined map, since for t; = % the points (2ty,ts,...,t,) and
(2t; — 1,t,...,t,) both belong to the boundary 0I", and hence both map to z, via f and
g. Moreover, f * g is continuous since its restriction to the closed subsets consisting of the
points t = (t1,...,t,) with ¢; < % resp. t; > % is continuous. We will refer to f x g as the
concatenation of the maps f and g, since for n = 1 the map f*¢g: I — X is usually referred
to as the concatenation of the paths f and g.
The following picture shows where f * g maps points in the square I%: if t = (ty,%5)
belongs to the left half of the square, it is mapped via f; points in the right half map via
g (here we implicitly identify the left and right halves of the square again with I?). In
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particular the boundaries of the two halves map to the base point zy; this subset of I? is
indicated by the gray lines in the picture.

[*xg= 19

Next we want to address the question whether given f, g, h: (I",01") — (X, zo) the maps
f*(g=*h)and (f*g)=*h agree. Thinking in terms of pictures, we have

fx(gxh) = | f lgxhl = | f 19|h

(fxg)xh = |f*xg| b | = |fl9] h

which shows that these two maps do not agree. However, they are homotopic to each other.
We leave it to the reader to provide a proof of this. This implies the third of the following
equalities in 7, (X, x¢); the others hold by definition:

[/1(gllR]) = Lf1(lg * hl) = [f * (g x h)] = [(f * 9) * h] = [f * gl[h] = ([f]lg])[n].

This shows that concatenation induces an associative product on 7,(X, z). We leave it to
the reader to show that this product gives m,(X, zo) of a group where the unit element is
represented by the constant map, and the inverse of an element [f] € 7, (X, z) is represented
by f, defined by f(t1,...,t,) == f(1 —t1,ta, ..., tn).

The group (X, zg) is called the fundamental group of X, while the groups 7, (X, o)
for n > 2 are referred to as higher homotopy groups. Examples show that the fundamental
group is in general not abelian. For example, the fundamental group of the “figure eight” is
the free group generated by two elements. By contrast, for higher homotopy groups we have
the following result.

Lemma 1.3. Forn > 2 the group m,(X, zo) is abelian.

Proof. We need to show that for maps f,g: (I, 0I") — (X, x0) the concatenations f * g
and g * f are homotopic to each other (as maps of pairs). Such a homotopy H is given by a
continuous family of maps H;: (I",01") — (X, zo) which agrees with fx*g for ¢ = 0 and with
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g * f for t = 1. Thinking of each such maps as a picture, like the one for f % g above, such
a homotopy H; is a family of pictures parametrized by ¢ € [0,1]. Interpreting ¢ as “time”,
this means that the homotopy H; is a movie! Here it is:

t=0 t=12 t=1

t=¢ t=1 t=1 t=2

Here all points in the gray areas of the square map to the base point. So shrinking the
rectangles inside of the square labeled f resp. g allows us to rotate them past each other, a
move which is not possible for n = 1, but for all n > 2. n

1.2 The Euler characteristic of closed surfaces

The goal of this section is to discuss the Euler characteristic of closed surfaces, that is,
compact manifolds without boundary of dimension 2. We begin by recalling the definition
of manifolds.

Definition 1.4. A manifold of dimension n or n-manifold is a topological space X which
is locally homeomorphic to R", that is, every point € X has an open neighborhood U
which is homeomorphic to an open subset V of R™. Moreover, it is useful and customary
to require that X is Hausdorff (see Definition and second countable (see Definition
. A manifold with boundary of dimension n is defined by replacing R™ in the definition
above by the half-space R" := {(z1,...,2,) € R" | 21 > 0}. If X is an n-manifold with
boundary, its boundary 0X consists of those points of X which via some homeomorphism
U =~V C R} correspond to points in the hyperplane given by the equation x; = 0. The
complement X \ 0.X is called the interior of X. A closed n-manifold is a compact n-manifold
without boundary.

Examples of manifolds of dimension 1. An open interval (a,b) is a 1-manifold. A closed
interval [a, b] is a 1-manifold with boundary {a, b}. A half-open interval (a,b] is a 1-manifold

with boundary {b}.

A non-example. The subspace X = {(z1,75) € R? | ;1 = 0 or 2o = 0} of R? consisting of
the x-axis and y-axis is not a 1-dimensional manifold, since X is not locally homeomorphic to
R at the origin = (0,0). To prove this intuitively obvious fact, suppose that U is an open
neighborhood of (0,0) which is homeomorphic to an open subset V' C R. Replacing U by the
connected component of U containing (0,0), and V' by the image of that component, we can
assume that U and V' are connected. This implies that V' is an open interval. Restricting
the homeomorphism f: U — V', we obtain a homeomorphism U \ {(0,0)} ~ V \ £(0,0).
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This is the desired contradiction, since U \ {(0,0)} has four connected components, while
V'\ f(0,0) has two.

Examples of higher dimensional manifolds.

1. Any open subset U C R’ is an n-manifold whose boundary OU is the intersection of
U with the hyperplane {(z1,...,x,) € R" | 1 = 0}.

2. The n-sphere S™ := {z € R" | ||z|| = 1} is an n-manifold.

3. The n-disk D" = {z € R™ | ||z|| < 1} is an n-manifold with boundary D" = S"~! =
{z € R* [ ||zf| = 1}.

4. The torus T := S! x S! is a manifold of dimension 2. There at least two other ways
to describe the torus. The usual picture we draw describes the torus as a subspace of
R3. It can also be constructed as a quotient space of the square I?: we identify the
two horizontal edges of the square to obtain a cylinder, and then the two boundary
circles to obtain the torus 1. From a formal point of view, the last sentence describes
an equivalence relation ~ on I? and the claim is that the quotient space I?/ ~ is
homeomorphic to S x S!. It will be convenient to use pictures for this and similar
quotient spaces. Here is the picture for the quotient space I?/ ~ described above:

a
N

QY

(1.5)

Question. Is the sphere S? homeomorphic to the torus 77

It seems intuitively clear that the answer is “no”, but how do we prove that rigorously?
The usual strategy for showing that two topological spaces aren’t homeomorphic involves
thinking of adjectives for topological spaces (e.g., compact, connected, Hausdorff, second
countable, etc), and to show that one has some such property while the other doesn’t. It turns
out that the usual adjectives from point-set topology will not manage to distinguish these
space. Instead, we will associate an integer to closed surfaces, called the Euler characteristic,
that will distinguish S? and T. This is the most basic “algebraic topological invariant” for
spaces.

The definition of the Euler characteristic of a closed 2-manifold ¥ will involve choosing a
“pattern of polygons” on 3. By this we mean a graph I' (consisting of vertices and edges) on
¥, such that all connected components of the complement ¥\ I' are homeomorphic to open
discs. For example, the boundary of the 3-dimensional cube is a 2-dimensional manifold
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homeomorphic to S?. The 8 vertices and 12 edges of the cube form a graph I on S?; the
complement S? \ T' consists of the 6 faces of the cube.
Given a pattern of polygons I' on a surface X, we define the integer

X(E, D) = #V — #E + #F,
where V' is the set of vertices, F is the set of edges, and F' is the set of faces.
Lemma 1.6. x(X,T") = x(X,I") for any two choices of graphs T', T".

Before proving this lemma, let us illustrate the statement in the example of two patterns
on the 2-sphere S

1. Let T be the graph described above obtained by identifying S? with the boundary of
the cube. Then x (5%, T)=8—12+6 = 2.

2. Let I be the graph obtained by identifying S? with the boundary of the tetrahedron.
Then x(S%,T") =4 —-6+4=2.

Proof. We begin by proving the statement in the special case were the graph I is obtained
from I' by adding an new edge. Then the number of vertices is the same for I" and I”, and
the number of edges I is the number of edges for I' plus one. Similarly, the number of faces
of I is one larger than that for I', since the new edge subdivides one face for I' into two
faces for I. Hence x(I'") = x(I').

Similarly, if I'" is obtained from I" by introducing a new vertex on one of the edges of T,
then the number of vertices and edges goes up by one, while the number of faces doesn’t
change. Again, this implies that x(I") = x(I') in this case as well. More generally, if I is
a refinement of I' in the sense that I is obtained from I' by adding new edges and vertices,
we see that x(I") = x(T).

Finally, for general graphs I', I'” we may assume without changing the number of vertices,
edges or faces that I", I are in general position to each other in the sense that the vertex
sets V(I'), V(I) are disjoint and that edges of I intersect those of I in finitely many points.
Then the union of the graphs I" and I'” can again be viewed as a graph I'” on 3. For example,
the vertices of I'” consist of the vertices of I, the vertices of IV and the intersection points
of edges in I" with edges in I". The graph I'” is a refinement of both I' and I, and hence

X(I) = x(I") = x(T). s

Definition 1.7. The Euler characteristic of a closed surface X, denoted x(X) € Z is defined
to be x(2,I') for any pattern of polygons on .

The following is a simple consequence of Lemma [1.6] and the definition of the Euler
characteristic.
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Corollary 1.8. If X, ¥ are closed surfaces with x(X) # x(X'), then these surfaces are not
homeomorphic.

Proof. Suppose that there is a homeomorphism f: ¥ — ¥'. If I' is a pattern of polygons
on X, let IV be the pattern of polygons on ' whose vertices (resp. edges resp. faces) are the
images of vertices (resp. edges resp. faces) of I' under the map f. Then

X(E) =x(35,T) = x(¥,I') = x(¥)
is the desired contradiction. O]
Corollary 1.9. The sphere S? is not homeomorphic to the torus T.

Proof. By the previous result it suffices to show x(S?) # x(T'). By our calculations above
we know x(S?) = 2. We claim that x(7T") = 0. To prove this, we use as “pattern of polygons”
on T the picture (|1.5)), which has

e one face (the square);

e two edges (labeled a resp. b). There are only two rather than four edges since the two
edges of the square labeled a lead to the same edge on the torus;

e one vertex; all four vertices of the square lead to the same vertex on the torus.
It follows that x(7)=1—-2+1=0. O
Other examples of closed surfaces and their Euler characteristic.

Klein bottle Like the torus, the Klein bottle K can be constructed as the quotient space
of the square I? by identifying opposite edges of the square. Here is the picture:

a
>

K = bY Ab

QY

(1.10)

Like for the torus, the Euler characteristic of the Klein bottle can be calculated by
using the “pattern of polygons” on K given by the above picture to obtain

Y(K)=1-2+1=0.
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Real projective plane From an algebraic perspective, the real projective plane RP? is the
set of lines (= 1-dimensional subspaces of R?). To describe the usual topology on RP?,
it is useful to identify this set of lines with the quotient S*/x ~ —z of the 2-sphere
obtained by identifying antipodal points (the bijection is given by sending a point
x € 5? to the line spanned by the unit vector ; since z and —z span the same line,
this gives a well-defined map S?/ ~— {lines in R3} which is easily seen to be bijective).
The usual topology of S? then induces the quotient topology on RP? = S?/ ~.

Another way to think of RP? comes from noting that any equivalence class [z] € S?/ ~
is represented by a point in the upper hemisphere S% = {(z1,22,23) € S* | x3 > 0}
which can be identified with the disk D? by sending (x1, x2, x3) € S% to (z1,22) € D
This shows that RP? is homeomorphic to the quotient D?/ ~, where the equivalence
relation identifies antipodal points on the boundary of D?. In other words, it identifies
points of the upper semicircle with the corresponding points in the lower semicircle as
indicated by the following picture.

RIP? ~

a (1.11)
Interpreting this picture as a pattern of polygons on RP?, we see that

YRPH =1-1+1=1

Another way to calculate the Euler characteristic of the real projective plane is to note
that the projection map
5* — 5%/~ = RP?
is a double covering. The following implies that x(5?) = 2y (RP?) and hence x(RP?) = 1 by
our previous calculation of the FKuler characteristic of the sphere.

Lemma 1.12. If ¥ is a closed surface and p: Y Yisa d-fold covering map, then X(i) =
dx(X).

The proof of this lemma is a homework problem.

1.3 Homology groups of surfaces

The goal in this section is to define homology groups for closed surfaces. These are abelian
groups H,(X) associated to a closed surface ¥ for n € Z. We begin by a quick review of
abelian groups.
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Digression on abelian groups. We will write abelian groups A additively, that is, we
write a + b € A for the group operation applied to two elements a,b € A, and —a for the
inverse of a. As usual, we write na as shorthand for the n-fold sum a + - - - + a of an element
a € A, and —na for the n-fold sum (—a) + --- + (—a). In particular, we can multiply an
element a € A with any integer. This multiplication gives A the structure of a Z-module.
In fact, abelian group and Z-module are just two different names for the same mathematical
structure.
Here are some examples of abelian groups (aka Z-modules).

The infinite cyclic group Z;

The cyclic group Z/n = Z/nZ of order n. Here nZ C Z is the subgroup consisting of
integers divisible by n. We write [i] € Z/n for the coset represented by i € Z.

If A, B are abelian groups, we can form their sum A@® B. The elements of this abelian
group are all pairs (a,b) with a € A, b € B. The sum of two such pairs is given by
(a,b) + (a/, V) = (a+d, b+ V).

If S is a set, the free abelian group generated by S or free Z-module generated by S,
denoted Z[S] is defined by

Z[S] = {Znss | ns € Z, ng # 0 for only finitely many s € S}

seSs

In other words, the elements of Z[S] consist of the finite linear combinations of elements
of S with integer coefficients.

We recall the following important facts about abelian groups:

The sum Z/m & Z/n is isomorphic to Z/mn if and only if m is prime to n.

Any finitely generated group is isomorphic to a sum of Z’s and Z/n’s. Without loss of
generality we can assume that the n’s are powers of primes. We recall that an abelian
group A is finitely generated if there are finitely many elements a; € A such that every
element a € A can be expressed as a linear combination of the a;’s.

Like for the definition of the Euler characteristic, the definition of the homology group
H,(X) for a closed surface ¥ requires us to first choose some additional structure on the
surface. To construct the homology groups, we need to make the following choices:

1.

2.

The choice of a pattern of polygons on ¥;

We need to choose an “orientation” for each edge and each face.
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(a) For an edge, this means giving it a direction, which we indicate in pictorially by

an arrow:
(%1
e

Vo
Thinking of the edge e as an arrow, we will refer to the vertices v, resp. vy as the
tip resp. tail of the edge e, and write tip(e) = vy, tail(e) = w.

(b) An orientation for a face means a direction for the boundary circle (clockwise or
anti-clockwise), which we indicate in pictures as follows:

V2
€1

U1 €2

(&
4 U3

Ve s (1.13)
These choices allow us to construct the following abelian groups and homomorphisms:

81 82

Z[V] Z|E] Z|F] (1.14)

Here V' (resp. E resp. F) is the set of vertices (resp. edges resp. faces) of the pattern of
polygons that we picked, and Z[V] (resp. Z[FE] resp. Z[F]) is the free abelian group generated
by these sets. Given an edge e € F, then

d1(e) = tip(e) — tail(e) € Z[V],

and this determines the map 0; by linearity. If f € F'is a face,

Here the sum is over all edges e of the polygon f; the sign of an edge e is positive if the
direction of e and the direction of f agree, and negative otherwise.
For example, for the face shown in (|1.13) we have

(92(]”) = —e1 + e+ e3 — ey.
We note that
01(0a2(f)) = O1(—e1 +ea+e3 —ey)

= (—tip(ey) + tail(ey)) + (tip(ea) — tail(eq)) + (tip(es) — tail(es)) + (— tip(eq) + tail(ey))
= (—va +v1) + (v2 —v3) + (V3 — va) + (—v1 +v4) = 0.
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This is true in general: for the maps 0y, 0y in associated for any surface ¥ and the
choice T' of a pattern of polygons on ¥ and orientations for all of its edges and faces (while
in the section on the Euler characteristic we used I' to denote the pattern of polygons, from
now on I' includes the choice of orientations, since they are required for the construction of
the maps 0y and 0).

Lemma 1.15. The maps 0y, 02 of (1.14) have the property 0, o 9y = 0.
Definition 1.16. A chain complez is a sequence

Ok_1 Oy Ok+1 Okt2
Ck—l Ck: Ck’-i-l

of Z-modules C} and module maps 0y: Cy — Cy_1 for k € Z, such that 0y o dy11 = 0 for all
k € Z. We typically abbreviate by writing (C\, d,) or just C, for a chain complex, where *
is a placeholder for an index n € Z.

We note that ((1.14) can be interpreted as a chain complex by setting

Z[V] k=0
.o 1B k=1
ZIF] k=2

0 k#0,1,2
We use the notation C, (3, T") for this chain complex, where I' is a pattern of polygons on 3
equipped with orientations of edges and faces.

Terminology. Motivated by this example, the maps 0; are called boundary maps. An
element ¢ € C}, is a k-chain. If ¢ is in the kernel of 0y: Cy — Cy_1, it is a k-cycle, and
if it is in the image of Oxy1: Cry1 — Ck, it is a k-boundary. We note that the condition
Ok 0 Ogy1 = 0 implies that any k-boundary is a k-cycle. Furthermore, we write

Zy, := {k-cycles} = ker(0y: Cr — Ci_1)
for the Z-module of k-cycles and
By, := {k-boundaries} = im(041: Cry1 — Ck)
for the submodule of k-boundaries. The the k-homology is defined to be the quotient module

Zy _ {k-cycles}
B {k-boundaries}"

If there is more than one chain complex around we use the notation

Zi(Cy, 0y), Bi(Cy,0.), Hi(Cy,0x) or Z(Cy), Bp(C.), Hp(C,)

Hk =

to indicate that we are talking about cycles, boundaries, or homology classes of the chain
complex C, = (C,, 0s).
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Proposition 1.17. The homology groups Hy(Ci«(X,T)) of the chain complezr C.(X,T") are
independent of I'. More precisely, if I' and I are two choices of a pattern of polygons on X
and orientations of edges and faces in that pattern, then they determine an isomorphism

O H(Cuo(B,T)) — Hy(C(Z,T)).
This result allows us to define the k-th homology group Hy(X) of a surface 3 by
Hi(X) := Hp(Ci(5, 1)),

where I is a pattern of polygons on ¥ equipped with orientations of its edges and faces.

Proposition [I.17] can be proved with the same strategy as in the proof that the Euler
characteristic of a surface is independent of the choice of the pattern of polygons used in its
definition: any two patterns have a common refinement, and hence it suffices to show that
the homology group don’t change if we refining a pattern I' by

e subdividing an edge by putting an extra vertex on it, or by

e subdividing a face by connecting two of non-adjacent vertices by an extra edge.

This is not hard to do, but we skip the proof, since we are much more ambitious: we would
like to define homology groups Hy(X)

e for any topological space, rather than just for surfaces, and

e without the need to fix additional choices, like the the choice of a pattern of polygons
above.

This will be done in the following section.

Calculation of the homology groups of some surfaces.

Real projective plane As in ([1.11)) we will use pattern of polygons on the real projective
plane RP? by thinking of it as a quotient of the 2-gon with edge-identifications given

by the following picture.
a

RIP2 =v v

a

In other words, we have one vertex v, one edge a and one face f. The picture also
indicates which orientation we pick for @ and f. It follows that the associated chain
complex C, = C,(RP?,T) has the form:

(91 al

C():ZU

C’1:Za

Cy=Zf
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with 0y (a) = tip(a) — tail(a) = v — v = 0 and O5(f) = 2a. It follows that

Z() Zv
Ho=2Y_ 2 ~7g
°T By, {0}

Zl Za
H=2=""~7/7
"B, 7Z2a /

Zy {0}
H:—:—:O
2 B2 {O} {}

Torus The torus T can be obtained as a quotient space of the square by gluing the edges
with the same label as shown in the following picture.

a

>

(Y (Y

identifying the We will use the pattern I' of polygons and orientations on the torus 7’
Klein bottle
Sphere

Surface of genus g

2 Singular homology

The goal of this section is to define homology groups H(X) for any topological space X
without the choice of auxiliary data, like the patterns of polygons in our discussion of ho-
mology groups of surfaces in section [I.3] An important role in that discussion was played by
vertices, edges and faces on a surface X, and so the first step is to generalize those. We note
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that it suffices to restrict us to triangles on a surface X rather than work with more general
polygons, since we can always subdivide polygons into triangles by introducing additional
edges, which doesn’t change the homology groups according to Proposition We note
that we can think of vertices (resp. edges resp. triangles) on X as given by continuous maps

S — X,

where S C R™ is a point (resp. a line segment resp. a triangular shaped region).

Definition 2.1. A subset S C R™ is a k-simplex if S is the convex hull of points vg, ... v, €
R™ such that the vectors v; — vy, ..., v — vg are linearly independent. We note that every
element s € S can be written uniquely as an affine linear combination of the v;s, that is, in
the form

k k
s = Ztivi with ¢; € [0, 00) and Zti = 1.
i=0 i=0
The standard simplex of dimension k, is the convex hull of ey, e, ..., e, € R where

{e;}F_, is the standard basis of R*¥*1. We will use the notation A* C R*! for the standard

k-simplex.
V2 U3
U2
/1 U1
[ [ ¥
Vo Vo Vo U1

Vo

0-simplex 1-simplex 2-simplex 3-simplex

Definition 2.2. A singular k-simplex in a topological space X is a continuous map
o: A¥ — X.

For example, a vertex (resp. edge resp. triangle) on a surface X is a singular k-simplex
in X for k = 0 (resp. k = 1 resp. k = 2). The adjective ‘singular’ refers to the fact that a
singular k-simplex is allowed to be quite degenerate, for example it could be the constant
map.

Proposition 2.3. Let pt be the topological space consisting of one point. Then

Z k=0

Hy(pt) = {0 k0
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Proposition 2.4. Let X be a space with path connected components X,. Show that Hy(X)
is isomorphic to the direct sum @, Ha(X,).

Contrasting € and [].
Proposition 2.5. If X is a path connected space, then Hy(X) is isomorphic to Z.

Corollary 2.6. For any space X its homology group Hy(X) is the direct sum of as many
copies of 7 as there are connected components of X.

Proof. The desired isomorphism Hy(X) = Cy(X)/Bo(X) — Z is induced by the homomor-
phism

e Co(X)—2Z Y mmie Y m

which is called the augmentation. We note that the composition
Ci(X) % Co(X) - Z

is trivial, since if o: A — X is a 1-simplex, then do = 9yo — 10 = o(v;) — (1), and
hence edo = ¢(o(v1) — o(vy)) = +1 — 1 = 0. This shows that e induces a well-defined
homomorphism é: Hy(X) = Co(X)/Bo(X) — Z.

It is clear that € is surjective; to prove injectivity, assume that €([> " n;z;]) = > n; is zero.
To show that [>_ n;x;] is the trivial homology class, we need to construct a 2-chain ¢ with
Odc = > n;x;. To construct ¢, we pick a base point zg and paths A\;: I — X from zg to z;. If
we consider \; as a 1-simplex, we have

ONi = Op\i — W\ =z — 2o,

and hence for ¢ = > n;z;, we get

Jc = 8(2 ni\;) = Zn,xz — (Z n;)xre = Z n;T;

as desired. O

2.1 Relating the first homology group and the fundamental group

We recall that elements of the fundamental group m (X, zg) of a topological space X with
basepoint xy are homotopy classes of based loops, that is paths v: I — X with v(0) = z
and y(1) = zy. Identifying the unit interval I with the standard 1-simplex A! via the affine
linear map A — [ that sends ¢y to 0 and e; to 1, we can interpret the path v as a 1-simplex.
We note that v is in fact a cycle, that is v belongs to Z;(X) = ker(9: C1(X) — Cy(X)),
since

0y =00y —hy=7(1) —7(0) =29 — 29 = 0 € Cp(X).
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Let us denote in this section by [[y]] € Hi(X) = Z1(X)/B1(X) the homology class it
represents. The map

hem (X, @) — Hi(X)  givenby  [y] = [[]]
is called the Hurewicz homomorphism.
Lemma 2.7. h is a well-defined group homomorphism.

Proof. We will show that h is well-defined. The proof that h is a group homomorphism is
left as a homework problem.

Let 7, be two based loops such that [y] =[] € m(X,z0). Let H: I x I — X be a
homotopy of based loops between ~ and +'. In other words,

H(s,0) =~(s) H(s,1) =+(s) H(0,t)=H(1,t) =2y forallsel tel.
More visually, this can be represented by the picture

/

f)/

Zo Zo

v

Here the labels next to the edges tell us where H maps these edges: on the bottom (resp.
top) horizontal edge H restricts to the path 7 (resp. 7/) while the vertical edges both map
to the basepoint x.

Showing that h is well-defined amounts to proving that h([y]) = h([y]) € Hi(X) =
Z1(X)/B1(X). In other words, we need to show that the cycles v,~" € Z;(X) represent the
same homology class, that is

v—7" € Bi(X) =1m(dy: Co(X) — C}).

So we need to construct 2-simplices such that 0y of a linear combination of these is v — «/.
The idea is to decompose the square I? into two triangles, and to define singular 2-simplices
o1, 09 by restricting H: I? — X to these two triangles. Here is a picture:

/

v

g2 1

v
Zo Zo

01
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The Hurewicz homomorphism h: m (X, xg) — H;(X) maps any commutator [g,h] =
ghg™'h™' € m = (X, x0) to the trivial element in H;(X) since H;(X) is an abelian group.
In particular, the commutator subgroup [, 7] C 7, the normal subgroup of 7 generated by
all commutators, maps to 0. Hence h induces a well-defined homomorphism

h: m(X, z0) — Hi(X)
from the abelianized fundamental group ™ := 7v/[r, 7] to Hy(X).

Theorem 2.8. For any path connected topological space X the map h: 7(X, zo) — Hy(X)
1S a group isomorphism.

Proof. The idea is to construct an inverse to h as follows. Choose for every point x € X a
path A\, from x( to x. Define the map

U: C(X)/Bi(X) — 7%(X, ) by [V = o) 7+ M)

for any singular 1-simplex 7, also known as path v: I — X. Here Ay * v * 5\7(1) is the
concatenation of the path Ay (from zy to ¥(1)), the path v (from v(0) to (1)) and the
path Ay1y (from (1) to xo, obtained by running the path A,q) from xo to v(1) backwards).

We show here that U is a well-defined map, and will leave it to the reader to show that
W restricted to Hi(X) = Z1(X)/B1(X) C C1(X)/B;(X) is in fact an inverse to h.

We recall that By (X) is the image of 0y: Co(X) — C1(X), and hence B (X) is generated
by the elements dy(c), where o: A? — X is a singular 2-simplex.

We recall that the element of 7 (X) = m (X, xy) are homotopy class of a based loops,
where a based loop is a path v: I — X with v(0) = (1) = zg. Such a based loop can be
regarded as a 1-simplex or 1-chain. In fact, v is a cycle, since

Oy = 9oy — Oy = (1) —¥(0) = 2o — z0 = 0.
We will show that the map
h: m(X5m0) — Hi(X) [yl e [V]],

known as the Hurewicz homomorphism is well-defined and a homomorphism. Here we write
[v] € m(X; 20) for the homotopy class of the based loop « and [[7]

inH(X) for the homology class of the 1-cycle . To distinguish the two different equivalence
relations involved, we will write v =2 ¢ if two based loops 7, § are homotopic relative base
point and we will write ¢ ~ d if two 1-chains are homologous.

well-defined So to prove that the Hurewicz map is well-defined amounts to showing that
v 2§ implies v ~ 0 (we note that v, § can be interpreted as 1-chains).

So suppose that H: I x I — X is a based homotopy between v and §. Then we need
to show that ~ is homologous to 9, i.e., that there is a 2-chain ¢ with dc = v —§. This
chain can be manufactured out of the homotopy H by subdividing the square I x [
into two triangles as shown in the picture below
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homomorphism

To show that the Hurewicz homomorphism is an isomorphism, we will construct a map
V,: Hi(X) — 7%(X) which we will prove to be an inverse to h. As a first step towards
constructing W, , we pick for every point x € X a path \,: I — X from the base point z( to
x and define a homomorphism

U: Of(X) — 7 (X, z) by v [)‘7(0)75‘7(1)]'

Here ~v: I — X is a 1-simplex; the concatenation )\7(0)75\7(1) of the three paths A, 7, and
A1y then is a based loop and hence represents an element [A, o)y Ay1)] in m°(X, z0). We
extend this map by linearity to the chain group C1(X) (which we recalll is the free abelian
group generated by the 1-simplices in X; note that for this step we need to work with the
abelianized fundamental group). We note that the above map is not canonical, but rather
depends on our choices of the paths \,.

We claim that ¥ vanishes on the boundaries By (X) C Ci(X). To show this, it suffices

to prove W(do) = 0 for any 2-simplex o in X. Let y; & o(e;) € X be the three vertices of

o, and let ; def 0;0: I — X be the three 1-dimensional faces of o. Then we have:

\IJ(@O-) = [Ay1705‘y2] - P‘yovlj‘m] + [)‘y(ﬂ/?;‘lﬂ] € W?b(X)
= [)‘yl%j‘yz )‘310715‘112 /\y‘)%;\f’l] = [)‘yl'VOS‘yQ)‘yzﬁl;\yo)‘yo'VQS‘yJ
= [/\yl’YO’_Yl’Y2>‘y1] = [>‘y1cy1 )‘y1] =0

Here ¢, is the constant loop based at y;; it is homotopic (relative endpoints) to the closed
loop 70717

V,oh=1
hoVU, =1

]

2.2 Properties of singular homology groups: the Eilenberg-Steenrod
axioms

In this section we will state properties of singular homology groups, some of which we have
already proved. These properties suffice to calculate the homology groups for large classes
of topological spaces, for example CW complexes (see section ?7). For this reason these
properties can be viewed as aztoms for homology groups, the FEilenberg-Steenrod azioms,
named after Samuel Eilenberg and Norman Steenrod.
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2.2.1 Functoriality of homology

One of the fundamental properties of singular homology, like any good mathematical con-
struction, is that it is functorial. More precisely, there is a functor

Hy.: Top — Z-Mod

from the category Top of topological spaces and continuous maps to the category Z-Mod
of Z-modules (aka abelian groups) and homomorphisms (see Appendix 5| for the definition
of categories and functors). On objects, this functor sends a topological space X to the
singular homology group H(X). On morphisms, it maps a continuous map f: X — Y to a
homomorphism

j; = }{k(jji }{k()() — }{k(}/)

that we will construct in this section.
Let f: X — Y to be a map (which later we will assume to be a homeomorphism). Then
we can manufacture a map between the sets of k-simplices of X resp. Y

Se(f): Se(X) — Si(Y)  givenby  AF-To X o AF-T.x .y
This in turn gives a homomorphism
Cr(f): Cu(X) = Z[Sk(X)] — Cu(Y) = Z[Sk(Y)]
between the free Z-modules generated by the sets Si(X) resp. Sg(Y).

Lemma 2.9. The diagram
Cr(X) —2 C1(X)
Cr(f) iCka)
CL(Y) —2= Cp 1 (Y)
15 commutative.

This lemma means that the homomorphisms Ci(f), k € Z, fit together to give a chain
homomorphism C,(f): Ci(X) — C.(Y) in the following sense.

Definition 2.10. Let C,, D, be chain complexes. A chain map g,: C, — D, is a sequence
of homomorphisms g;: Cy — Dy such that the diagram

~ 2 << Oy ~—— (2.11)

igk—l lgk l9k+1

0 0 0

~— Dy 1 <~—Dp<~—Djp1 ~—

1s commutative.
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Lemma 2.12. A chain map g.: C. — D, induces a homomorphism of homology groups

Proof. The commutative diagram (2.11) implies that gy: Cx — Dy sends k-cycles (resp.
boundaries) in C, to k-cycles (resp. boundaries) in D,. It follows that g; induces a well-
defined homomorphism

]

Definition 2.13. Given a map f: X — Y between topological spaces, the homomorphism
Hi(Cu(f)): He(X) — Hi(Y) is called the homomorphism induced by f on homology. We
will simplify notation by writing Hy(f) or simply f, instead of Hy(C\(f)).

Lemma 2.14. Let f: X — Y and g: Y — Z be maps between topological spaces, and
fo: H(X) — He(Y), g« Hp(Y) = Hp(Z) be the induced maps on homology. Then

(gof)s=gso fu and (idx )« = idpg,(x)

We leave the easy proof of these properties to the reader. We observe that the lemma
implies that we in fact obtain a functor Hy: Top — Z-Mod by mapping a topological space X
to Hi(X) and a continuous map f: X — Y to the induced map in homology f.: Hi(X) —
H(Y'). The functoriality of Hy implies for example that if f: X — Y is an isomorphism in
Top, that is, a homeomorphism, then f.: Hp(X) — H(Y) is an isomorphism of Z-modules.

Remark 2.15. The construction of the singular homology group H(X) is a two-step pro-
cess: we first construct the singular chain complex C,.(X) and then define H(X) as the
k-homology group of C,(X). The first step of this construction can be viewed as a functor

C,: Top — Ch

from the category of topological spaces to the category of chain complexes and chain maps.

On objects, it sends a topological space X to its singular chain complex C' * (X)), on mor-

phisms, it sends a continuous map f: X — Y to the chain map C.(f): Ci(X) — C.(Y).
The second step of this construction can be interpreted as a functor

Hj: Ch — Z-Mod

that sends a chain complex M, to its k-homology group Hy(M,) and a chain map g,: M, —
N, to the induced map Hg(g.): Hi(M.) — Hy(N,) on the k-th homology group. Here
we abuse language by using the notation Hj for this functor as well as for the functor
H;.: Top — Z-Mod.
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Summarizing, the functor Hy: Top — Z-Mod factors as

Top B 7-Mod .
k‘\ 4
Ch

2.2.2 The Eilenberg Steenrod axioms for homology
Theorem 2.16. (Properties of singular homology)

functoriality Sending a topological space X to the k-th homology group Hy(X) and a map
f: X — Y to the induced homomorphism f.: H,(X) — Hp(Y) defines a functor
Hy: Top — Ab from the category of topological spaces to the category of abelian
groups.

dimension axiom The homology groups of the one-point space pt are given by Hy(pt) = Z
and Hi(pt) =0 for k # 0.

additivity If X s a disjoint union of spaces X, with inclusion maps i,: Xo —> X, then
the direc sum map
Plia): @ Hi(Xa) — Hi(X)

s an isomorphism for each k.

homotopy invariance If f,g: X — Y are homotopic maps, then f, = g.: Hy(X) —
H,(Y).

Mayer-Vietoris sequence Let X be a topological space that is the union of open subspaces
U,V. Then there is a long exact sequence

—— H(UNV) 2= Hy(U) @ Hi (V) —= Hi(X) 2 Hy o (UN V) —

Here ®(a) = (iY(a),iY(a)) and V(3,7) = jY(B) — iV (), where iV : UNV — U,
iV.UNV =V, U= X and 7V : V — X are inclusion maps. The homomorphism
0 is called the boundary map. It has the following naturality property: if X' is another
space which is the union of open subspaces U', V' and f: X — X' is a map with
fU) c U and f(V) C V', then the following diagram is commutative:

Hk(X) 48>Hk_1(U N V)

f*l \L(fUmV)*

Hy(X') 2> H, (U NV
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Comments on these properties.

Homotopy invariance We recall from Example 77 that any vector valued function f: X —
V on a topological space X is homotopic to the zero map. So the homotopy invariance
implies that the induced map in homology is completely useless for studying these
functions. On the positive side, the goal of algebraic topology is to study “qualitative”
phenomema, i.e., an algebraic topologist should not attempt to distinguish between
homotopic maps, since the existence of a homotopy between them means that they
can be deformed into one another, and so they should be thought of as “qualitatively
the same”.

From that point of view the basic category an algebraic topologist is interested in is not
so much the category Top of topological spaces and continuous maps, but rather the
homotopy category of topological spaces HoTop whose objects are topological spaces,
but whose morphisms HoTop(X,Y) from X to Y consists of the set [X, Y] of homotopy
classes of continuous maps from X to Y. More precisely, refining our philosophy as
expressed in 7?7, we can say the goal of an algebraic topologist is to study functors
from the homotopy category HoTop to some algebraic category.

The Homotopy Invariance implies that singular homology can be thought of as such a
functor, namely as the functor

Hy: HoTop — Ab

that sends a topological space X to the homology group Hy(X) and the homotopy
class of a map f: X — Y to the induced map f.: Hp(X) — Hp(Y).

In particular, if topological spaces X, Y are isomorphic in the homotopy category,
their homology groups are isomorphic. Let us unwind what it means for X, Y to be
isomorphic in HoTop. It will be convenient to write [f] € HoTop(X,Y) for the morphism
in the homotopy category represented by amap f: X — Y. If X and Y are isomorphic
in HoTop if and only if there are [f] € HoTop(X,Y) and [g] € HoTop(Y, X) such that

[flolgl:=[fogl=lidy] and  [g]o[f]:=[go f] = [idx]

In other words, X and Y are isomorphic in HoTop if and only if there are maps
f: X =Y and g: Y — X such that f o g is homotopic to idy, and g o f is homotopic
to idx. In other words, two spaces are isomorphic in HoTop if and only if X and Y are
homotopy equivalent.

At first glance the fact that f, = g, whenever f is homotopic to g might be seems a
disadvantage since it means that two homotopic maps cannot be distinguished by their
induced map on homology. Keeping in mind the fact any two vector valued functions
on a topological space X are homotopic

Keeping in mind the fact that algebraic topology aims to understand qualitative
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2.2.3 Calculating with the Mayer-Vietoris sequence

In this section we will use the Eilenberg-Steenrod axioms to calculate the homology groups
of spheres, the real projective plane and the Klein bottle. The Mayer-Vietoris sequence will
be a central role here.

Theorem 2.17.
~ Z k=n
H(S™) =
0 k#n
Corollary 2.18. Forn > 1
Z k=0,n

fﬁ@%%{@ k#£0,k

The 0-sphere S° C R consists of the two points {£1} and hence we know by Proposition
?? that Hy(S°) = Z & Z and Hy(S°) = 0 for k # 0. In particular, H,(S°) = 0 for
k # 0, and ITIO(SO) = 7. This shows that the reduced homology groups of the n-sphere
have a simpler pattern that the homology groups, making it slightly easier to calculate their
reduced homology groups by induction over n starting at n = 0.

Proof of Theorem. The idea is to write S™ as a union S™ = U UV of subspaces U, V such
that we know the homology groups of U, V and U N'V. Then the Mayer-Vietoris sequence
allows us to compute the homology groups of S™ in terms of those of U, V and UN V.

The first choice of U, V might be to take U to be the upper hemisphere and V' to be
the lower hemisphere of S™. Then both are homeomorphic to the n-disk D", which implies
that they are contractible and hence the reduced homology groups vanish. The intersection
U NV is the equator which is homeomorphic to S"~! and whose homology groups we know
by inductive assumption. However, this choice of U, V does not satisfy the assumption for
the Mayer-Vietoris sequence that the interiors of U and V should cover S™. Fortunately,
we can make the hemispheres a little bigger to satisfy the assumption without changing the
homology groups of U, V or UNV, a move that we will frequently use in other calculations.

So let us take U = S™\ {(0,...,0,—1)} and V = S™\ {(0,...,0,1)}. Then U and V are
both homeomorphic to R™ via the stereographic projection and hence all reduced homology
groups of U and V vanish. Restricting the homeomorphism U =~ R" to U NV, we obtain a
homeomorphism U NV =~ R" \ {0}, and hence U NV is homotopy equivalent to S

Now we consider the Mayer-Vietoris sequence for reduced homology:

— = Hy(U) ® Hy(V) — Hy(S") 2= H,_((UNV) —= H,_(U) ® Hp_1 (V) —

Since the reduced homology groups of U and V' all vanish, this implies that the boundary
homomorphism is an isomorphism. Since U NV is homotopy equivalent to S®~! we conclude
that

Hi(S") —= H, 1 (UNV) —= Hp_1(S™)
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This provides the inductive step of the argument, and finishes the proof. n

Proposition 2.19. The reduced homology groups of the real projective plane RP? are given
by

72 k=1

0 E#1

Proof. We will think of RP? as the disk with antipodal points of the boundary identified.
We define open subsets U,V C RP? as indicated by the following pictures.

a a a
U.U v.v U.U
a a a

(2.20)
We see that U is contractible and hence the reduced homology groups ﬁk(U ) are zero for
all k. The subset V contains the subspace (S'/v ~ —v) = RP! &~ S* given by the boundary
circle with antipodal points identified. Via radial projection, this subspace is a deformation
retract of V' and hence

H,,(RP?) = {

7 k=1
0 k#1

The subspace U NV is homotopy equivalent to S* and hence

H,(V) = {

aw{y 1

This implies that the only portion of the Mayer-Vietoris sequence for reduced homology
consisting of possibly non-trivial groups is the following:

0——= Hy(RP?) -2~ H,(UNV) —2> H,(U) ® H, (V) —> H;(RP?) —=0
The exactness of the sequence then implies

0 k#1,2
Hy(RP?) 2 { ker® k=2
coker® k=1
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In other words, it remains to calculate the map ®: Hi(UNV) — H,(U) @ H;(V) that sends
an element o € H (UNV) to (i¥(a),iY (o) € H (U)® Hy(V), where iV, iV are the inclusion
maps of UNV to U (resp. V). Since H;(U) = 0, we can identify the homomorphism ¢ with

i

Z=H,(UnNYV)

Given the tools currently at our disposal, it is easier for us to determine an induced map on
the fundamental group rather than on H;. Therefore we use the Hurewicz homomorphism
to identify the above map with the homomorphism

Z%’m(UﬂV,:UO) Fl(v,l'o) = 7.

A generator for the fundamental group m(U N V,zy) is given by the loop shown in the
following picture.

a
v v
c
a
The spaces U NV and V are both homotopy equivalent to S!, and O

Proposition 2.21. Let X, Y be topological spaces with basepoints xo € X, yo € Y which
Proposition 2.22. The reduced homology groups of the Klein bottle K are given by

Z®L)2 k=1

«mUO—{O k41

2.3 Classical applications
2.3.1 The Jordan curve theorem and its generalizations

A subset S of the plane R? or its one-point compactification R? U {oo} ~ S? is called a
Jordan curve if S is homeomorphic to S!.

Theorem 2.23. (The Jordan Curve Theorem) If S is a Jordan curve in R? or S?, then
the complement of S has two connected components.
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Theorem 2.24. (The Jordan-Brouwer Separation Theorem) If S is an (n—1)-sphere
in S™, that is a subspace homeomorphic to S"~1, then the complement of S has two connected
components.

We note that the complement S™ \ S has two connected components if and only if its
homology group Hy(S™ \ S) is isomorphic to Z @ Z or equivalently, if its reduced homology
group ﬁo(S” \ S) is isomorphic to Z. Hence the theorem above is a consequence of the
following much more general result.

Theorem 2.25. If S is a k-sphere in S™, that is a subspace homeomorphic to Sk then
H,(S"\ S)=Z forq=n—k—1, and trivial for g #n —k — 1.

Examples of spheres in S".

1. For S = {0,00} C S? = R?*U {o0}, the complement S*\ S = R?\ {0} is homotopy
equivalent to S, and hence the homology group H,(5%\ S is isomorphic to Z for ¢ = 1
and trivial for q # 1.

2. If S is the standard circle S C R? C R?* € $% = R3 U {00}, the complement 5%\ S is
homotopy equivalent to the circle consisting of the z-axis in R3 and the point co. In
particular, the H,(S?®\ ) is isomorphic to Z for ¢ = 1 and trivial for ¢ # 1.

3. If S is the trefoil knot, the knot complement S® \ S is not homotopy equivalent to
S1:in fact, its fundamental group is not isomorphic to Z. However, according to the
theorem above the complement of any knot S C S3, that is any subset homeomorphic
to S1, has the same reduced homology groups as the complement of the standard circle
of example (2), often referred to as the unknot.

Proposition 2.26. Let D C S™ be a k-disk in S™, that is a subset homeomorphic to the disk
D¥*. Then H,(S™\ D) =0 for all q.

We will first prove the theorem assuming the proposition.

Proof of Theorem. We will prove the theorem by induction over k. For k£ = 0 the 0-sphere
S C S™ consists of two points and hence

S"\ S & (R U {oo}) \ {o0,0} = R™\ {0} ~ S,

It follows that the reduced homology group ﬁq(S” \ S) is isomorphic to Z for ¢ = 1 and
trivial for ¢ # 1 as claimed.

For the inductive step we use the decomposition S* = Dﬁ U D* of the sphere as the
union of hemispheres. This leads to a corresponding decomposition

S=D,UD_cCS"
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where D is the image of DX under the homeomorphism h: S¥ — S which exists by the
assumption that S is a k-sphere in S™. We note that D, are k-disks in S™, and that
S":=D.ND_ = h(D¥ND*) = n(S¥ ') is a (k—1)-sphere in S™. In particular, the reduced
homology groups of the complement D§ := S™\ D4 vanish by the proposition, and we know
the homology groups of the complement

(8 :=8"\S"=(DsND_)* =D, UD (2.27)

by inductive assumption. The idea then is to obtain information about the homology groups
of
S¢=5"\S=(DyuUD_) =D, ND°

by using the Mayer-Vietoris sequence associated to the decomposition . We note that
the subsets D, C S™ are closed, and hence their complements D¢ are open subsets of S and
(S7)¢. In other words, the openness assumption for the Mayer-Vietoris sequence is satisfied,
and we get the exact sequence

Hyia (DY @Hq+1<DC)*> a+1(D% UDC)HH (DL NDL) — q+1( @Hq+1<D )

Hq+1 ) )

The exactness of the sequence implies that the boundary homomorphism is an isomorphism.
Hence by inductive assumption O

Proof of Proposition. Like the proof of the theorem, this proof proceeds by induction over
k and makes use of the Mayer-Vietoris sequence. For k = 0 the disk D C S™ consists of one
point and hence the complement D¢ := S™\ D is homeomorphic to S \ {oo} = R™. Hence
it is contractible and its reduced homology groups vanish.

For the inductive step we note that the disk D* is homeomorphic to the k-dimensional
cube I* = [ x --- x I, I =[0,1]. We think of the k-disk D C S™ as a k-dimensional cube
and decompose it as a union D = C_ U C; of a “left” cube C_ and a “right” cube C,.
More precisely, let h: I* — D be a homeomorphism, and define C_ := h([0,1/2] x I*71),
C, := h([1/2,1] x I*71). We note that the intersection C’ := C_ N Cy = h({1/2} x I*71)
is a (k — 1)-cube, also known as a (k — 1)-disk, and hence by inductive hypothesis the
reduced homology groups of the complement (C")¢ = S™\ C’ vanish. It follows that the
Mayer-Vietoris sequence for the decomposition

(€ =(C_NCL =CoUCs  C%L=S8"\Cy
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takes the form:

11((C1)e) =2 Hy(Ce N C%) — Hy(C) & Hy(CS) — Hy((C")°)

| |

From the exactness of the Mayer-Vietoris sequence we obtain the isomorphism ﬁIq(DC) =
H,(C¢) & fIq(C’i). To show that ﬁq(Dc) is trivial, we assume that there is some non-trivial
homology class a € fIq(Dc) and aim at deriving a contradiction. From the isomorphism
above we conclude that a can’t map to zero in the homology of both, C¢ and Cf. So for a
suitable choice of C as the k-cube C_ or C'; we can assume that a maps to a non-trivial
element in H,(CY).

Repeating the process of decomposing cubes as the union of left cubes and right cubes,
we obtain a sequence of cubes

DH>C,D>CyD

such that a € f[q(Dc) maps to a non-trivial element in all of the following homology groups
Hq(Dc) — Hq(Clc) — Hq(CQC> —

We note that the cube C,, is given by h(I,, x [¥71), where I,, is a subinterval of length 1/2™
of I =10,1]. It follows that

o0

ﬂ Cp, = h( ﬁ Iy < I"Y) = h({t} x I"1),

where t is some element of 1. In particular, this intersection is a (k—1)-disk in S™, and hence
the reduced homology of its complement |J,-_, Cf, vanishes by the inductive hypothesis. In
particular, if « is a g-cycle in D¢ representing a € H,(D°), then « represents the trivial
homology class in H,(lJ,, C5,), and hence there is a chain 5 € Cyy1(U,, Cs,) with 08 = a.
The chain J is a finite linear combination 8 = Y, n;0; of (¢+1)-simplices o;: AT — | J C

Since C¢, C S™ is an open subset, the compactness of A?"! implies that each simplex o; is
contained in some C,, for sufficiently large m. Hence the § is an element of C¢, for a
sufficiently large m, showing that o = 0/ represents the trivial homology class in ﬁq(Cfn).
This contradicts the statement above that a maps to a non-trivial element in ?[q(CﬁL) for
every m, and provides the desired contradiction. O

2.3.2 Local homology and invariance of dimension

Theorem 2.28. (Invariance of dimension) If nonempty open subsets U C R™ and V C
R™ are homeomorphic, then m = n.
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Corollary 2.29. Homeomorphic manifolds have the same dimension.

This result might seem intuitively obvious, but the reader should be reminded that there
are unexpected things like space filling curves, that is, continuous surjective maps I — I2.

Proof. Suppose that f: U — V is a homeomorphism. Then for z € U the map f also
provides an isomorphism of pairs f: (U, U \ {z}) — (V,V \ {y}), where y = f(z). In
particular, the induced map on homology groups

fer Hy(U, U\ {x}) — Ho(V,V\ {y}) (2.30)

is an isomorphism. To calculate the homology group H,(U,U \ {z}), we note that the
inclusion map (U, U \ {z}) — (R™,R™ \ {z}) is an isomorphism on homology by excision
(we are excising R™\ U C R™ \ {z}; this satisfies the assumption of excision since R\ U is
closed and R™ \ {z} is open). To calculate the homology groups of (R™,R™ \ {z}) we use
the long exact homology sequence of that pair:

o(R™) —— Hy(R™ R™\ {z}) 2 H,_1(R™\ {a}) — Hya (R™)

NT/L*

H,_1(S™1) 0
The reduced homology groups of R vanish since R™ is contractible, and hence the bound-
ary homomorphism is an isomorphism by exactness of the sequence. The inclusion map
i: S — R™\ {0} ~ R™\ {z} is a homotopy equivalence and hence induces an isomor-
phism on homology groups as indicated in the diagram. It follows that

Z q=m

Hy(U, U\ {z}) = Hy(R™,R™\ {z}) = H,(R™\ {2}) = H, (5" ") =

0 g#m
By the same argument, H,(V,V \ {z}) is isomorphic to Z for ¢ = n and trivial for ¢ # n,
and hence the isomorphism ([2.30) implies m = n. O

For any topological space X and x € X, the homology groups H,(X, X \ {z}) are called
local homology groups. This is motivated by the following result.

Proposition 2.31. Let f: X — Y be a continuous map which is a local homeomorphism
near x € X in the sense that there is some open neighborhood U > x such that the restriction
of f to U is a homeomorphism onto its image. Then the local homology group H,(X, X \{z})
is isomorphic to Hy (Y, Y \ {y}) fory = f(z).
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Proof. We would like to argue that the map f induces an isomorphism of the local homology
groups, but caution is needed here, since f in general does not give a map of pairs (X, X \
{z}) — (Y, Y \ {y}), since there might be points 2/ € X with f(2/) = y. By the local
homeomorphism assumption that this does not happen for 2’ € U, and we obtain the desired
isomorphism as the composition

Hy(X, X\ {a}) <o Hy(U, U\ {a}) —2 Hy(V,V\ {y}) —om Hy(V, Y\ {5})

]

Homework 2.32. Compute the local homology groups H, (R, R"% \ {z}) for z € R"* C

We recall that a manifold with boundary of dimension n is a topological space X which
is locally homeomorphic to R’}. How can we

2.4 The degree of a map

We recall from Theorem ?? that H,(S") is isomorphic to Z. we fix a generator a € H,(5™).
If f: S — S™is a map, its induced map f,: H,(S™) — H,(S™) sends the generator a to da
for some integer d.

Definition 2.33. The degree of a map f: S™ — S™ is the integer deg(f) characterized by
fi(a) = deg(f)a.

We remark that the degree is independent of the choice of generator a € ﬁn(S"), since
if @ = —a is the other generator, then f.(a') = f.(—a) = —deg(f)a = deg(f)a’. The
homotopy invariance of the induced map implies that two homotopic maps have the same
degree. In other words, there is a well-defined map

(5", 5" —Z [f] = deg(f),

where [S™, S"] denotes the set of homotopy classes up maps from S™ to itself, and [f] €
[S™, S™ denotes the homotopy class of a map f: S™ — S™. We want to mention, but not
prove, that this map is a bijection. So from the point of view of an algebraic topologist, the
important thing to know about a map f: S™ — S™ is its degree.

1. The degree of the identity is 1, since by the functor property, the identity map induces
the identity homomorphism on homology.

2. deg(fg) = deg(f) deg(g), since again by the functor property, (fg). = figs.
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3. If f is a homeomorphism, or more generally a homotopy equivalence, then deg(f) €
{£1}: if f is a homotopy equivalence, the induced map f. is an isomorphism (with
inverse map given by g, for a homotopy inverse g), and hence f, must map the generator
a € H,(5") to +a.

4. deg(f) = 0 of f is not surjective: If z € S™ is not in the image of f, then f can be
factored in the form S™ — S™\ {z} < S"; applying homology, the induced homomor-
phism f, then factors in the form H,(S™) — H,(S™ \ {z}) — H,(S™); hence f, =0,

since the homology group H,(S™\ {z}) is trivial.

The last property can be rephrased that the degree of f is zero if there is some y € S
whose preimage f~!(y) is empty. This suggests that the degree might be

Theorem 2.34. Let f: S™ — S™ be a map, and suppose that for some y € S™ the preimage
f~Yy) consists of finitely many points xy,...,T,, € S™. Then

deg(f) = deg(f, 1),

where deg(f,x;) is the local degree of f at x; defined below.

Let z € S™ and let f: U — S™ be a map defined in an open neighborhood U of x. The
local degree of f at x is defined in terms of local homology groups. We would like to think
of f as a map of pairs

fr (U U\ z) — (5", 5" \y)
where y = f(x). For that reason we make the following
Assumption. The preimage f~!(y) consists only of the point .

Definition 2.35. Let f: U — S™ be a map satisfying the assumption above, possibly after
replacing U by a smaller neighborhood of x € S™. Let

feo: Hy(U, U\ &) — H,(S™, 5"\ y)

be the induced map of local homology groups. The local degree of f at x, denoted deg(f, ),
is the integer determined by the equation

fi(a) = deg(f, z)a.

Abusing notation here we denote by a the generator of H,,(U,U \ z) as well as the generator
of H,(S™,S™\ y) that correspond to our chosen generator a € H,(S™) via the isomorphisms

H, (5™, 5"\ y) <— H,(S") —= H, (5", S" \ &) <— H,(U,U \ z)

induced by the obvious inclusion maps.
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Proof. Let U;, i =1,...,m, be disjoint open neighborhoods of the points x4, . .., x,,. We note
that disjointness assumption implies in particular that f~'(y) N U; = {z;}; in other words,
fiu, satisfies the assumption for the definition of the local degree deg(f, ;). To compare the
degree of f with the local degrees deg( f, z;) we consider the following commutative diagram.

H,(5™) ! H,(5™)

|

Ho(S™, S\ {21, ... am}) —L— H,(S™, 5"\ y)

R

Ho(LI™, (U3, Ui\ ) ——L > HL (5", 57\ y)

B, H, (Ui, U \ ;) S H,(S™, 5"\ y)

All unlabeled maps in this diagram are induced by inclusions. The top horizontal map
encodes the degree of f, while the bottom horizontal map encodes the local degrees of f at
x; in the sense that the generator a € H,,(U;,U; \ x;) maps to

(fiv:)+(a) = deg(f, zi)a € Hp(S", 5™ \ y).

It follows that the diagonal element (a,...,a) € @;-, H,(U;, U; \ ;) maps to

wa Zdeg f,xla—<2degfxz>
=1

So to prove the theorem it remains to show that the composition of the vertical maps on the
left map the generator a € H,(S™) to the diagonal element (a,...,a). To see this, suppose
that the image of @ under the vertical maps is (ay, ..., ,an) € @i~ H,(U;, U; \ x;). To show
that a; = a € H,(U;, U; \ z;) we look at the diagram

H,(S")

|

H,(S", 8"\ ;) =<— H,(S™, S" \ {z1,...,2m})

]

Hn<Uia Ui \ 515@)

Its commutativity implies a; = a. O]



2 SINGULAR HOMOLOGY 36

The following result provides an effective way to calculate local degrees.

Theorem 2.36. 1. Let f: R" - R" C R = S be a linear isomorphism. Then deg(f,0) =
sign det(f).

2. Let f: U — R" be a smooth map defined on an open subset U C R™. If the derivative
Df,, € Hom(R"™ R") is invertible at a point o € U, then deg(f,x¢) = signdet(Df,,).

We note that in part (1) the condition that f is an isomorphism guarantees that that
17(0) consists of only one point, the assumption necessary to define the local index deg( f, 0).
Similarly, in part (2) the invertibility of Df,, guarantees by the inverse function theorem
that f is a diffeomorphism from an open neighborhood of z( to its image; in particular, the
preimage of y = f(xo) consists only of the point xy, making it possible to define the local
index deg(f, o).

For any non-constant polynomial p(z) the map p: C — C is proper and hence extends
toamapﬁ:@%@

Theorem 2.37. 1. Let p(2) be a polynomial of degree k > 0. Then deg(p) = k.
2. Let zy be a zero of p(z). Then deg(p, zo) is the multiplicity of the zero z.

Corollary 2.38. (The Fundamental Theorem of Algebra) Any non-constant polyno-
mial p(z) has a zero.

Proof. Assuming that p(z) has no zeroes, the preimage p~'(0) is empty, which implies
deg(p) = 0, contradicting the first part of the theorem above. ]

In particular, for the polynomial p(z) = 2* the preimage of 1 € C consists of the set
{1,¢,¢2,...,¢* 1} of the k-th roots of unity (( = e*/*). To calculate the local degree
deg(p, z) for z = ¢', i = 0,...,k — 1, we note that the derivative Dp, € Homg(R? R?) is
complex linear, namely the image of p'(z) € C via the linear embedding

C = Homg(C, C) — Homg(R? R?) a+ ib — Z

We note that det (§ 7*) = a? + b? = ||a + ib||*. In particular, det Dp, > 0, and det Dp, > 0
if and only if p/(z) # 0.
2.5 Homology of CW complexes

2.5.1 CW complexes
Definition 2.39. Attaching an n-cell.
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Example 2.40. 1. K = (Stv S)uUe?

2. RP" =2 RP" ! U, e" with attaching map ¢: S"~t — RP"! = §"~!/ ~ the projection
map.

3. CP" = CP" ' U, e*" with attaching map ¢: S?"~! — CP"15?"~!/ ~ the projection
map.

Definition 2.41. CW complex

Example 2.42. Examples of CW complexes, identifying the skeleta.
1. graphs
2. surfaces: ¥, and RP?# ... #RP?
3. RP", CIP", lens spaces

2.5.2 The cellular chain complex of a CW complex

Construction. Let X be a CW complex. Let ®,: D? — X be the characteristic map of
the g-cell eZ. The restriction of ®, to S9~' C D? is the attaching map ¢,: ST! — X1,
In particular, we have a map of pairs

(D7, 5771 Pay (X(@, x(a=1)y

which gives a map ®,: S = D1/S77! — X(@ /X (@1 of quotient spaces. Putting these
maps together as o ranges through the indexing set for the g-cells of X, we obtain a map

\/Si =, x@ )/ x a1

which is a continuous bijection and in fact a homeomorphism. Fixing

Proposition 2.43. Let A be a closed subspace of a topological space X and assume that
there is a neighborhood V' of A which deformation retracts to A. Then the quotient map
q: (X, A) — (X/A, AJA) induces an isomorphism

G Hy(X, A) = H,(X/A, AJA) = H,(X/A).

Proof. Consider the following commutative diagram:

o

Ho (X, A) ——— H,(X,V) H,(X\ A V\A)

") "l

H,(X/A, AJA) —== H,(X/A, V/A) <— H,(X \ A,V \ A)
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The top left arrow is an isomorphism by considering the long exact sequence of the triple
(X,V, A), and noting that the homology groups (V, A) vanish due to the long exact sequence

Hyir(V, A) 2 Hy(A) —2> Ho (V) — Ho(V, A) —2> H,, 1 (A) ——

The same argument implies that the bottom left map is an isomorphism. The two horizontal
maps on the right are isomorphisms by excision. This implies that the left vertical map is
an isomorphism. O

Corollary 2.44. Hq(X("), X =1 s trivial for ¢ # 0 and is the free Z-module on generators
el corresponding to the n-cells of X for ¢ =n.

Proof. The quotient X™ /X ™=1 is a wedge \/7 S7 of spheres parametrized by the n-cells of
X. Hence the proposition implies the statement. O

For later use, we need an ezplicit construction of the generator e} € H, (X () X (”_1))
determined by an n-cell e”. Let ®,: D™ — X™ be the characteristic map of the n-cell e?.
Its restriction to S"~' = D" is the attaching map ¢,: "+ — X1,

H, (D", 5n 1) —% H,(5™)

.| .|

H,(X™ x(-1) = ]T‘]n(X(n)/X(nfl))

IR

[}

1%

Let a, be a fixed generator of H,(S") = Z, and let [D"] € H,(D",5"!) the generator
determined by ¢.([D"]) = a,, and define

el = d([D"]) € Hy(X™, X)), (2.45)

3 Appendix: Pointset Topology

3.1 Metric spaces
We recall that a map f: R™ — R" between Euclidean spaces is continuous if and only if

VeeX Ve>0 30>0 VYyeX dz,y) <d=d(f(z),f(y)) <e, (3.1)

where

d(z,y) = [lz —yll = V(21— 91)? + -+ (20 — ya)? € Rao

is the Fuclidean distance between two points z,y in R".
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Example 3.2. (Examples of continuous maps.)
1. The addition map a: R? = R, z = (21, 72) — =1 + T2;
2. The multiplication map m: R? — R, x = (z1, 7o) = 11T2;

The proofs that these maps are continuous are simple estimates that you probably remember
from calculus. Since the continuity of all the maps we’ll look at in these notes is proved by
expressing them in terms of the maps a and m, we include the proofs of continuity of a and
m for completeness.

Proof. To prove that the addition map a is continuous, suppose z = (z1,72) € R? and € > 0
are given. We claim that for § := ¢/2 and y = (y1,y2) € R? with d(z,y) < & we have
d(a(z),a(y)) < € and hence a is a continuous function. To prove the claim, we note that

d(z,y) = /|x1 — 12 + |22 — 1o
and hence |x; — y1| < d(z,y), |1 — 1| < d(x,y). It follows that
d(a(z),a(y)) = la(z) —a(y)| = |v1 + 22— y1 — 9ol < |21 —yi| + |22 — 2| < 2d(z,y) <20 =c.
To prove that the multiplication map m is continuous, we claim that for
0 :=min{1,¢/(|x1| + |x2| + 1)}

and y = (y1,y2) € R? with d(z,y) < § we have d(m(z),m(y)) < e and hence m is a
continuous function. The claim follows from the following estimates:

d(m(y), m(z)) = [y — 1172] = |11y — T1Y2 + T1Y2 — T1T
< [y1y2 — z1ye| + |21y2 — 2122| = |y1 — 21|[ye] + |21[|y2 — 22
< d(z,y)(|y2| + |21]) < dlz, y) (22| + |y2 — 22| + [21])
< d(x,y)(|z1] + |x2| +1) < 0(Jz1| + |2o] + 1) <€

Lemma 3.3. The function d: R" x R" — Rx( has the following properties:
1. d(xz,y) =0 if and only if x = y;
2. d(z,y) = d(y,z) (symmetry);
3. d(z,y) < d(x,z)+d(z,y) (triangle inequality)
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Definition 3.4. A metric space is a set X equipped with a map
d: X x X — Rsg
with properties (1)-(3) above. A map f: X — Y between metric spaces X, Y is
continuous if condition is satisfied.
an isometry if d(f(x), f(y)) = d(z,y) for all z,y € X

Two metric spaces X, Y are homeomorphic (resp. isometric) if there are continuous maps
(resp. isometries) f: X — Y and g: Y — X which are inverses of each other.

Example 3.5. An important class of examples of metric spaces are subsets of R™. Here are
particular examples we will be talking about during the semester:

1. The n-disk D™ := {x € R" | |z| <1} C R™, and D := {x € R" | |z| < r}, the n-disk
of radius r > 0.

The dilation map
D" — D T =TT

is a homeomorphism between D" and D! with inverse given by multiplication by 1/r.
However, these two metric spaces are not isometric for r # 1. To see this, define the
diameter diam(X) of a metric space X by

diam(X) = sup{d(z,y) | z,y € X} € Rso U {o0}.

For example, diam (D) = 2r. It is easy to see that if two metric spaces X, Y are
isometric, then their diameters agree. In particular, the disks D)’ and D, are not
isometric unless r = r'.

2. The n-sphere S™ := {x € R"™ | |z] =1} C R
3. The torus T = {v € R® | d(v,C) =r} for 0 < r < 1. Here
C={(z,y,0) | 2* +y* =1} CR?

is the unit circle in the zy-plane, and d(v,C) = inf,ec d(v, w) is the distance between
vand C.

4. The general linear group

GL,(R) = {vector space isomorphisms f: R" — R"}
— {(v1,...,v,) | v; € R, det(vy,...,v,) # 0}
= {invertible n x n-matrices} C R" x --- x R" = R™
—_————

n



3 APPENDIX: POINTSET TOPOLOGY 41

Here we think of (vq,...,v,) as an n x n-matrix with column vectors v;, and the
bijection is the usual one in linear algebra that sends a linear map f: R™ — R"” to the
matrix (f(e1),..., f(e,)) whose column vectors are the images of the standard basis
elements e; € R"™.

5. The special linear group

SLo(R) = {(v1,...,v,) | v € R™, det(vy,...,v,) =1} CR™

6. The orthogonal group
O(n) = {linear isometries f: R" — R"}
— {(v1,...,vn) | v; € R", v;s are orthonormal} ¢ R"™

We recall that a collection of vectors v; € R™ is orthonormal if |v;| = 1 for all ¢, and v;
is perpendicular to v; for i # j.

7. The special orthogonal group
SO(n) = {(v1,...,v,) € O(n) | det(vy, ..., v,) =1} C R™

8. The Stiefel manifold
Vi(R™) = {linear isometries f: R¥ — R"}

= {(v1,...,v) | v; € R", v;’s are orthonormal} C R*"

Example 3.6. The following maps between metric spaces are continuous. While it is pos-
sible to prove their continuity using the definition of continuity, it will be much simpler to
prove their continuity by ‘building’ these maps using compositions and products from the
continuous maps a and m of Example 3.2l We will do this below in Lemma [3.22]

1. Every polynomial function f: R"™ — R is continuous. We recall that a polynomial
function is of the form f(z1,...,2,) =Y. . @i i@} - -2 for a;

.....

2. Let Myxn(R) = R™ be the set of n x n matrices. Then the map
Msn(R) X Mysn(R) — Myn(R) (A,B)— AB

given by matrix multiplication is continuous. Here we use the fact that a map to the
product M, y,(R) = R" =R x --- x R is continuous if and only if each component
map is continuous (see Lemma , and each matrix entry of AB is a polynomial
and hence a continuous function of the matrix entries of A and B. Restricting to the
invertible matrices GL,,(R) C M, x,(R), we see that the multiplication map

GL,(R) x GL,(R) — GL,(R)
is continuous. The same holds for the subgroups SO(n) C O(n) C GL,(R).
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3. The map GL,(R) — GL,(R), A — A~ is continuous (this is a homework problem).
The same statement follows for the subgroups of GL,(R).

The Euclidean metric on R given by d(z,y) = v/(x1 —y1)2 + -+ + (z, — yp)? for z,y €
R"™ is not the only reasonable metric on R™. Another metric on R" is given by

di(z,y) = Z |z — vil. (3.7)

The question arises whether it can happen that a map f: R® — R” is continuous with
respect to one of these metrics, but not with respect to the other. To see that this doen’t
happen, it is useful to characterize continuity of a map f: X — Y between metric spaces
X, Y in a way that involves the metrics on X and Y less directly than Definition does.
This alternative characterization will be based on the following notion of “open subsets” of
a metric space.

Definition 3.8. Let X be a metric space. A subset U C X is open if for every point x € U
there is some € > 0 such that B.(z) C U. Here B.(z) = {y € X | d(y,z) < €} is the ball of

radius € around x.

To illustrate this, lets look at examples of subsets of R" equipped with the Euclidean
metric. The subset D' = {v € R" | ||[v|| < r} C R™ is not open, since for for a point v € D}
with ||v|| = r any open ball B.(v) with center v will contain points not in D'. By contrast,
the subset B,.(0) C R™ is open, since for any x € B,(0) the ball Bs(z) of radius § = r — ||z||
is contained in B, (0), since for y € Bs(z) by the triangle inequality we have

d(y,0) < d(y, x) + d(z,0) <0 +||z]| = (r — [[z]]) + [|=[| = 7.

Lemma 3.9. A map f: X — Y between metric spaces is continuous if and only if f~1(V)
1s an open subset of X for every open subset V C Y.

Corollary 3.10. If f: X - Y and g: Y — Z are continuous maps, then so it their compo-
sition go f: X — Z.

Exercise 3.11. (a) Prove Lemma [3.9)

(b) Assume that d, d’ are two metrics on a set X which are equivalent in the sense that
there are constants C,C" > 0 such that d(z,y) < Cd;y(z,y) and d;y(z,y) < C'd(z,y) for
all x,y € X. Show that a subset U C X is open with respect to d if and only if it is
open with respect to d’.

(¢) Show that the Euclidean metric d and the metric (3.7)) on R™ are equivalent. This shows
in particular that a map f: R™ — R" is continuous w.r.t. d if and only if it is continuous
w.r.t. dl-
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3.2 Topological spaces

Lemma and Exercise (b) above shows that it is better to define continuity of maps
between metric spaces in terms of the open subsets of these metric space instead of the
original e-d-definition. In fact, we can go one step further, forget about the metric on a set
X altogether, and just consider a collection T of subsets of X that we declare to be “open”.
The next result summarizes the basic properties of open subsets of a metric space X, which
then motivates the restrictions that we wish to put on such collections 7.

Lemma 3.12. Open subsets of a metric space X have the following properties.
(i) X and () are open.
(i1) Any union of open sets is open.

(11i) The intersection of any finite number of open sets is open.

Definition 3.13. A topological space is a set X together with a collection T of subsets of
X, called open sets which are required to satisfy conditions (i), (ii) and (iii) of the lemma
above. The collection T is called a topology on X. The sets in T are called the open sets,
and their complements in X are called closed sets. A subset of X may be neither closed nor
open, either closed or open, or both.

A map f: X — Y between topological spaces X, Y is continuous if the inverse image
f7HV) of every open subset V' C Y is an open subset of X.

It is easy to see that the composition of continuous maps is again continuous.

Examples of topological spaces.

1. Let X be a metric space, and T the collection of those subsets of X that are unions of
balls Be(x) in X (i.e., the subsets which are open in the sense of Definition [3.8). Then
T is a topology on X, the metric topology.

2. Let X be a set. Then T = {all subsets of X} is a topology, the discrete topology. We
note that any map f: X — Y to a topological space Y is continuous. We will see later
that the only continuous maps R™ — X are the constant maps.

3. Let X be a set. Then T = {0, X'} is a topology, the indiscrete topology.

Sometimes it is convenient to define a topology U on a set X by first describing a smaller
collection B of subsets of X, and then defining U to be those subsets of X that can be
written as untons of subsets belonging to B. We've done this already when defining the
metric topology: Let X be a metric space and let B be the collection of subsets of X of the
form B.(z) := {y € X | d(y,z) < €} (the balls in X). Then the metric topology U on X
consists of those subsets U which are unions of subsets belonging to B.
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Lemma 3.14. Let B be a collection of subsets of a set X satisfying the following conditions
1. Fvery point x € X belongs to some subset B € B.

2. If By, By € B, then for every x € By N By there is some B € B with v € B and
B C By N Bs.

Then T := {unions of subsets belonging to B} is a topology on X.

Definition 3.15. If the above conditions are satisfied, we call the collection B is called a
basis for the topology T or we say that B generates the topology T.

It is easy to check that the collection of balls in a metric space satisfies the above condi-
tions and hence the collection of open subsets is a topology as claimed by Lemma [3.12]

3.3 Constructions with topological spaces
3.3.1 Subspace topology
Definition 3.16. Let X be a topological space, and A C X a subset. Then

T={ANU|U c X}

open
is a topology on A called the subspace topology.

Lemma 3.17. Let X be a metric space and A C X. Then the metric topology on A agrees
with the subspace topology on A (as a subset of X equipped with the metric topology).

Lemma 3.18. Let X, Y be topological spaces and let A be a subset of X equipped with the
subspace topology. Then the inclusion map 1: A — X is continuous and a map f:Y — A
s continuous if and only if the composition io f: Y — X is continuous.

3.3.2 Product topology

Definition 3.19. The product topology on the Cartesian product X x Y = {(z,y) | = €
X, y € Y} of topological spaces X, Y is the topology with basis

B={UxV|U C X,V C Y}
open open
The collection B obviously satisfies property (1) of a basis; property (2) holds since (U X
VINU' x V) =UNU") x (VNV’). We note that the collection B is not a topology since

the union of U x V and U’ x V" is typically not a Cartesian product (e.g., draw a picture for
the case where X =Y =R and U,U’, V, V' are open intervals).
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Lemma 3.20. The product topology on R™ x R™ (with each factor equipped with the metric
topology) agrees with the metric topology on R™T™ = R™ x R™.

Proof: homework.

Lemma 3.21. Let X, Y], Y5 be topological spaces. Then the projection maps p;: Y1 xYy = Y;
18 continuous and a map f: X — Y] X Y5 is continuous if and only if the component maps

X Loy x vy 2y,
are continuous for i =1,2.
Proof: homework

Lemma 3.22. 1. Let X be a topological space and let f,g: X — R be continuous maps.
Then f+ g and f - g continuous maps from X to R. If g(x) # 0 for all z € X, then
also f/g is continuous.

2. Any polynomial function f: R™ — R is continuous.
3. The multiplication map pu: GL,(R) x GL,(R) = GL,(R) is continuous.

Proof. To prove part (1) we note that the map f + g: X — R can be factored in the form

XY RxR-SR

The map f X g is continuous by Lemma since its component maps f, g are continuous;
the map a is continuous by Example [3.2] and hence the composition f + g is continuous.
The argument for f - g is the same, with a replaced by m. To prove that f/g is continuous,
we factor it in the form

X— I gy pr IR p R m R

where R* = {t € R | t # 0}, p1 (resp. p2) is the projection to the first (resp. second) factor
of R x R*, and I: R* — RX is the inversion map t — t~!. By Lemma the p;’s are
continuous, in calculus we learned that I is continuous, and hence again by Lemma the
map p; X (I o py) is continuous.

To prove part (2), we note that the constant map R"” — R, x = (z1,...,2,) — a is
obviously continuous, and that the projection map p;: R — R, & = (z1,...,2,) — x;
is continuous by Lemma [3.21] Hence by part (1) of this lemma, the monomial function
z + axl' --- 2! is continuous. Any polynomial function is a sum of monomial functions and
hence continuous.
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For the proof of (3), let M,,«,(R) = R™ be the set of n x n matrices and let
p: Mysn(R) X Mysn(R) — M, n(R) (A,B) — AB

be the map given by matrix multiplication. By Lemma the map p is continuous if and
only if the composition

Mpsn(R) X My (R) =25 Mo (R) 25 R

is continuous for all 1 < 4,7 < n, where p;; is the projection map that sends a matrix A to

its entry A;; € R. Since the p;;(u(A, B)) = (A - B);; is a polynomial in the entries of the

matrices A and B, this is a continuous map by part (2) and hence pu is continuous.
Restricting @ to invertible matrices, we obtain the multiplication map

p: GLy(R) x GL,(R) — GL,(R)

that we want to show is continuous. We will argue that in general if f: X — Y is a
continuous map with f(A) C B for subsets A C X, B C Y, then the restriction fla: A — B
is continuous. To prove this, consider the commutative diagram

fla

— = B

1)

x-1.ovy

where i, 7 are the obvious inclusion maps. These inclusion maps are continuous w.r.t. the
subspace topology on A, B by Lemma [3.18 The continuity of f and ¢ implies the continuity
of foi=jo fl4 which again by Lemma implies the continuity of f)4. [

3.3.3 Quotient topology.

Definition 3.23. Let X be a topological space and let ~ be an equivalence relation on X.
We denote by X/ ~ be the set of equivalence classes and by

pr X — X/~ x — [x]

be the projection map that sends a point x € X to its equivalence class [z]. The quotient
topology on X/ ~ is given by the collection of subsets

U={U c X/ ~|p ' (U) is an open subset of X}.

The set X/ ~ equipped with the quotient topology is called the quotient space.
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The quotient topology is often used to construct a topology on a set Y which is not a
subset of some Euclidean space R™, or for which it is not clear how to construct a metric. If
there is a surjective map

p: X —Y

from a topological space X, then Y can be identified with the quotient space X/ ~, where the
equivalence relation is given by = ~ 2’ if and only if p(z) = p(2’). In particular, Y = X/ ~
can be equipped with the quotient topology. Here are important examples.

Example 3.24. 1. The real projective space of dimension n is the set
RP" := {1-dimensional subspaces of R""'}.

The map
S" — RP" R™ ™ 5 v subspace generated by v

is surjective, leading to the identification
RP" = 5" /(v ~ +v),
and the quotient topology on RP".

2. Similarly, working with complex vector spaces, we obtain a quotient topology on the
the complex projective space

CP" := {1-dimensional subspaces of C"*'} = §*"1 /(v ~ zv), zeS!

3. Generalizing, we can consider the Grassmann manifold
G1(R™) := {k-dimensional subspaces of R"*}.
There is a surjective map
Vi(R™ ) = {(vy,...,0) | vi € R™* 0's are orthonormal} —  GR(R")

given by sending (vy, ..., v;) € Vi(R"*) to the k-dimensional subspace of R"** spanned
by the v;’s. Hence the subspace topology on the Stiefel manifold Vj(R"**) c R(+k*
gives a quotient topology on the Grassmann manifold Gy(R"**) = V,(R"™*)/ ~. The
same construction works for the complex Grassmann manifold G, (C"™).

As the examples below will show, sometimes a quotient space X/ ~ is homeomorphic
to a topological space Z constructed in a different way. To establish the homeomorphism
between X/ ~ and Z, we need to construct continuous maps

f:X/~—12Z g: Z = X/~

that are inverse to each other. The next lemma shows that it is easy to check continuity of
the map f, the map out of the quotient space.
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Lemma 3.25. The projection map p: X — X/ ~ is continuous and a map f: X/ ~ — Z to
a topological space Z s continuous if and only if the composition fop: X — Z is continuous.

As we will see in the next section, there are many situations where the continuity of the

inverse map for a continuous bijection f is automatic. So in the examples below, and for the
exercises in this section, we will defer checking the continuity of f~! to that section.

Notation. Let A be a subset of a topological space X. Define a equivalence relation ~ on
Xbyx~yifx=yorxzyec A We use the notation X/A for the quotient space X/ ~.

Example 3.26. (1) We claim that the quotient space [—1,41]/{%1} is homeomorphic to

St via the map f: [—1,+1]/{£1} — S! given by [t] — €™. Geometrically speaking, the
map f wraps the interval [—1,41] once around the circle. Here is a picture.

glue

N

-1 +1

It is easy to check that the map f is a bijection. To see that f is continuous, consider
the composition

[—1,+1] —2= [-1, +1]/{£1} L= §' - C = R?,

where p is the projection map and ¢ the inclusion map. This composition sends t €
[—1,+1] to €™ = (sin7t,cost) € R?. By Lemma it is a continuous function, since
its component functions sin 7t and cos 7t are continuous functions. By Lemma the
continuity of 7 o f o p implies the continuity of ¢ o f, which by Lemma [3.18| implies the
continuity of f. As mentioned above, we’ll postpone the proof of the continuity of the
inverse map f~! to the next section.

More generally, D"/S™™! is homeomorphic to S™. (proof: homework)

Consider the quotient space of the square [—1,41] x [—1, 4+1] given by identifying (s, —1)
with (s,1) for all s € [—1,1]. It can be visualized as a square whose top edge is to be
glued with its bottom edge. In the picture below we indicate that identification by
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labeling those two edges by the same letter.

glue

The quotient ([—1,41] x [—1,+1]) /(s,—1) ~ (s,41) is homeomorphic to the cylinder
C={(r,y,2) eR’ |we[-1,+1],y° + 2> =1}.

The proof is essentially the same as in (1). A homeomorphism from the quotient space
to C' is given by f([s,t]) = (s,sinnt,cosnt). The picture below shows the cylinder C
with the image of the edge a indicated.

Consider again the square, but this time using an equivalence relations that identifies
more points than the one in the previous example. As before we identify (s, —1) and
(s,1) for s € [—1,1], and in addition we identify (—1,¢) with (1,¢) for ¢t € [—1,1]. Here
is the picture, where again corresponding points of edges labeled by the same letter are

to be identified.
a

>

>

a

We claim that the quotient space is homeomorphic to the torus

T:={xeR®|d(z,K) = d},
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where K = {(z1,%2,0) | 22 + 23 = 1} is the unit circle in the zy-plane and 0 < d < 1
is a real number (see ) via a homeomorphism that maps the edges of the square to the
loops in 7" indicated in the following picture below.

Exercise: prove this by writing down an explicity map from the quotient space to T', and
arguing that this map is a continuous bijection (as always in this section, we defer the
proof of the continuity of the inverse to the next section).

(5) We claim that the quotient space D™/ ~ with equivalence relation generated by v ~ —uv
for v € S"~! € D" is homeomorphic to the real projective space RP". Proof: exercise.
In particular, RP! = S'/v ~ —v is homeomorphic to D'/ ~= [-1,1]/ — 1 ~ 1, which
by example (1) is homeomorphic to S*.

(6) The quotient space [—1,1] x [=1,1]/ ~ with the equivalence relation generated by
(—1,t) ~ (1, —t) is represented graphically by the following picture.

This topological space is called the Mobius band. It is homeomorphic to a subspace of
R3 shown by the following picture

(7) The quotient space of the square by edge identifications given by the picture

a

a

is the Klein bottle. It is harder to visualize, since it is not homeomorphic to a subspace
of R? (which can be proved by the methods of algebraic topology).
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(8) The quotient space of the square given by the picture

a

>

<

a

is homeomorphic to the real projective plane RP?2. Exercise: prove this (hint: use the
statement of example (5)). Like the Klein bottle, it is challenging to visualize the real
projective plane, since it is not homeomorphic to a subspace of R3.

3.4 Properties of topological spaces

In the previous subsection we described a number of examples of topological spaces X, Y that
we claimed to be homeomorphic. We typically constructed a bijection f: X — Y and argued
that f is continuous. However, we did not finish the proof that f is a homeomorphism, since
we defered the argument that the inverse map f~!: ¥ — X is continuous. We note that not
every continuous bijection is a homeomorphism. For example if X is a set, X (resp. Xinq)
is the topological space given by equipping the set X with the discrete (resp. indiscrete)
topology, then the identity map is a continuous bijection from X5 to Xj,q. However its
inverse, the identity map Xj,q — X5 is not continuous if X contains at least two points.

Fortunately, there are situations where the continuity of the inverse map is automatic as
the following proposition shows.

Proposition 3.27. Let f: X — Y be a continuous bijection. Then f is a homeomorphism
provided X 1is compact and Y is Hausdorff.

The goal of this section is to define these notions, prove the proposition above, and to
give a tools to recognize that a topological space is compact and/or Hausdorff.
3.4.1 Hausdorff spaces

Definition 3.28. Let X be a topological space, x; € X, i =1,2,... a sequence in X and
x € X. Then x is the limit of the x;’s if for any open subset U C X containing x there is
some N such that x; € U for all 7 > N.

Caveat: If X is a topological space with the indiscrete topology, every point is the limit
of every sequence. The limit is unique if the topological space has the following property:

Definition 3.29. A topological space X is Hausdorff if for every x,y € X, x # y, there are
disjoint open subsets U,V C X withxz e U, y € V.
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Note: if X is a metric space, then the metric topology on X is Hausdorff (since for z # y
and € = d(z,y)/2, the balls B.(z), B.(y) are disjoint open subsets). In particular, any subset
of R", equipped with the subspace topology, is Hausdorff.

Warning: The notion of Cauchy sequences can be defined in metric spaces, but not in
general for topological spaces (even when they are Hausdorff).

Lemma 3.30. Let X be a topological space and A a closed subspace of X. If x,, € A is a
sequence with limit x, then x € A.

Proof. Assume x ¢ A. Then x is a point in the open subset X \ A and hence by the
definition of limit, all but finitely many elements x,, must belong to X \ A, contradicting our
assumptions. ]

3.4.2 Compact spaces

Definition 3.31. An open cover of a topological space X is a collection of open subsets of
X whose union is X. If for every open cover of X there is a finite subcollection which also
covers X, then X is called compact.

Some books (like Munkres’ Topology) refer to open covers as open coverings, while newer
books (and wikipedia) seem to prefer to above terminology, probably for the same reasons
as me: to avoid confusions with covering spaces, a notion we’ll introduce soon.

Now we’ll prove some useful properties of compact spaces and maps between them, which

will lead to the important Corollaries and [3.34]

Lemma 3.32. If f: X — Y is a continuous map and X is compact, then the image f(X)
18 compact.

In particular, if X is compact, then any quotient space X/ ~ is compact, since the
projection map X — X/ ~ is continuous with image X/ ~.

Proof. To show that f(X) is compact assume that {U,}, a € A is an open cover of the
subspace f(X). Then each U, is of the form U, =V, N f(X) for some open subset V, € Y.
Then {f~'(V,)}, a € A is an open cover of X. Since X is compact, there is a finite subset
A’ of A such that {f~*(V,)}, a € A" is a cover of X. This implies that {U,}, a € A is a
finite cover of f(X), and hence f(X) is compact. O

Lemma 3.33. 1. If K is a closed subspace of a compact space X, then K is compact.
2. If K is compact subspace of a Hausdorff space X, then K is closed.

Proof. To prove (1), assume that {U,}, a € A is an open covering of K. Since the U,’s
are open w.r.t. the subspace topology of K, there are open subsets V, of X such that
U, =V, N K. Then the V,’s together with the open subset X \ K form an open covering of
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X. The compactness of X implies that there is a finite subset A" C A such that the subsets
V, for a € A, together with X \ K still cover X. It follows that U,, a € A’ is a finite cover
of K, showing that K is compact.

The proof of part (2) is a homework problem. O

Corollary 3.34. If f: X — Y is a continuous bijection with X compact and Y Hausdorff,
then f 1s a homeomorphism.

Proof. We need to show that the map ¢g: ¥ — X inverse to f is continuous, i.e., that
g 1 (U) = f(U) is an open subset of Y for any open subset U of X. Equivalently (by passing
to complements), it suffices to show that ¢g~!(C') = f(C) is a closed subset of Y for any
closed subset C of C.

Now the assumption that X is compact implies that the closed subset C' C X is compact
by part (1) of Lemma[3.33]and hence f(C) C Y is compact by Lemma 3.32] The assumption
that Y is Hausdorff then implies by part (2) of Lemma that f(C) is closed. O

Lemma 3.35. Let K be a compact subset of R". Then K is bounded, meaning that there
is some r > 0 such that K is contained in the open ball B.(0) := {x € R™ | d(z,0) < r}.

Proof. The collection B,.(0) N K, r € (0,00), is an open cover of K. By compactness, K is
covered by a finite number of these balls; if R is the maximum of the radii of these finitely
many balls, this implies K' C Bg(0) as desired. O

Corollary 3.36. If f: X — R is a continuous function on a compact space X, then f has
a mazximum and a Minimum.

Proof. K = f(X) is a compact subset of R. Hence K is bounded, and thus K has an infimum
a :=inf K € R and a supremum b := sup K € R. The infimum (resp. supremum) of K is the
limit of a sequence of elements in K; since K is closed (by Lemma[3.33](2)), the limit points
a and b belong to K by Lemma [3.30] In other words, there are elements Z,in, Tmar € X
with f(Zmin) = a < f(z) for all z € X and f(Zyaz) = b > f(x) for all z € X, O

In order to use Corollaries and [3.36] we need to be able to show that topological
spaces we are interested in, are in fact compact. Note that this is quite difficult just working
from the definition of compactness: you need to ensure that every open cover has a finite
subcover. That sounds like a lot of work...

Fortunately, there is a very simple classical characterization of compact subspaces of
Euclidean spaces:

Theorem 3.37. (Heine-Borel Theorem) A subspace X C R"™ is compact if and only if
X s closed and bounded.
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We note that we’ve already proved that if K C R™ is compact, then K is a closed subset
of R" (Lemma [3.33(2)), and K is bounded (Lemma [3.35).

There two important ingredients to the proof of the converse, namely the following two
results:

Lemma 3.38. A closed interval [a,b] is compact.

This lemma has a short proof that can be found in any pointset topology book, e.g.,
[Mul.

Theorem 3.39. If X1, ..., X, are compact topological spaces, then their product X1 x---x X,
18 compact.

For a proof see e.g. [Mu, Ch. 3, Thm. 5.7]. The statement is true more generally for a
product of infinitely many compact space (as discussed in [Mul, p. 113], the correct definition
of the product topology for infinite products requires some care), and this result is called
Tychonoff’s Theorem, see [Mu, Ch. 5, Thm. 1.1].

Proof of the Heine-Borel Theorem. Let K C R™ be closed and bounded, say K C B,(0).
We note that B,.(0) is contained in the n-fold product

P:=[-rr]x - x[-rr]CR"

which is compact by Theorem [3.39 So K is a closed subset of P and hence compact by
Lemma [3.33(1). O

3.4.3 Connected spaces

Definition 3.40. A topological space X is connected if it can’t be written as decomposed
in the form X = U UV, where U,V are two non-empty disjoint open subsets of X.

For example, if a,b, c,d are real numbers with a < b < ¢ < d, consider the subspace
X = (a,b) I (¢,d) € R. The topological space X is not connected, since U = (a,b),
V = (¢, d) are open disjoint subsets of X whose union is X. This remains true if we replace
the open intervals by closed intervals. The space X' = [a,b] II [¢, d] is not connected, since
it is the disjoint union of the subsets U’ = [a,b], V' = [¢,d]. We want to emphasize that
while U" and V"’ are not open as subsets of R, they are open subsets of X', since they can be
written as

U= (-00,c)NX" V' =(boo)N X',

showing that they are open subsets for the subspace topology of X’ C R.

Lemma 3.41. Any interval I in R (open, closed, half-open, bounded or not) is connected.
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Proof. Using proof by contradiction, let us assume that [ has a decomposition I = U UV
as the union of two non-empty disjoint open subsets. Pick points u € U and v € V, and let
us assume u < v without loss of generality. Then

[u,v] =U'"UV"  with U :=UnNu,v] V' :=UnN][u,v]

is a decomposition of [u,v] as the disjoint union of non-empty disjoint open subsets U’, V'
of [u,v]. We claim that the supremum ¢ := sup U’ belongs to both, U’ and V', thus leading
to the desired contradiction. Here is the argument.

e Assuming that ¢ doesn’t belong to U’, for any € > 0, there must be some element of
U’ belonging to the interval (¢ — €, ¢), allowing us to construct a sequence of elements
u; € U’ converging to c. This implies ¢ € U’ by Lemma [3.30] since U’ is a closed
subspace of [u,v] (its complement V' is open).

e By construction, every = € [u,v] with x > ¢ = supU’ belongs to V’. So we can
construct a sequence v; € V' converging to c¢. Since V' is a closed subset of [u,v], we
conclude ¢ € V.

[]

Theorem 3.42. (Intermediate Value Theorem) Let X be a connected topological space,
and f: X — R a continuous map. If elements a,b € R belong to the image of f, then also
any real number ¢ between a and b belongs to the image of f.

Proof. Assume that ¢ is not in the image of f. Then X = f~'(—o0,c) U f~!(c,00) is a
decomposion of X as a union of non-empty disjoint open subsets. O]

There is another notion, closely related to the notion of connected topological space,
which might be easier to think of geometrically.

Definition 3.43. A topological space X is path connected if for any points x,y € X there
is a path connecting them. In other words, there is a continuous map ~: [a,b] — X from
some interval to X with y(a) = z, v(b) = .

Lemma 3.44. Any path connected topological space is connected.

Proof. Using proof by contradiction, let us assume that the topological space X is path
connected, but not connected. So there is a decomposition X = U UV of X as the union of
non-empty open subsets U,V C X. The assumption that X is path connected allows us to
find a path ~: [a,b] — X with v(a) € U and ~(b) € V. Then we obtain the decomposition

[a,0] = fHU) U fH(V)

of the interval [a,b] as the disjoint union of open subsets. These are non-empty since a €
f~YU) and b € f~1(V). This implies that [a,b] is not connected, the desired contradiction.
]
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For typical topological spaces we will consider, the properties “connected” and “path
connected” are equivalent. But here is an example known as the topologist’s sine curve
which is connected, but not path connected, see [Mu, Example 7, p. 156]. It is the following
subspace of R%:

1
X:{(x,sinE)ERQ|0<x<1}U{(O,y)€R2]—1§y§1}.

4 Appendix: Manifolds

The purpose of this section is to provide interesting examples of topological spaces and
homeomorphisms between them. There are many examples of “weird” topological spaces.
There are non-Hausdorff spaces (they don’t have well-defined limits) or the topologist’s sine
curve, which is connected, but not path connected. While there is a huge literature concering
pathological topological spaces, I must admit that I find those examples most interesting that
“show up in nature”. For example, topological spaces that appear as “configuration spaces”
or “phase spaces” of physical systems. Often these are a particularly nice kind of topological
space known as manifold.

There is much to say about manifolds. For example, you can find the text books In-
troduction to topological manifolds and Introduction to smooth manifolds by John Lee. For
this section, our focus is to discuss manifolds of dimension 2. Unlike higher dimensional
manifolds, we can represent manifolds of dimension 2 by pictures, which greatly helps the
intuition about these objects.

Definition 4.1. A manifold of dimension n or n-manifold is a topological space X which
is locally homeomorphic to R", that is, every point z € X has an open neighborhood U
which is homeomorphic to an open subset V' of R™. Moreover, it is useful and customary
to require that X is Hausdorff (see Definition and second countable, which means that
the topology of X has a countable basis.

In most examples, the technical conditions of being Hausdorff and second countable are
easy to check, since these properties are inherited by subspaces.

Homework 4.2. Show that a subspace of a Hausdorff space is Hausdorff. Show that a
subspace of a second countable space is second countable.

Examples of manifolds.

1. Any open subset U C R" is an n-manifold. The technical condition of being a second
countable Hausdorff space is satisfied for U as a subspace of the second countable
Hausdorff space R".
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2. The n-sphere S™ := {x € R" | ||z|| = 1} is an n-manifold. To prove this, let us look at

the subsets

Ul = {(zg,...,z,) € R"™ | 2; > 0} C "
U = {(zo,...,z,) € R" | 2; <0} C 9"
We want to argue that the map

¢ UF — D" given by O (w0, ... ) = (Lo, .o Tyt Ty Tig1s - -+ 5 Ty

is a homeomorphism, where D" := {(vy,...,v,) € D" | v2 + -+ 4+ 12 < 1} is the open
n-disk. It is easy to verify that the map

D" —UF o= (vi,...,00) = (U1, v, 2T = V]2 vigts - -, 0n)

is in fact the inverse to ¢;. Here ||v||2 = v2+--- 402 is norm squared of v € D". Both
maps, gf)ii and its inverse, are continuous since all their components are continuous.
This shows that (bf is in fact a homeomorphism, and hence the n-sphere S™ is a
manifold of dimension n.

Homework 4.3. Show that the product X xY of manifold X of dimension m and a manifold
Y of dimension n is a manifold of dimension m +n. Make sure to prove that X x Y is second
countable and Hausdorff.

Homework 4.4. Show that the real projective space RP" is manifold of dimension n. Make
sure to prove that RIP? is second countable and Hausdorff.

Examples of manifolds of dimension 2.

1.

The 2-torus T'. We recall that there are various ways of defining the torus, one being
as the product S' x S' which is a manifold of dimension 2 by Excercise since S*
is a manifold of dimension 1.

The real projective plane RIP?.

. The Klein bottle K. It is not hard to verify directly that K is a manifold of dimension

2. Alternatively, we will see in Lemma ?? that the Klein bottle is homeomorphic to
the connected sum RP?#RIP? of two copies of the projective plane RP?, which implies
in particular that K is a 2-manifold.

The surface X, of genus g is the subspace of R? given by the following picture:
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-
g

Here g is the number of “holes” of ¥,. In particular ¥;, the surface of genus 1, is
the torus. By convention, the surface g of genus 0 is the 2-sphere S?. Since we have
described the surface of genus g as a subspace of R? given by a picture rather than
a formula, it is impossible to give a precise argument that this subspace is locally
homeomorphic to R?, but hopefully the picture makes this obvious at a heuristic level.

The connected sum construction. This construction produces a new manifold M#N
of dimension n from two given manifolds M and N of dimension n. The manifold M#N is
called the connected sum of M and N. The construction proceeds as follows. First we make
some choices:

e We pick points x € M and y € N.

e We pick a homeomorphism ¢ between an open neighborhood U of x and the open
ball B5(0) of radius 2 around the origin 0 € R"™. Similarly, we pick a homeomorphism

Y: V=5 By(0) where V C N is an open neighborhood of yy € N.

The existence of homeomorphisms ¢, 1) with these properties follows from the assumption
that M, N are manifolds of dimension n. This implies that there is an open neighborhood
U’ € M of x and a homeomorphism ¢’ between U" and an open subset V' C R™. Composing
¢ by a translation in R"™ we can assume that ¢(x) = 0 € R". Since V"’ is open, there is some
e > 0 such that the open ball B.(0) of radius € around 0 € R" is contained in V’. Then
restricting ¢’ to U := (¢/)"'(B.(0)) C M gives a homeomorphism between U and B(0).
Then the composition

multiplication by 2/e

U—"" . B(0)

B5(0)

~
~

is the desired homeomorphism ¢ between a neighborhood U of z € M and By(0) C R™.
Analogously, we construct the homeomorphism 1. Here is a picture illustrating the situation.
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B,(0) C R"

AN
M N

The next step is to remove the open disc ¢~ (B;(0)) from the manifold M and the open
disc 971(B;(0)) from the manifold N. The following picture shows the resulting topological
spaces M\ ¢~ (B;1(0)) and N\¢)~!(B;(0)). Here the red circles mark the points corresponding
to the sphere S"~! C By(0) via the homeomorphisms ¢ and 1), respectively.

M\ ¢! N\~

The final step is to pass to a quotient space of the union

M\ ¢ ' (B1(0)) U N\¢~H(By(0))

given by identifying points in ¢=1(S™"!) with their images under the homeomorphism

o 1S S (S 2 TN (B(2)).

The connected sum M#N is this quotient space. In terms of our pictures, the manifold
M#N is obtained by gluing the two red circles, and is given by the following picture.

M#N
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Theorem 4.5. (Classification Theorem for compact connected 2-manifolds.) Every
compact connected manifold of dimension 2 is homeomorphic to exactly one of the following
manifolds:

o The connected sum TH ...#T of g copies of the torus T, g > 0;
—_———
g

o The connected sum RP*# ... #RP? of k copies of the real projective plane RP?, k > 1;
&

5 Appendix: Categories and functors

Before giving the formal definition of categories, let us recall examples of mathematical
objects that are quite familiar.

mathematical objects appropriate maps between
these objects

sets maps

groups group homomorphisms

vector spaces over a fixed field linear maps

topological spaces continuous maps

There are obvious similarities between these four cases of mathematical objects, suggest-
ing to destill their commonality into a definition.

Definition 5.1. A category C consists of the following data:
e A class ob C of objects of C.

e For any two objects A, B € ob C aset C(A, B) of morphisms from A to B. It is common

to use the notation A — B to indicate that f is a morphism from A to B, and to call
A the domain or source of f, and B its codomain or target.

e Morphisms f € C(A,B) and g € C(B,C) can be composed to obtain a morphism
go f € C(A,C). In other words, there is a composition map

o: C(B,C) x C(A, B) — C(A,0)
(9, f) = gof

These are required to satisfy the following properties:

(associativity) If f: A — B, g: B — C and h: C — D are morphisms, then (h o
g)of=ho(gof).



5 APPENDIX: CATEGORIES AND FUNCTORS 61

(identity) For every object B there exists a morphism idg: B — B, called identity
morphism such that for all morphism f: A — B and g: B — C we have idgof =
fand goidg = g.

Next we want to define what a functor is. As usual, before giving the formal definition,
we want to give at least one example of the to be defined notion as a motivation for the
definition. Our motivating example of a functor is the fundamental group:

e For each topological space X equipped with a base point xy € X, we have its funda-
mental group (X, zg).

e A continuous map f: X — Y with f(zg) = yo € Y leads to a group homomorphism
f* : 7T1(X7 I()) — WI(Y7 ?JO)

From an abstract point of view, the fundamental group takes an object (X, x¢) of one category
(the category of pointed topological spaces) and produces an object (X, zg) of another
category (the category of groups). Moreover, it takes a morphism f: (X, z9) — (Y, o) in the
category of pointed topological spaces and produces a morphism f,: m(X, z9) = 71 (Y, yo)
in the category of groups.

Definition 5.2. A functor F: C — D from a category C to a category D consists of the
following data:

e An assignment that maps each object A € ob C to an object F(A) € obD.

e An assignment that maps each morphism g: A — B in C to a morphism F'(g): F(A) —
F(B) in D.

We require:

(Compatibility with composition) For morphisms f: A — B and g: B — C'in C
F(go f) = F(g) o F(f) € D(A,C).

(Compatibility with identities) For any object A € C, F'(ids) = idp(a).

Examples of functors.

functors on objects on morphisms

m1: Top. — Sp (X, 20) = m(X,z0) | (X,20) 2 (Yiyo) s
7T1(X>$o) L> 7T1(Y, yo)

—@W: Vect, — Vecty | Vs VoW VLv e vew S view

F: Set — Vect, S v k[S] S Lo s kis] A

Here k[S] is the k-vector space of finite linear combinations ) ¢ kss of elements of s
with coefficients ks € k. The adjective finite means that we require ks = 0 for all but finitely
many s € S. The map k[f]: k[S] — k[T] sends ) ¢ kss to > g ksf(s), which is a finite
linear combination of elements of 7.



REFERENCES 62

References

[Ha] Hatcher, Allen, Algebraic topology. Cambridge University Press, Cambridge, 2002.
xii+544 pp.

[Mu] Munkres, James R. Topology: a first course. Prentice-Hall, Inc., Englewood Cliffs,
N.J., 1975. xvi+413 pp.



	Introduction
	Homotopy groups
	The Euler characteristic of closed surfaces
	Homology groups of surfaces

	Singular homology
	Relating the first homology group and the fundamental group
	Properties of singular homology groups: the Eilenberg-Steenrod axioms
	Functoriality of homology
	The Eilenberg Steenrod axioms for homology
	Calculating with the Mayer-Vietoris sequence

	Classical applications
	The Jordan curve theorem and its generalizations
	Local homology and invariance of dimension

	The degree of a map
	Homology of CW complexes
	CW complexes
	The cellular chain complex of a CW complex


	Appendix: Pointset Topology
	Metric spaces
	Topological spaces
	Constructions with topological spaces
	Subspace topology
	Product topology
	Quotient topology.

	Properties of topological spaces
	Hausdorff spaces
	Compact spaces
	Connected spaces


	Appendix: Manifolds
	Appendix: Categories and functors

