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1 Homework Assignment # 1

1. (10 points) Let GLn(R) be the set of invertible n× n matrices.

(a) Show that GLn(R) is an open subset of the topological space Mn×n(R) = Rn2
of all

n× n matrices.

1
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(b) Show that the map GLn(R)→ GLn(R), A 7→ A−1 is a continuous map.

Proof. Part (a). To show that GLn(R) is an open subset of Mn×n(R), we note that GLn(R)
is the preimage of R× = R \ {0} under the determinant map

det : Mn×n(R) −→ R A 7→ det(A).

Since det(A) is a polynomial in the matrix coefficients of A, this is a polynomial function
and hence continuous. Therefore GLn(R) = det−1(R×) is an open subset of Mn×n(R),
provided that R× is an open subset of R. This is the case, since R× is the union of the balls
B1(k) = (k − 1, k + 1) for k = ±1,±2, . . . .

Part (b). To prove continuity of the map f from open subset GLn(R) ⊂Mn×n(R) = Rn2
to

itself, it suffices by a result in class that all components of the map GLn(R)
f−→ GLn(R) ⊂

Rn2
are continuous functions. In other words, we need to show that for 1 ≤ i, j ≤ n the map

GLn(R) → R, A 7→ (A−1)ij is continuous. Here (A−1)ij denotes the ij-entry of the matrix
A−1.

We recall from linear algebra that the inverse of A can be calculated by the formula

A−1 =
Ct

det(A)
,

where det(A) is the determinant of A, and Ct is the transpose of the n× n matrix C whose
entry Cij is (−1)i+j times the (i, j)-minor of A (the determinant of the (n − 1) × (n − 1)
matrix that results from deleting row i and column j of A).

This shows that each matrix entry (A−1)ij is of the form p(A)
q(A)

, where p(A) and q(A) are

polynomial functions of the matrix entries of A. In particular the functions p, q : GLn(R)→ R
are continuous. Since q(A) = det(A) in non-zero for all A ∈ GLn(R), we can regard q as a
map q : GLn(R)→ R× (R× := R \ {0}). Hence we can form the composition

GLn(R)
q−→ R× I−→ R,

where I is the inversion map x 7→ x−1. From calculus we know that I is continuous and
hence so is I ◦ q. This implies that the function

p

q
= p · (I ◦ q)

is continuous.

2. (10 points) The point of this problem is to show that the metric topology on Rm+n =
Rm × Rn agrees with the product topology (where each factor is equipped with the metric
topology). Since both, the metric topology and the product topology, are defined via a basis,
it is good to know how to compare two topologies given in terms of bases. This is provided
by the statement of part (a).
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(a) Let X be a set, and let T, T′ be topologies generated by a basis B resp. B′. Show that
T ⊂ T′ if and only if for each B ∈ B and x ∈ B there is some B′ ∈ B′ with x ∈ B′ and
B′ ⊂ B.

(b) Show that the products of balls Br(x)×Bs(y) ⊂ Rm×Rn for (x, y) ∈ Rm×Rn, s, r > 0
generate the product topology on Rm × Rn.

(c) Show that the metric topology on Rm+n = Rm×Rn agrees with the product topology.
Hint: it might be helpful to draw pictures of a ball around (x, y) ∈ Rm+n and a product
of balls Br(x)×Bs(y) ⊂ Rm+n for m = n = 1.

Proof. Part (a). Assume that for each B ∈ B and x ∈ B there is some B′ ∈ B′ with
x ∈ B′ and B′ ⊂ B. To show T ⊂ T′, let U ∈ T, i.e., U is an open subset of X w.r.t. the
topology T. Then U is the union of subsets Bi belonging to B. By assumption, each Bi is
the union of subsets belonging to B′, and hence U is the union of subsets belonging to B′

and consequently U ∈ T′.
Conversely, if T ⊂ T′, let B ∈ B and x ∈ B. Then B ∈ T, and hence B ∈ T′. It follows

that B is a union of a collection of subsets B′i belonging to B′. In particular, there is some
i such that B′i contains the point x.

Part (b). We need to show that every subset W ⊂ Rm × Rn which is open with respect
to the product topology can be written as a union of products of balls; in other words, if
(x, y) ∈ W , we need to find r > 0, s > 0 such that Br(x) × Bs(y) ⊂ W . Since the product
topology is generated by products U × V of open sets U ⊂ Rm, V ⊂ Rn, the openness of W
guarantees that there is such a product U × V with (x, y) ∈ U × V ⊂ W . The openness of
U resp. V in the metric topology guarantees that there are balls Br(x) ⊂ U and Bs(y) ⊂ V .
In particular,

(x, y) ∈ Br(x)×Bs(y) ⊂ U × V ⊂ W

as desired.
Part (c). By part (b), the product topology T on Rm+n = Rm × Rn is generated by the
collection B consisting of products of balls, i.e., subsets of the form Br(x)×Bs(y) for x ∈ X,
y ∈ Y , r, s > 0. The metric topology T′ is generated by the collection B′ consisting of balls
Bt(x, y) for (x, y) ∈ Rm × Rn and t > 0. By part (a) it suffices to show that

(i) Given (x′, y′) ∈ Br(x)×Bs(y) there is some t > 0 such that Bt(x
′, y′) ⊂ Br(x)×Bs(y);

(ii) Given (x′, y′) ∈ Bt(x, y), there are r, s > 0 such that Br(x
′)×Bs(y

′) ⊂ Bt(x, y).

Our strategy to prove (i) is to find the largest ball Bt(x
′, y′) with center (x′, y′) that is

contained in the product Br(x)×Bs(y). The situation is illustrated by the following picture.
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(x, y)

(x′, y′)

Br(x)×Bs(y)

Bt(x
′, y′)

We note that r−dist(x, x′) is the distance of the point x′ ∈ Br(x) to the boundary of the
ball; similarly, s − dist(y, y′) is the distance of y′ ∈ Bs(y) to the boundary of that ball. So
choosing t := min{r−dist(x, x′), s−dist(y, y′)} should guarantee Bt(x

′, y′) ⊂ Br(x)×Bs(y).
To check this, let (x′′, y′′) ∈ Bt(x

′, y′). Then by the triangle inequality

dist(x′′, x) ≤ dist(x′′, x′) + dist(x′, x) < t+ dist(x′, x) ≤ (r − dist(x, x′)) + dist(x′, x) = r.

Similarly, dist(y′′, y) < s and hence (x′′, y′′) ∈ Br(x) × Bs(y), which proves Bt(x
′, y′) ⊂

Br(x)×Bs(y).

To prove (ii), our strategy is to find the largest product of balls Br(x
′) × Br(y

′) of the
same radius which is inside the ball Bt(x, y). Here is a picture illustrating the situation:

(x, y)

(x′, y′)

Bt(x, y)

Br(x
′)×Br(y

′)

The picture suggests that we should chose r such that the distance from the center point
(x′, y′) to the corner points of the “square” B̄r(x

′)× B̄r(y
′) is equal to the distance of (x′y′)
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to the boundary of the big ball B̄t(x, y) (here B̄r denotes the closed ball of radius r). The
Euclidean distance from (x′, y′) to a corner point is

√
r2 + r2 = r

√
2, the distance of (x′, y′)

to the boundary of Bt(x, y) is t− dist((x′, y′), (x, y)). This suggests to define

r :=
1√
2

(t− dist((x′, y′), (x, y))).

Let us check that with this choice of r the product Br(x
′)× Br(y

′) is contained in Bt(x, y).
So let (x′′, y′′) ∈ Br(x

′)×Br(y
′). Then

dist((x′′, y′′), (x, y)) ≤ dist((x′′, y′′), (x′, y′)) + dist((x′, y′), (x, y))

=
√
||x′′ − x′||2 + ||y′′ − y′||2 + dist((x′, y′), (x, y))

≤
√

2r2 + dist((x′, y′), (x, y))

=
√

2r + dist((x′, y′), (x, y))

=(t− dist((x′, y′), (x, y))) + dist((x′, y′), (x, y))

=t

3. (10 points) Let N ∈ Sn be the “north pole” of Sn, i.e., N = (0, . . . , 0, 1) ∈ Sn. The
stereographic projection is the map f : Sn \ {N} which sends a point x ∈ Sn \ {N} to the
intersection point of the straight line Lx in Rn+1 with endpoint N and x with Rn ⊂ Rn+1.
Here is a picture of the situation for n = 1.

Rn

R

N

f(x)

x

The map f : Sn \ {N} → Rn is a bijection. Explicitly, the map f and its inverse are given
by the explicit formulas

f(x1, . . . , xn+1) =
1

1− xn+1

(x1, . . . , xn) f−1(y1, . . . , yn) =
1

||y||2 + 1
(2y1, . . . , 2yn, ||y||2−1)
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for (x1, . . . , xn+1) ∈ Sn and (y1, . . . , yn) ∈ Rn. Provide a careful argument for the continuity
of f and f−1 (you can use freely that recognize that certain maps R ⊃ U → R are continuous,
but each time you use one of our “continuity criteria” for maps involving sub-spaces, products
and quotients, you should be explicit about it).

Proof. The only thing left to show here is the continuity of the map f and its inverse f−1.
The formula f(x1, . . . , xn+1) = 1

1−xn+1
(x1, . . . , xn) = ( x1

1−xn+1
, . . . , xn

1−xn+1
) gives a well-

defined map from the open subset U ⊂ Rn+1 given by U = {(x1, . . . , xn) ∈ Rn+1 | xn+1 6= 1}
to Rn. It is a continuous map since all its components are continuous. Hence the restriction
of this map to Sn \ {N} ⊂ U is continuous as well.

The codomain of the inverse map f : Rn → Sn \ {N} is a subspace of Rn+1, and hence to
check continuity of f−1, it suffices to check continuity of i ◦ f−1, where i : Sn \ {N} ↪→ Rn+1

is the inclusion map. This is continuous, since its component functions are 2yi
||y||2+1

resp.
||y||2−1
||y||2+1

, since they are quotients of polynomial functions on Rn+1 with nowhere vanishing
denominators.

4. (10 points) Do the first step towards proving that the quotient space Dn/Sn−1 is homeo-
morphic to the sphere Sn by constructing a continuous bijection from one of these spaces to
the other (a result we’ll cover in class next week will make it easy to conclude that this is in
fact a homeomorphism). Hint: produce a bijective map f relating these spaces by writing
down an explicit formula, paying attention to have this map go the “natural direction” to
make proving its continuity simple.

Proof. Generalizing the case n = 1 which we did in class, we define a map

f : Dn −→ Rn ⊕ R = Rn+1 by f(v) := (
sin π||v||
||v||

v, cosπ||v||)

We recall from Calculus that t→ sinπt
t

is a continuous function on R \ {0} which extends to
a continuous function on all of R (by defining its value at t = 0 to be π). It follows that f
is a continuous function since all its components are continuous.

It’s easy to check that f(v) belongs to Sn ⊂ Rn+1: f(0) = (0, 1) ∈ Sn, and for v 6= 0 we
have

||f(v)||2 = sin2 π||v||2 + cos2 π||v|| = 1

We conclude that the map Dn → Sn, v 7→ f(v) is continuous w.r.t. the subspace topology
on Sn since its composition with the inclusion map i : Sn → Rn+1 is the map f . Abusing
notation, we write again f : Dn → Sn.

We note that f maps any unit vector v ∈ Dn to the point (0,−1) ∈ Rn ⊕ R. Hence f
induces a well-defined map

f̄ : Dn/Sn−1 −→ Sn [v] 7→ f(v)
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This map is continuous since its composition with the projection map p : Dn → Dn/Sn−1 is
the map f which is continuous.

To show that f̄ is bijective, we note that f maps the origin 0 ∈ Dn to the point (0, 1) ∈ Sn
(points indicated by the blue dots in the picture below illustrating the situation for n = 2),
and all of the boundary sphere Sn−1 ⊂ Dn to the point (0,−1) (indicated by the color red).
All points of Sn−1 are identified to one point of the quotient space Dn/Sn−1 which is mapped
bijectively to the “south pole” (0,−1) ∈ Sn. Any point v of the sphere

Sn−1
r := {v ∈ Rn | ||v|| = r} for 0 < r < 1, indicated by the green circle in Dn,

can be written uniquely in the form v = re, where e is a unit vector in Rn. Then

f(v) = f(re) = (sin πre, cos πr);

i.e., as e ∈ Sn−1 varies, the image under f is the (n − 1)-sphere of radius sin πr with
centerpoint (0, cosπr) ∈ Rn ⊕ R in the plane parallel to Rn through that point (the green
circle in Sn in the picture below). In particular, for fixed r the map f̄ provides a bijection
between these two spheres. Since the map (0, 1)→ (−1, 1) given by r 7→ cos πr is a bijection,
the map f is a bijection between the open punctured ball {v ∈ Rn | 0 < ||v|| < 1} and
Sn \ {(0, 1), (0,−1)} (the sphere without the north pole and the south pole).

Dn

f−→

Sn

Hence f̄ : Dn/Sn−1 → Sn is a continuous bijection.

5. (10 points) Consider the following topological spaces

• The subspace T1 := {v ∈ R3 | dist(v, S) = r} ⊂ R3 equipped with the subspace
topology, where S = {(x, y, 0) ∈ R3 | x2 + y2 = 1} and 0 < r < 1.

• The product space T2 := S1 × S1 equipped with the product topology.

• The quotient space T3 := ([−1, 1] × [−1, 1])/ ∼ equipped with the quotient topology,
where the equivalence relation is generated by (s,−1) ∼ (s, 1) and (−1, t) ∼ (1, t).
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Construct two bijective continuous maps between these spaces such that each of these three
spaces features in at least one of these (once we have the convenient continuity criterion
for the inverse of a continuous bijection, this easily implies that these three spaces are all
homeomorphic). Hint: as in the previous problem, pick your maps to go in a direction
that makes it easy to verify continuity using the Continuity Criterions for maps to/from
subspaces, product spaces resp. quotient spaces.

Proof. We recall from class that checking continuity of a map f : X → Y is easy if the domain
X is a quotient space and the range Y is a subspace or a product space. This suggests to
construct continuous bijections

f : T3 → T1 and g : T3 → T2.

We first discuss the simpler map g given by the formula

g([s, t]) := ((cos πs, sin πs), (cos πt, sin πt)) ∈ S1 × S1 ⊂ R2 × R2. (1.1)

To argue that this is a well-defined bijection, we note that the map [−1, 1] → S1, s 7→
(cos πs, sin πs) is surjective, and its only failure to be injective is due to the fact that it maps
s = −1 and s = +1 to the same point in S1. The map above when precomposed with the
projection map [−1, 1] × [−1, 1] → T3 is the product of two copies of this map. Hence it is
surjective, and its only failure of injectivity comes from points (s, t) with s = ±1 or t = ±1.
This shows that g is in fact a bijection. To prove continuity of g it suffices to prove continuity
of the composition

[−1, 1]× [−1, 1]
pr // [−1, 1]× [−1, 1]/{±1} g // S1 × S1 i // R2 × R2 = R4 ,

where pr is the projection map, the i is the inclusion map. This map is continuous, since all
its component functions, given explicitely in equation (1.1) are continuous.

Now we define the map f , first describing it geometrically. From this point of view, it
will be obvious that f is bijective. Then we will derive an explicit formula for f , which will
make it easy to argue that f is continuous.

We note that there is a surjective map p : T1 → S which sends a point v ∈ R3 to the
unique point (x, y, 0) ∈ S which is closest to v. Similarly, there is a surjective map

q : T3 = ([−1, 1]× [−1, 1])/ ∼ −→ [−1, 1]/{±1} given by [s, t] 7→ [s].

We want to construct the map f such that it fits into a commutative diagram

T3 = ([−1, 1]× [−1, 1])/ ∼ f //

q

��

T1

p

��
[−1, 1]/{±1} f0 // S

,
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where f0 is the homeomorphism we discussed in class that sends [s] to (cos πs, sin πs, 0) ∈
S ⊂ R3. We note that the fiber q−1([s]) for any fixed [s] ∈ [−1, 1]/{±1} is a circle. Similarly,
for any point (x, y, 0) of the circle S ⊂ R3, the fiber p−1(x, y, 0) ⊂ T1 is a circle of radius r
in the plane spanned by the unit vectors (x, y, 0) and (0, 0, 1) with center (x, y, 0). We note
that the map

[−1, 1]/{±1} −→R3

[t] 7→(x, y, 0) + r cosπt(x, y, 0) + r sin πt(0, 0, 1)

= ((1 + r cos πt)x, (1 + r cosπt)y, r sin πt)

is a bijection onto the circle p−1(x, y, 0). In particular, defining f on each fiber q−1([s]) to
be this map, we obtain a bijection between T3 and T1.

To argue that f is continuous, we write down f : T3 → T1 explicitly: f0 sends a point
[s] ∈ [−1, 1]/{±1} to (x, y, 0) = (cos πs, sin πs, 0) and hence

f([s, t]) =((1 + r cos πt)x, (1 + r cos πt)y, r sin πt)

=((1 + r cos πt) cosπs, (1 + r cos πt) sinπs, r sin πt).
(1.2)

Then f is continuous if and only if the composition

[−1, 1]× [−1, 1]
pr // [−1, 1]× [−1, 1]/{±1} f // T1

i // R3

is continuous. This is continuous since its component functions are, which can be read off
from equation (1.2).

2 Homework Assignment # 2

1. (10 points) Show that a closed subspace C of a compact topological space X is compact.

Proof. Assume that {Ua}, a ∈ A is an open covering of C. Since the Ua’s are open w.r.t. the
subspace topology of C, there are open subsets Va of X such that Ua = Va ∩K. Then the
Va’s together with the open subset X \ C form an open covering of X. The compactness of
X implies that there is a finite subset A′ ⊂ A such that the subsets Va for a ∈ A′, together
with X \ C still cover X. It follows that Ua, a ∈ A′ is a finite cover of C, showing that C is
compact.

2. (10 points) Let X be a topological space which is the union of two subspaces X1 and
X2. Let f : X → Y be a (not necessarily continuous) map whose restriction to X1 and X2

is continuous.

(a) Show f is continuous if X1 and X2 are open subsets of X.
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(b) Show f is continuous if X1 and X2 are closed subsets of X.

(c) Give an example showing that in general f is not continuous.

Remark. This result is needed to verify that various constructions (e.g., concatenations of
paths) in fact lead to continuous maps. In a typical situation, we have continuous maps
f1 : X1 → Y and f2 : X2 → Y which agree on X1 ∩X2 and hence there is a well-defined map

f : X −→ Y given by f(x) =

{
f1(x) x ∈ X1

f2(x) x ∈ X2

The above result then helps to show that this map is continuous.

Proof. To prove part (a) let U ⊂ Y be open. Then Ui := f−1
i (U) is an open subset of Xi,

i.e., it is of the form Ui = Vi ∩Xi, where Vi ⊂ X is open. If follows that Ui is an open subset
of X, and hence f−1(U) = f−1

1 (U) ∪ f−1
2 (U) = U1 ∪ U2 is an open subset of X, proving the

continuity of f .
To prove part (b) we note that f : X → Y is continuous if and only if f−1(U) is a closed

subset of X for every closed subset U ⊂ Y . Then repeating the previous sentences with open
replaced by closed provides a proof of part (b).

For part (c) consider the map f : X = R→ Y = R given by f(t) = 0 if t ∈ (−∞, 0), and
f(t) = 1 if t ∈ [0,∞). The restrictions of f to (−∞, 0) resp. [0,∞) are constant and hence
continuous, but f is not.

Based on a request from one of you, here is also an example with X1 ∩ X2 6= ∅. Let
X be the quotient space X = [−1,+1]/{±1}, and let f : X → R be the map defined
by f(t) = t for −1 < t < 1, and f(±1) := −1. Then f is not continuous since the

composition [−1,+1] → [−1,+1]/{±1} f−→ R isn’t continuous, but the restriction of f to
X1 = (−1,+1) ⊂ X and X2 = [−1, 0) evidently is continuous.

3. (10 points) Use the Heine-Borel Theorem to decide which of the topological groups
GLn(R), SLn(R), O(n), SO(n) are compact. Provide proofs for your statements. Hint: A
strategy often useful for proving that a subset C of Rn is closed is to show that C is of the
form f−1(C ′) for some closed subset C ′ ⊂ Rk (often C ′ consists of just one point) and some
continuous map f : Rn → Rk.

Proof. The special linear group SLn(R) ⊂ Mn×n(R) = Rn2
is not compact for n ≥ 2, since

it is not bounded. To see this, consider the sequence of diagonal matrices

Ai =


i
i−1

. . .

1

 ∈ SLn(R).
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Considered as a vector in Rn2
, the norm squared of Ai is given by

||Ai||2 = i2 + i−2 + 12 + · · ·+ 12 ≥ i2

which shows that SLn(R) is an unbounded subset of Rn2
for n ≥ 2. For n = 1, the group

SL1(R) = {1} ⊂ R, and hence is compact.
The general linear group GLn(R) is unbounded for n ≥ 2, since it contains the unbounded

subgroup SLn(R). The group GL1(R) = R× = R \ {0} is obviously unbounded. Hence
GLn(R) is non-compact for all n ≥ 1.

We claim that O(n) and SO(n) are compact. We begin by showing that they are bounded
subspaces of Rn2

. So let A ∈ O(n) be a matrix with column vectors v1, . . . , vn ∈ Rn. The
assumption that A belongs to O(n) means that the vi’s form an orthogonal basis of Rn.
Hence

||A||2 = ||v1||2 + · · ·+ ||vn||2 = n,

which shows that O(n) and hence also SO(n) ⊂ O(n) are bounded subsets of Rn2
.

To show that O(n) is a closed subset of Rn2
we note that a matrix A with column vectors

vi ∈ Rn belongs to O(n) if and only if the vi’s are orthogonal, i.e., if

〈vi, vj〉 = δi,j for all 1 ≤ i, j ≤ n,

where 〈v, w〉 denotes the scalar product of vectors v, w, and the delta symbol δi,j is defined
by declaring δi,i = 1, and δi,j = 0 for i 6= j. More elegantly, this can be rephrased by saying
A ∈ O(n) if and only if AtA = I, where At is the transpose of A, and I is the identity
matrix. In particular, if we define

f : Mn×n −→Mn×n by A 7→ AtA,

then O(n) = f−1(I). Since f is continuous (since each component is), and the one-element
subset {I} ⊂Mn×n = Rn2

is closed, it follows that O(n) is a closed subset of Rn2
.

To show that SO(n) is a closed subset, we note that SO(n) = O(n) ∩ SLn(R), where
SLn(R) is the special linear group consisting of all n × n matrices with determinant 1. In
other words, SLn(R) = det−1(1), where det : Mn×n → R is the map that sends a matrix to
its determinant. Since the determinant is a polynomial function of the entries of the matrix,
this is a continuous function, and hence SLn(R) = det−1(1) is a closed subset of Rn2

. This
implies that the intersection SO(n) = O(n) ∩ SLn(R) is closed as well.

4. (10 points) Let M be a manifold of dimension m and let N be a manifold of dimension
n. Show that the product M ×N is a manifold of dimension m + n. Don’t forget to check
the technical conditions (Hausdorff and second countable) for M ×N .
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Proof. First we check that M ×N is locally homeomorphic to Rm+n. So let (x, y) ∈M ×N .
Since M is a manifold of dimension m, there exists an open neighborhood U of x and a
homeomorphism φ : U

≡−→ U ′ between U and an open subset U ′ ⊂ Rm. Similarly, there is
a homeomorphism ψ : V

≡−→ V ′ between an open neighborhood of y and an open subset
V ⊂ Rn. It follows that the map

U × V −→ U ′ × V ′ given by (u, v) 7→ (φ(u), ψ(v))

is a homeomorphism (this map is continuous, since its components are continous; its inverse
is given by

U ′ × V ′ 3 (v, w) 7→ (φ−1(v), ψ−1(w)) ∈ U × V,
which is continuous by the same argument). We note that U ′ × V ′ is an open subset of
Rm × Rn = Rm+1, since the product topology on Rm × Rn agrees with the standard metric
topology on Rm+n. This shows that M ×N is locally homeomorphic to Rm+n.

Next we show that M×N is Hausdorff. Suppose that (x, y), (x′, y′) are two distinct points
in M × N . Then x 6= x′ or y 6= y′. If x 6= x′, then there are disjoint open neighborhoods
Ux, Ux′ ⊂ M of x resp. x′, since M is Hausdorff. It follows that Ux × N , Ux′ × N are two
disjoint open neighborhoods of (x, y) resp. (x′, y′). Reversing the roles of M and N in the
argument above similarly proves the statement for y 6= y′.

Finally we prove that the assumption that M and N are second countable implies that
the product M×N is second countable (this is a general statement for topological spaces M ,
N). Let {Uα}α∈A be a countable basis for topology of M , and let {Vβ}α∈B be a countable
basis for topology of N . Then the product topology on M × N is generated by the open
subsets Uα× Vβ for α ∈ A, β ∈ B. This is a countable basis, since the countability of A and
B implies that countability of A×B.

5. (10 points) Show that the real projective space RPn is a manifold of dimension n. Don’t
forget to check that RPn is second countable (we have proved in class that the projective
space is Hausdorff). Hint: to prove that RPn is locally homeomorphic to Rn suitably modify
the method we used for the sphere Sn. For showing that RPn is second countable, recall
from class that if X is second countable, and p : X � Y is an open surjection, then Y is
second countable.

Proof. Let Ui ⊂ RPn = Sn/ ∼ be the subset

Ui = {[x0, . . . , xn] | (x0, . . . , xn) ∈ Sn, xi 6= 0}.

This is an open subset of RPn since the preimage p−1(Ui) under the projection map p : Sn �
RPn is an open set. Explicitly,

p−1(Ui) = {(x0, . . . , xn) ∈ Sn | xi 6= 0},
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which is an open subset of Sn since it is equal to p−1
i (R \ {0}), where pi : S

n → R is the
projection map to the i-th factor (more precisely, the restriction of the projection map
Rn+1 → R to Sn ⊂ Rn+1). Since R \ {0} is an open subset of R and pi is continuous, the
preimage p−1

i (R \ {0}) is an open subset of Sn.
Let Bn

1 := {(v1, . . . , vn) ∈ Rn | v2
1 + · · ·+ v2

n < 1} be the open n-ball of radius 1 and let

φi : Ui −→ Bn
1

be the map defined by φi([x0, . . . , xn]) := (x0, . . . , x̂i, . . . , xn) for xi > 0, where the “hat”
over xi indicates that we skip this term. We note that every equivalence class [x0, . . . , xn]
consists of two antipodal points, exactly one of which will have a positive component xi;
hence the prescription above yields a well-defined map φi.

We want to show that φi is a homeomorphism. It is easy to verify that the map

Bn
1 −→ Ui v = (v1, . . . , vn) 7→ [v1, . . . , vi,

√
1− ||v||2, vi+1, . . . , vn]

is in fact the inverse to φi. Here ||v||2 = v2
1 + · · ·+v2

n is norm squared of v ∈ Bn
1 . Both maps,

φi and its inverse, are continuous since all their components are continuous. This shows that
φi is in fact a homeomorphism, and hence the projective space RPn is locally homeomorphic
to Rn.

It remains to show that RPn = Sn/ ∼ is second countable. We have proved earlier that
Sn is second countable (as subspace of the second countable space Rn+1). Hence it suffices
to show that the projection map p : Sn � RPn is open, since by a lemma from class this
implies that RPn is second countable.

So let U ⊂ Sn be open. Let A : Sn → Sn be the antipodal map x 7→ −x, which is
continuous, since it is the restriction of the map A : Rn+1 → Rn+1 given by the same formula
which is continuous since all its components are. To check whether p(U) ⊂ RPn is open, we
need to verify that p−1(p(U)) is an open subset of Sn.

p−1(p(U)) = U ∪ A−1(U),

which is an open subset of Sn as the union of open subsets. Hence the lemma above implies
that RPn is second countable.

3 Homework Assignment # 3

1. (10 points) Show that the complex projective space CP1 is homeomorphic to the 2-sphere
S2. Hint: recall that CP1 is a quotient of C2 \{0} and hence a point of CP1 is an equivalence
class [z0, z1] of elements (z0, z1) ∈ CP1 = (C2\{0}). Construct a bijection f between CP1 with
the point [0, 1] removed and C. Compose the map f with the map g : C = R2 → S2\{(0, 0, 1)}
which is the inverse of the stereographic projection map (see the formula from the previous
homework set). Simplify the explicit formula for g ◦ f : CP1 \ {[0, 1]} −→ S2 \ {(0, 0, 1)} to
show that it extends to a continuous bijection between CP1 and S2.
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Proof. The map f : (CP1 \ {[0, 1]}) −→ C given by f([z0, z1]) = z1
z0

is well-defined since

• z0 6= 0 for any [z0, z1] 6= [0, 1], and

• for any λ ∈ C× = C \ {0}, f([λz0, λz1]) = λz1
λz0

= f([z0, z1]).

Moreover, f is a bijection, since the map C→ CP1 \ {[0, 1]}, z 7→ [1, z] is the inverse of f as
is easily checked.

The map g : R2 → S2\{(0, 0, 1)} inverse to the stereographic projection is given explicitly
by

g(y1, y2) =
1

||y||2 + 1
(2y1, 2y2, ||y||2 − 1).

Identifying y = (y1, y2) ∈ R2 with the complex number z = y1 + iy2 ∈ C, ||y||2 = ||z||2 = zz̄,
and hence

g(z) =
1

||z||2 + 1
(2z, ||z||2 − 1) =

(
2z

||z||2 + 1
,
||z||2 − 1

||z||2 + 1

)
∈ S2 ⊂ R3 = C⊕ R.

Hence for z0 6= 0,

g(f([z0, z1])) = g(z1/z0) =

 2 z1
z0

||z1||2
||z0||2 + 1

,

||z1||2
||z0||2 − 1

||z1||2
||z0||2 + 1


=

(
2 z1
z0
||z0||2

||z1||2 + ||z0||2
,
||z1||2 − ||z0||2

||z1||2 + ||z0||2

)

=

(
2z1z̄0

||z1||2 + ||z0||2
,
||z1||2 − ||z0||2

||z1||2 + ||z0||2

)
The composition CP1 \ {[0, 1]} C S2 \ {(0, 0, 1)}f g

is a bijection, since f and g

are bijections. For any [z0, z1] ∈ CP1, let F ([z0, z1]) be defined by the above formula. Then
for z0 6= 0, F ([z0, z1]) = g(f(z0, z1)), while F ([0, z1]) = (0, 0, 1) ∈ S2. In other words, F is a
map

F : CP1 −→ S2,

which extends the map g◦f to all of CP1, sending [0, 1] ∈ CP1 to (0, 0, 1) ∈ S2. In particular,
F is a bijection, since g ◦ f is.

To show that F is continuous, consider the composition

C2 \ {0} CP1 S2 R3p F i .

By the Continuity Criterium for maps out of quotient spaces, F is continuous if and only if
F ◦p is continuous. By the Continuity Criterium for maps into subspaces, F ◦p is continuous
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if and only if F ◦p◦ i is continuous. By the Continuity Criterium for maps to product spaces,
F ◦ p ◦ i is continuous if and only if all of its three components (the real resp. imaginary

component of 2z1z̄0
||z1||2+||z0||2 resp. ||z1||

2−||z0||2
||z1||2+||z0||2 ) are continuous. These are rational functions of

components of (z0, z1) ∈ C2 = R4 whose denominators are non-zero on the domain of the
map, and hence are continuous. This shows that F is continuous.

The continuous bijection F : CP1 → S2 is a homeomorphism, since its codomain S2 is
Hausdorff (as subspace of R3), and its domain CP1 is compact (as quotient of S3 which is
compact by Heine-Borel). We mentioned in class that CPn can be described as quotient of
Cn+1 \ {0} by identifying (z0, . . . , zn) with (λz0, . . . , λzn) for λ ∈ C \ {0}, or equivalently as
quotient of S2n+1 ⊂ Cn+1 with the same relation as above, but assuming that (z0 . . . , zn) ∈
S2n+1 and λ ∈ S1. We proved the analogous statement for real projective spaces in class.

2. (10 points) Which of the topological groups GLn(R), O(n), SO(n) are connected? Hint:
To show that one of these topological groups is connected, it might be easier to show that
it is path-connected. Note that to prove this, it suffices to find a path connecting any
element with the identity element (why?). Use without proof the fact that every element in
SO(n) (the group of linear maps f : Rn → Rn which are isometries with determinant one)
for a suitable choice of basis of Rn is represented by a matrix of block diagonal form whose
diagonal blocks are the 1× 1 matrix with entry +1 and/or 2× 2 rotational matrices

R =

(
cosφ − sinφ
sinφ cosφ

)
.

Here “block diagonal” means that all other entries are zero.

Proof. The determinant function det : Mn×n → R is a continuous function. Since the de-
terminant for matrices in GLn(R) or O(n) is non-zero, its restriction to G = GLn(R), O(n)
provides a continuous map

f : G −→ R \ {0}.
It follows that G = f−1((−∞, 0))∪f−1((0,∞)) is a decomposition of G into a disjoint union
of open subsets. Both of these are not empty, since the determinant of the identity matrix
is 1, and the determinant of the diagonal matrix with diagonal entries (−1, 1, . . . , 1) is −1.
This shows that the spaces GLn(R) and O(n) are both not connected.

To prove that SO(n) is connected it suffices to show that SO(n) is path connected,
i.e., any two elements A,B ∈ SO(n) can be connected by a path. We will show this by
constructing for every A ∈ SO(n) a path γA : [0, 1] → SO(n) with γA(0) = I (the identity
matrix) and γA(1) = A. This implies that any two points A,B ∈ SO(n) can be connected by
a path γAB, obtained by first taking a path from A to I, by running the path γA backwards,
and then taking the path γB from I to B. In formulas, the path γAB is given by

γAB(t) =

{
γA(1− 2t) for t ∈ [0, 1

2
]

γB(2t− 1) for t ∈ [1
2
, 1]
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This is in fact a path (i.e., a continuous map) by problem 4 of homework assignment # 2.
Let us first construct γA for n = 2, using the fact that every A ∈ SO(2) is a rotation,

given by a matrix of the form

A =

(
cos θ − sin θ
sin θ cos θ

)
.

We define

γA : [0, 1] −→ SO(2) by γA(t) :=

(
cos tθ − sin tθ
sin tθ cos tθ

)
which is continuous since it components are continuous functions of t, and has the desired
property γA(0) = I and γA(1) = A.

For a general dimension n, we use the fact that for any A ∈ SO(n) there is a choice
of basis for Rn such that the matrix representing the isometry A is of block diagonal form
as described in the hint. Replacing for each block Ri the rotation angle θi (which may be
different for the different blocks) by tθi we obtain a path γA : [0, 1] → SO(n) from I to A,
generalizing our construction in the n = 2 case.

3. (10 points) The definition of a manifold involves the technical conditions of being Haus-
dorff and second countable. Show that these properties are “inherited” by subspaces in the
following sense. Let X be a topological space and A a subspace.

(a) Show that if X is Hausdorff, then so is A.

(b) Show that if X is second countable, then so is A.

Proof. Part (a). Suppose that X is Hausdorff and let x, y ∈ A with x 6= y. Then there are
disjoint open subsets U, V ⊂ X with x ∈ U , y ∈ V . Then U ∩ A, V ∩ A are disjoint open
subsets of A (by definition of the subspace topology) with x ∈ U ∩ A and y ∈ V ∩ A. This
shows that A is Hausdorff.

Part (b). Assume that X is second countable and that B is a countable collection of
subspaces of X which are a basis for the topology of X. We claim that the countable
collection of subspaces B ∩A ⊂ A for B ∈ B is a basis for the subspace topology. Let U be
an open subset of A. By the definition of the subspace topology, this means there is some
open subset V of X such that U = V ∩ A. Since B is a basis for the topology on X, the
open subset V can be written as V =

⋃
i∈I Bi, a (not necessarily finite) union of subsets Bi

belonging to the collection B. Then

U = V ∩ A =

(⋃
i∈I

Bi

)
∩ A =

⋂
i∈I

Bi ∩ A,

which shows that the subsets of the form Bi ∩ A form a countable basis for the topology of
A.
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4. (10 points) Let Σ, Σ′ be compact 2-manifolds. Show that the Euler characteristic of the
connected sum Σ#Σ′ is given by the following formula:

χ(Σ#Σ′) = χ(Σ) + χ(Σ′)− 2.

Proof. Let P resp. P ′ be a pattern of polygons on Σ resp. Σ′. Without loss of generality we
can assume that one of the faces of P is a triangle T , and that one of the faces of P ′ is a
triangle T ′. Then we can form the connected sum Σ#Σ′ by removing the interiors of T and
T ′ from Σ resp. Σ′ and gluing the resulting manifolds with boundary by identifying each of
the edges of T with an edge each of T ′. Each of the polygons of P and P ′ with the exception
of T and T ′ then gives a polygon on the connected sum Σ#Σ′, thus leading to a pattern
of polygons P ′′ on Σ#Σ′. Denoting by V (P ) resp. E(P ) resp. F (P ) the number of vertices
resp. edges resp. faces of the pattern P , and similarly for P ′, P ′′, we can now calculate the
number of vertices/edges/faces of P ′′:

• V (P ′′) = V (P )+V (P ′)−3, since the three vertices of the triangle T ⊂ Σ are identified
with the three vertices of the triangle T ′ ⊂ Σ when glue the boundaries of the triangles
T and T ′.

• E(P ′′) = E(P ) + E(P ′)− 3, since the three edges of the triangle T ⊂ Σ are identified
with the three edges of the triangle T ′ ⊂ Σ when glue the boundaries of the triangles
T and T ′.

• F (P ′′) = F (P ) + F (P ′) − 2, since the two faces given by the triangles T , T ′ are no
longer faces of the polygonal pattern P ′′.

It follows that

χ(Σ#Σ′) =V (P ′′)− E(P ′′) + F (P ′′)

=(V (P ) + V (P ′)− 3) − (E(P ) + E(P ′)− 3) + (F (P ) + F (P ′)− 2)

=(V (P )− E(P ) + F (P )) + (V (P ′)− E(P ′) + F (P ′)) − 2

=χ(Σ) + χ(Σ′)− 2.

5. (10 points) By the classification theorem for compact connected 2-manifolds, the con-
nected sum T#T#K#K#K of two copies of the torus T and three copies of the Klein
bottle K is homeomorphic to exactly one of the manifolds Σg (the surface of genus g ≥ 0)
or Xk (the connected sum of k copies of the real projective plane RP2). Which one is it?
(provide detailed arguments!).
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Proof. Let X := T#T#K#K#K. As discussed in class, the Klein bottle K contains a
Möbius band. Forming the connected sum M#K for M = T#T#K#K using a disk in K
which is disjoint to the Möbius band in K, we see that also the connected sum M#K =
T#T#K#K#K = X contains a Möbius band, and hence X is non-orientable.

By the classification Theorem for compact connected 2-manifolds, X is then homeomor-
phic to Xk, the connected sum of k copies of the projective plane RP2 for some k ≥ 1. To
determine k, we note that the homeomorphism X ≈ Xk implies

χ(X) = χ(Xk) = 2− k.

To calculate the Euler characteristic χ(X), we use the formula χ(Σ#Σ′) = χ(Σ) +χ(Σ′)−2,
and χ(T ) = χ(K) = 0 (from class). It follows that

χ(Σ#T ) = χ(Σ) + 0− 2 = χ(Σ)− 2 and χ(Σ#K) = χ(Σ)− 2.

In other words, a connected sum with T or K causes the Euler characteristic to drop by 2.
Hence starting with T (with χ(T ) = 0), the connected sum operation with 1 copy of T and
three copies of K causes the Euler characteristic to drop to −8; i.e., χ(X) = −8. From the
equation χ(X) = 2 − k above we conclude k = 10, in other words, X is homeomorphic to
X10.

4 Homework Assignment # 4

1. (10 points) Let α, β, γ : I → X be paths in a topological space X. Assume that α(1) =
β(0) and β(1) = γ(0) which guarantees that the concatenated paths α∗(β ∗γ) and (α∗β)∗γ
can be formed. Show that these two paths are homotopic (relative endpoints). Verifying this
shows that if α, β, γ are loops based at x0 ∈ X representing elements a = [α], b = [β], c = [γ]
in π1(X;x0), then a(bc) = (ab)c. In other words, this proves associativity of multiplication
in π1(X;x0), one of the last things to verify in order to prove that π1(X;x0) is indeed a
group.

Hint: Show that both paths can be written as the composition Ψ ◦ φ of a suitable map
φ : I → [0, 3] and the map

[0, 3] XΨ defined by Ψ(s) :=


α(s) 0 ≤ s ≤ 1

β(s− 1) 1 ≤ s ≤ 2

γ(s− 2) 2 ≤ s ≤ 3

Avoid writing down explicit homotopies; instead use the handy fact that any two paths with
the same endpoints in a convex subset of Rn are homotopic relative endpoints.
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Proof. Let α′, β′, γ′ : I → [0, 3] be defined by α′(s) = s, β′(s) = s+ 1 and γ′(s) = s+ 2. We
note that

Ψ ◦ α′ = α Ψ ◦ β′ = β Ψ ◦ γ′ = γ.

It follows that

α ∗ (β ∗ γ) = Ψ ◦ (α′ ∗ (β′ ∗ γ′)) and (α ∗ β) ∗ γ = Ψ ◦ ((α′ ∗ β′) ∗ γ′).

Hence it suffices to find a homotopy φt (relative endpoints) between the paths φ0 := α′ ∗
(β′ ∗ γ′) and φ1 := (α′ ∗ β′) ∗ γ′ with the same endpoints, since then Ψ ◦ φt will then be the
desired homotopy between α ∗ (β ∗ γ) and (α ∗ β) ∗ γ. The paths φ0, φ1 : [0, 1] → [0, 3] are
paths in the convex subset [0, 3] of the real line, and hence the linear homotopy φt between
these two paths does the job. Explicitly, φt(s) is given by the formula

φt(s) = (1− t)φ0(s) + tφ(s).

2. (10 points) Let X be a topological space and let β be a path from x0 to x1. Show that
the map

Φβ : π1(X, x0) −→ π1(X, x1) [γ] 7→ [β̄ ∗ γ ∗ β]

is an isomorphism of groups. In particular, the isomorphism class of the fundamental group
π(X, x0) of a path connected space does not depend on the choice of the base point x0 ∈ X.
Hint: for any path γ in X, there are homotopies

γ ∗ γ̄ ' cγ(0) γ̄ ∗ γ ' cγ(1) cγ(0) ∗ γ ' γ, γ ∗ cγ(1) ' γ

where cx for x ∈ X denotes the constant path at x. Make use of these (we proved one of
these in class; no need to prove the others).

Proof. First we show that Φβ : π1(X, x0) −→ π1(X, x1) is a homomorphism. So let γ, δ be
loops in X based at x0. Then

Φβ([γ][δ]) = Φβ([γ ∗ δ]) = [β̄ ∗ γ ∗ δ ∗ β] = [β̄ ∗ γ ∗ β ∗ β̄ ∗ δ ∗ β]

= [β̄ ∗ γ ∗ β][β̄ ∗ δ ∗ β] = Φβ([γ])Φβ([δ])

Here we avoid using parantheses for the concatenation operation; this is ok by the fact that
the paths resulting from different ways of putting in parantheses leads to homotopic paths.
The first and second equality is just the definition of multiplication in π1(X, x0) resp. the
definition of Φβ. The third equation holds due to the homotopy β∗ β̄ ' cx0 (an application of
the second homotopy of the hint), and the fact that we can insert at any point an appropriate
constant path into an iterated concatenation without changing the homotopy class of the
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path (follows from either the third or the fourth homotopy). The last two equations again
hold by construction of multiplication in the fundamental group resp. the map Φβ.

It remains to show that Φβ is an isomorphism. We claim that its inverse is given by
Φβ̄ : π1(X, x1)→ π1(X, x0).

Φβ̄Φβ(γ) = Φβ̄([β ∗ γ ∗ β̄]) = [β̄ ∗ β ∗ γ ∗ β̄ ∗ β] = [cx0 ∗ γ ∗ cx0 ] = [γ]

Here the first two equations is just by construction of Φβ resp. Φβ̄, the third equation holds
thanks to the first two homotopies mentioned in the hint, and the last equation holds due
to the last two homotopies.

3. (10 points) A pointed topological space is a pair (X, x0) consisting of a topological space X
and a point x0 ∈ X. Let (X, x0), (Y, y0) be pointed topological spaces and let f : (X, x0)→
(Y, y0) be a basepoint preserving map, i.e., a continuous map f : X → Y with f(x0) = y0.

(a) Show that the map f∗ : π1(X, x0) → π1(Y, y0) defined by f∗([γ]) = [f ◦ γ] is a well-
defined.

(b) Show that f∗ is a group homomorphism.

The map f∗ : π1(X, x0) → π1(Y, y0) is called the homomorphism of fundamental groups in-
duced by f .

Proof. Part (a). Let γ, γ′ be two based loops in (X, x0) which are homotopic relative
endpoints, and let H : I × I → X be such a homotopy from γ to γ′, i.e., H(s, 0) = γ(s),
H(s, 1) = γ′(s), H(0, t) = x0 = H(1, t) for all s, t ∈ I. Then the composition

I × I X YH f

has the properties f ◦H(s, 0) = f ◦γ(s), f ◦H(s, 1) = f ◦γ′(s), f ◦H(0, t) = f(x0) = y0 and
f ◦H(1, t) = f(x0) = y0. In other words, f ◦H is a homotopy relative endpoints from f ◦ γ
to f ◦ γ′, and hence [f ◦ γ] = [f ◦ γ′] ∈ π1(Y, y0) showing that the map f∗ is well-defined.

Part (b). Let [γ], [γ′] ∈ π1(X, x0). We recall that the multiplication in the group π1(X, x0)
is induced by concatenation of paths, i.e., [γ] · [γ′] := [γ ∗ γ′]. Then

f∗([γ] · [γ′]) = f∗([γ ∗ γ′]) = [f ◦ (γ ∗ γ′)]
f∗([γ]) · f∗([γ′]) = [f ◦ γ] · [f ◦ γ′] = [(f ◦ γ) ∗ (f ◦ γ′)]

For 0 ≤ s ≤ 1/2, (f ◦ (γ ∗ γ′))(s) = f((γ ∗ γ′)(s)) = f(γ(s)) and ((f ◦ γ) ∗ (f ◦ γ′))(s) =
(f ◦ γ)(s) = f(γ(s)). Similarly, the paths f ◦ (γ ∗ γ′) and (f ◦ γ) ∗ (f ◦ γ′) also agree for
1/2 ≤ s ≤ 1. Hence f∗ is a homomorphism.
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4. (10 points) Let (X, x0), (Y, y0) be pointed topological spaces. Show that π1(X×Y, (x0, y0))
is isomorphic to the Cartesian product π1(X, x0) × π1(Y, y0) of the fundamental groups of
(X, x0) and (Y, y0).

Hint: use the base point preserving projection maps pX : X × Y → X, pY : X × Y → Y ,
and the induced homomorphisms (see the previous problem)

pX∗ : π1(X × Y, (x0, y0))→ π1(X, x0) pY∗ : π1(X × Y, (x0, y0))→ π1(Y, y0).

Proof. Let pX : X × Y → X and pY : X × Y → Y be the projection maps, and let

(pX)∗ : π1(X × Y, (x0, y0)) −→ π1(X, x0) (pY )∗ : π1(X × Y, (x0, y0)) −→ π1(Y, y0)

be the induced homomorphisms on fundamental groups. We claim that the group homo-
morphism

Ψ: π1(X × Y, (x0, y0)) −→ π1(X, x0)× π1(Y, y0)

given by

[γ] 7→ ((pX)∗([γ]), (pY )∗([γ]) = ([pX ◦ γ], [pY ◦ γ])

is an isomorphism.
To show that Ψ is surjective, let ([γ1], [γ2]) be an element of π1(X, x0) × π1(Y, y0), i.e.,

γ1 is a based loop in (X, x0), and γ2 is a based loop in (Y, y0). Let γ : I → X × Y be
the continuous map whose components are the maps γ1, γ2; i.e., γ(s) = (γ1(s), γ2(s)). Then
γ(0) = γ(1) = (x0, y0); in other words, γ is a based loop in (X×Y, (x0, y0)). By construction,
Ψ sends [γ] ∈ π1(X × Y, (x0, y0)) to ([γ1], [γ2]), which proves that Ψ is surjective.

To show that Ψ is injective, it suffices to show that the kernel of Ψ is trivial. So assume
that [γ] ∈ π1(X × Y, (x0, y0)) is in the kernel of Ψ. This means that both components paths
γ1 := pX ◦γ and γ2 := pY ◦γ are homotopic to the constant path cx0 resp. cy0 via homotopies
H1 : I × I → X resp. H2 : I × I → Y ; more explicitly,

Hi(s, 0) = γi(s) for i = 1, 2 Hi(s, 1) =

{
x0 i = 1

y0 i = 2

Let H : I×I −→ X×Y be the map with component maps H1 and H2. Then H is the desired
homotopy between γ and the constant path at the basepoint (x0, y0) ∈ X ×Y , showing that
[γ] is the trivial element in π1(X × Y, (x0, y0)).
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5. (10 points) The goal of this problem is to show that the winding number map

W : π1(S1, 1)→ Z

is a group isomorphism. We recall that for a based loop γ in (S1, 1), the winding number
W (γ) ∈ Z is defined by W (γ) := γ̃(1) ∈ Z, where γ̃ : I → R is the unique lift of γ : I → S1

(i.e., p ◦ γ̃ = γ) with starting point γ̃(0) = 0 ∈ R. We assume that W is well-defined, i.e.,
that the winding number W (γ) of a based loop γ depends only on the homotopy class of γ
relative endpoints (which will be proved in class on Tuesday, 9-19). Let

Φ: Z −→ π1(S1, 1) be defined by Φ(n) := [γn],

where γn : I → (S1, 1) is the based loop γn(s) = e2πins.

(a) Show that the composition Z π1(S1, 1) ZΦ W is the identity.

(b) Show that the composition π1(S1, 1) Z π1(S1, 1)W Φ is the identity. Hint:

If [γ] ∈ π1(S1, 1) and Φ(W ([γ])) = [γ′], you need to show that γ ∼ γ′. Let γ̃, γ̃′ : I → R
be the unique lifts of γ (resp. γ′) with γ̃(0) = 0 = γ̃′(0). Try to show that γ̃(1) = γ̃′(1).
Using the fact that paths with the same endpoints in a convex subspace are homotopic
relative endpoints, why does this imply γ ∼ γ′?

(c) Show that W is a group homomorphism.

Proof. Part (a). For n ∈ Z, Φ(n) = [γn], and hence W (Φ(n)) = W (γn) is the winding
number of γn, given by W (γn) = γ̃n(1), where γ̃n : I → R is the unique lift of γn(s) = e2πins

with γ̂n(0) = 0. So we need to show γ̃n(1) = n.
We observe that the map γ̃n : I → R given by γ̃n(s) = ns satisfies the two properties that

uniquely characterize γ̃n:

• this map γ̃n is a lift of γn, i.e., p ◦ γ̂n = γn, since p(γ̂n(s)) = p(ns) = e2πins = γn(s)

• γ̂n(0) = 0.

It follows that W (γn) = γ̂n(1) = n, which proves part (a).

Part (b). Let [γ] ∈ π1(S1, 1), and let n := W (γ) = γ̂(1) ∈ Z. Then Φ(W (γ)) = [γn], and
we need to show γ ∼ γn. The based loops γ and γn in (S1, 1) have lifts γ̂, γ̂n which are
paths in R with starting point 0. We know that γ̂n(s) = ns (from part (a)), and γ̂(1) = n.
In particular, the paths γ̂n, γ̂ : I → R have the same endpoints. Since these are paths in
R (which in particular is a convex subspace of itself), it follows that γ̂n ∼ γ̂. This in turn
implies γn = p ◦ γ̂n ∼ p ◦ γ̂ = γ̂, which proves part (b).
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Part (c). To show that W is a group homomorphism, let γ, γ′ be based loops in (S1, 1),
and let γ̃, γ̃′ : I → R be their lifts for the covering map p : R → S1, t 7→ e2πit with starting
point 0 ∈ R. We need to determine the lift of the concatenated loop γ ∗ γ′. It is tempting
to say that that is γ̃ ∗ γ̃′, but this concatenation not be defined since the endpoint of the
first path, i.e., γ̃(1) = W (γ), in general is not equal to the starting point of the second path
γ̃′(0) = 0. We can fix this problem by replacing γ̃′ by the path γ̂′ : I → R defined by

γ̂′(s) := W (γ) + γ̃′(s).

The path γ̂′ also is a lift of γ′, but its starting point is γ̂′(0) = W (γ), and hence the
concatenation γ̃ ∗ γ̂′ is a continuous path which is a lift of γ ∗ γ′ with starting point 0 and
endpoint

(γ̃ ∗ γ̂′)(1) = γ̂′(1) = W (γ) + γ̃′(1) = W (γ) +W (γ′).

This shows that the winding number of γ ∗ γ′ is W (γ) +W (γ′).

5 Homework Assignment # 5

1. (10 points) A subspace A ⊂ X of a topological space X is called a retract of X if there
is a continuous map r : X → A whose restriction to A is the identity.

(a) Show that S1 is not a retract of D2. Hint: Show that the assumption that there
is a continuous map r : D2 → S1 which restricts to the identity on S1 leads to a
contradiction by contemplating group homomorphisms r∗ : π1(D2, x0) → π1(S1, x0)
and i∗ : π1(S1, x0) → π1(D2, x0) induced by the retraction f resp. the inclusion map
i : S1 ↪→ D2.

(b) Brouwer’s Fixed Point Theorem states that every continuous map f : Dn → Dn has a
fixed point, i.e., a point x with f(x) = x. Prove this for n = 2. Hint: show that if f
has no fixed point, then a retraction map r : D2 → S1 can be constructed out of f .

Proof. We prove part (a) by contradiction. Suppose that r : D2 → S1 is a retraction of D2

onto S1. This means that r makes the following diagram commutative:

S1 i //

id !!B
BB

BB
BB

B D2

r
��
S1

Choosing a basepoint x0 ∈ S1 and applying the fundamental group functor gives the com-
mutative diagram

π1(S1, x0)
i∗ //

id∗=id ''NN
NNN

NNN
NNN

π1(D2, x0)

r∗
��

π1(S1, x0)
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This gives the desired contradiction since according to the diagram the identity map on
π1(S1, x0) ∼= Z factors through the trivial group π1(D2, x0).

To prove part (b) we assume that f : D2 → D2 does not have a fixed point, i.e., that for
all x ∈ D2, f(x) 6= x. Then the line through the points f(x) and x intersects the sphere
S1 in two points. Let r(x) ∈ S1 be the intersection point closer to x. It is clear from the
construction that r : D2 → S1 has the property r(x) = x for x ∈ S1, and so it remains to
show the continuity of r to derive the desired contradiction from part (a).

To show that r is continuous, we note that r(x) can be written in the form

r(x) = x+ α(x)(x− f(x)),

where α(x) ∈ R is the unique non-negative solution of the quadratic equation

||x+ α(x)(x− f(x))||2 = 1 (5.1)

(the solutions of this equation correspond to the two intersections of the line through x and
f(x) with S1; hence it is clear geometrically, that there are two solution for every x, and that
exactly one solution is non-negative). Writing out the quadratic equation (5.1) explicitly as

||x− f(x)||2α2(x) + 2〈x, x− f(x)〉α(x) + ||x||2 − 1 = 0

shows that its coefficients are continuous functions of x, and hence the quadratic formula
shows that its non-negative solution α(x) is continuous function of x. We conclude that r(x)
is a continuous function of x since its components are linear combinations of products of
continuous functions.

2. (10 points) The goal of this problem is to construct elements in the fundamental group of
the torus T , the Klein bottle K and the projective plane RP2 and to show that they satisfy
certain relations.

(a) Recall that T is homeomorphic to Σ(aba−1b−1), the quotient of the polygon P4 with four
edges (also known as “square”) according using the edge identification determined by

the word aba−1b−1. Let p : P4 → Σ(aba−1b−1) be the projection map. Let α̃i, β̃i : I → P4

be the linear edge paths as shown in the the picture below (the edge α̃1 is identified

with α̃2 and β̃1 is identified with β̃2 to obtain Σ(aba−1b−1) ≈ P4/ ∼)

v1 v2

v3v4 α̃2

α̃1

β̃1 β̃2
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Let α = p ◦ α̃i, β = p ◦ β̃i be the based loops in (Σ(aba−1b−1), v), with v := p(vi) ∈
Σ(aba−1b−1), and let a := [α], b := [β] be the elements of the fundamental group
π1(Σ(aba−1b−1), v) represented by these based loops. Show that these elements satisfy
the relation aba−1b−1 = 1 ∈ π1(Σ(aba−1b−1), v).

(b) Similarly, construct elements a, b in the fundamental group of the Klein bottle K ≈
Σ(aba−1b) and show that they satisfy the relation aba−1b = 1.

(c) Similarly, construct an element a in the fundamental group of the real projective plane
RP2 ≈ Σ(aa) and show that it satisfies the relation a2 = 1.

(d) Recall that RP2 is also homeomorphic to Σ(abab). Can we use the same techniques
as above to construct elements a, b in the fundamental group of Σ(abab) which satisfy
the relation abab = 1? If yes, construct these elements and prove the relation; if no,
explain the difference to the previous cases.

Proof. Part (a). As the picture shows, the paths α̃1, β̃2, α̃2 and β̃1 can be concatenated to
obtain a based loop

α̃1 ∗ β̃2 ∗ α̃2 ∗ β̃1 in (P4, v1).

Since P4 is a convex subset of R2, this loop is homotopic to the constant loop cv1 . Composing
with the projection map p : P4 � Σ(aba−1b−1) we obtain

cv = cp(v1) = p ◦ cv1 ∼ p ◦ (α̃1 ∗ β̃2 ∗ α̃2 ∗ β̃1) ∼ α ∗ β ∗ ᾱ ∗ β̄

for the based loops α = p ◦ α̃, β = p ◦ β̃ in (Σ(aba−1b−1), v). Passing to homotopy classes, it
follows that

1 = [cv] = [α][β][ᾱ][β̄] = [α][β][α]−1[β]−1 = aba−1b−1 ∈ π1(Σ(aba−1b−1), v).

Part (b). The construction of the elements a, b ∈ π1(Σ(aba−1b), v) is completely analogous
to the construction in part (a), based on the following picture.

v1 v2

v3v4 α̃2

α̃1

β̃1 β̃2

The concavity of P4 implies that the based loop α̃1 ∗ β̃2 ∗ α̃2 ∗ β̃1 is homotopic to the constant
loop cv1 . Composing with the projection map p : P4 � Σ(aba−1b), it follows that α∗β ∗ β̄ ∗β
is homotopic to cv, which in turn proves the relation aba−1b = 1 ∈ π1(Σ(aba−1b), v).
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Part (c). Again, the construction is analogous to the construction in part (a), but based
on the following picture of the bigon P2 on the edge paths α̃1, α̃2, which project to the same
based loop α in (Σ(aa), v = p(v1)).

α̃1

α̃2

v1 v2

Again, concavity of P2 implies that the based loop α̃1 ∗ α̃2 is homotopic to the constant loop
cv1 . Composing with the projection map p : P2 � Σ(aa) then yields the based loop α ∗ α
which is homotopic to the constant loop cv at v = p(v1), which implies the relation a2 = 1
for a = [α] ∈ π1(Σ(aa), v).

Part (d). The construction is now based on the picture

v1 v2

v3v4 α̃2

α̃1

β̃1 β̃2

which shows that the concatenation α̃1∗ β̃2∗ α̃2∗ β̃1 is a loop in P4 based at v1. Thanks to the
convexity of P4, it is again homotopic to the constant loop cv1 . The difference to the previous
cases shows up when we compose with the projection map p. Unlike in the previous cases, the
vertices vi do not all map to the same vertex v under p; rather, p(v1) = p(v3) 6= p(v2) = p(v4).

In particular, the paths α̃i, β̃i yield paths α = p ◦ α̃1 = p ◦ α̃2, β = p ◦ β̃1 = p ◦ β̃2 in Σ(abab),
not loops, and consequently, they don’t represents elements a, b of the fundamental group
of Σ(abab).

3. (10 points) Two topological spaces X, Y are homotopy equivalent if there are maps
f : X → Y and g : Y → X such that g ◦ f : X → X is homotopic to idX and f ◦ g : Y →
Y is homotopic to idY . Show that the following five topological spaces are all homotopy
equivalent:

(1) the circle S1,

(2) the open cylinder S1 × R,

(3) the annulus A = {(x, y) | 1 ≤ x2 + y2 ≤ 2},
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(4) the solid torus S1 ×D2,

(5) the Möbius strip

Hint: A subspace A ⊂ X is a retract of X if there is map r : X → A which restricts to the

identity on A. It is a deformation retract of X if in addition the composition X
r−→ A

i
↪→ X

with the inclusion map i is homotopic to the identity on X. Note that if A is a deformation
retract of X, then r ◦ i = idA and i ◦ r ∼ idX . In particular, A is homotopy equivalent to
X. Show that each of the spaces (2)-(5) contains a subspace S homeomorphic to the circle
S1 which is a deformation retract of the bigger space it is contained in.

Proof. As suggested by the hint, for each of the spaces X in cases (2)-(5) we construct a
continuous injection i : S1 → X. This gives a continuous bijection from S1 to the subspace
S := i(S1) ⊂ X. Since S1 is compact and the spaces X under consideration are all Hausdorff,
the subspace S is homeomorphic to S1. To show that S is a deformation retract of X we
need to construct a continuous map

H : X × I −→ X

with the properties

(a) H(x, 1) = x for all x ∈ X;

(b) H(x, 0) ∈ S for all x ∈ X;

(c) H(x, t) = x for x ∈ S.

This map is the homotopy between the identity of X and the retraction r : X → S ⊂ X
given by r(x) := H(x, 0), showing that S is a deformation retract.

Here are the maps i : S1 → X and H : X × I → X for each of the cases (2)-(5). It
is straightforward to show that the maps i, H are continuous, since we describe them by
explicit formulas, to prove the injectivity of i, and to show that H has properties (a), (b)
and (c).

For the cylinder S1 × R we define

i : S1 −→ X = S1 × R H : S1 × R× I −→ S1 × R
z 7→ (z, 0) (z, s, t) 7→ (z, st)

For the annulus A = {(x, y) ∈ R2 | 1 ≤ x2 + y2 ≤ 2} = {z ∈ C | 1 ≤ |z|2 ≤ 2} we define

i : S1 −→ A H : A× I −→ A

z 7→ z (z, t) 7→ (1− t) z
|z|

+ tz
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For the solid torus S1 ×D2 we define

i : S1 −→ S1 ×D2 H : S1 ×D2 × I −→ S1 ×D2

z 7→ (z, 0) (z, w, t) 7→ (z, tw)

For the Möbius strip M = (I × [−1, 1])/ ∼ with the equivalence relation (0, s) ∼ (1,−s)
it will be convenient to replace S1 by the homeomorphic space [0, 1]/{0, 1} obtained by
identifying the two endpoints of the interval [0, 1]. We define

i : R/Z −→M H : M × I −→M

[r] 7→ [r, 0] ([r, s], t) 7→ [r, ts]

4. (10 points) Let f : (S1, 1)→ (S1, 1) be the basepoint preserving map defined by f(z) = zn

for some n ∈ Z and let
f∗ : π1(S1, 1) −→ π1(S1, 1)

be the induced homomorphism on the fundamental group. Calculate explicitly the group
homomorphism f∗. By this, we mean the following: the winding number gives an explicit iso-
morphism π1(S1, 1) ∼= Z. Via this isomorphism, the automorphism f∗ of the group π1(S1, 1)
corresponds to an automorphism of the group Z. Any automorphism of Z is of the form
Z → Z, m 7→ km, i.e., is given by multiplication by some integer k ∈ Z. In other words,
“calculate explicitly” means “determine the integer k ∈ Z such that the following diagram
commutes”:

π1(S1, 1) π1(S1, 1)

Z Z

f∗

W ∼= W∼=

k

Proof. We recall that the based loop γn : I → S1 given by γn(s) = e2πins has winding number
W (γn) = n. In particular W (γ1) = 1. We note

f∗[γ1] = [f ◦ γ1] = [f(e2πis)] = [(e2πis)n] = [e2πins] = [γn] ∈ π1(S1, 1),

and hence W (f∗[γ1]) = W (γn) = n. It follows that

k = kW ([γ1]) = W (f∗[γ1]) = n,

where the second equality is a consequence of the commutativity of the diagram.

5. (10 points) A d-fold covering map is a covering map p : X̃ → X such that for each point
x ∈ X, the fiber p−1(x) consists of d points.
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(a) Let X be compact 2-manifold and let p : X̃ → X be a d-fold covering map. Show

that χ(X̃) = d · χ(X). Hint: Choose a pattern of polygons Γ on X such that each
polygon is contained in some evenly covered subset U ⊂ X. Argue that Γ determines
a compatible pattern of polygons Γ̃ on X̃.

(b) Let X̃ → X is a d-fold covering of orientable compact connected 2-manifolds. Give a

formula expressing the genus g̃ of X̃ in terms of the genus g of X.

Proof. Part (a). Let Γ be a pattern of polygons on X such that each polygon (and hence also
each edge) is contained an evenly covered subset U ⊂ X. Then p−1(U) is the disjoint union

of d subsets U1, . . . , Ud such that pUk : Uk → U is a homeomorphism. Let Γ̃ be the graph on

X̃ whose vertices/edges/faces belonging to p−1(U) are the images of the vertices/edges/faces
of Γ that belong to U under the homeomorphisms U ≈ Uk for k = 1, . . . , d. Denoting by
#VΓ, #EΓ, #FΓ the number of vertices/edges/faces of Γ, and similarly for Γ̃, we see that

#VΓ̃ = d#VΓ #EΓ̃ = d#EΓ #FΓ̃ = d#FΓ

and hence

χ(X̃) = #VΓ̃ −#EΓ̃ −#FΓ̃ = d (#VΓ −#EΓ −#FΓ) = dχ(X).

Part (b). We recall that Euler characteristic of the surface Σg of genus g is given by
χ(Σg) = 2− 2g and hence g = 1

2
(2− χ(Σg) = 1− 1

2
χ(Σg). In particular,

g̃ = 1− 1

2
χ(X̃) = 1− d

2
χ(X) = 1− d

2
(2− 2g) = 1− d+ dg.

6 Homework Assignment # 6

1. (10 points) Let (X, x0), (Y, y0) be pointed spaces. We recall that writing f : (X, x0) →
(Y, y0) means that f is a map from X to Y which is basepoint-preserving in the sense
that f(x0) = y0. Maps f0, f1 : (X, x0) → (Y, y0) basepoint-preserving homotopic, notation
f0 ∼bp f1, if there is a homotopy H : X × I → Y from f0 to f1 which is basepoint-preserving
in the sense that H(x0, t) = y0 for all t ∈ I. A map f : (X, x0) → (Y, y0) is a basepoint-
preserving homotopy equivalence if there is a map g : (Y, y0)→ (X, x0) such that g◦f ∼bp idX
and f ◦ g ∼bp idY .

(a) Show that if f, g : (X, x0) → (Y, y0) are basepoint-preserving homotopic, then the
induced homomorphisms f∗, g∗ : π1(X, x0)→ π1(Y, y0) are equal.
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(b) Show that if f : (X, x0)→ (Y, y0) is a basepoint-preserving homotopy equivalence, then
the induced map f∗ : π1(X, x0)→ π1(Y, y0) is an isomorphism.

Proof. Part (a). Let H : X × I → Y be a basepoint-preserving homotopy from f to g, i.e.,
H(x, 0) = f(x), H(x, 1) = g(x) and H(x0, t) = y0. Let γ : (I, ∂I)→ (X, x0) be a based loop
in (X, x0), and let H ′ be the composition

H ′ : I × I X × I Y
(γ◦p1)×p2 H

Here pi : I × I → I denotes the projection onto the ith factor, and the first map is the map
to the product X × I whose first component is γ ◦ p1 and whose second component is p2

(recall that a map to a product of topological spaces is given by its component maps, or,
categorically speaking, the cartesian product of topological spaces is their categorical product
in the category of topological spaces. Then

H ′(s, 0) = H(γ(s), 0) = f(γ(s)) H ′(s, 1) = H(γ(s), 1) = g(γ(s))

and H ′(0, t) = y0 = H ′(1, t); in other words, H ′ is a homotopy from f ◦ γ to g ◦ γ relative
endpoints. In particular,

f∗([γ]) = [f ◦ γ] = [g ◦ γ] = g∗([γ]) ∈ π1(Y, y0).

Part (b). Let g : (Y, y0) → (X, x0) be the homotopy inverse of f : (X, x0) → (Y, y0), i.e.,
g ◦ f ∼bp idX and f ◦ g ∼bp idY . Then

g∗ ◦ f∗ = (g ◦ f)∗ = (idX)∗ = idπ1(X,x0),

where the first and third equation follow from the functor property of the fundamental
group, and the second equation holds by part (a). Similarly, f∗ ◦ g∗ = idπ1(Y,y0), and hence
f∗ : π1(X, x0)→ π1(Y, y0) is a group isomorphism with inverse g∗.

2. (10 points) In this problem you are ask to show that an object X in a category C is the
categorical product of two other objects. Recall that this means that you need to construct
morphisms p1 : X → X1 and p2 : X → X2 and show that the following diagram in C has the
property of being a product diagram discussed in the lectures:

X1 X X2
p1 p2

(a) Show that the cartesian product G1 × G2 of two groups G1, G2, equipped with the
usual multiplication given by (g1, g2) · (h1, h2) := (g1h1, g2h2) is the categorical product
of G1 and G2 in the category Grp of groups and group homomorphisms.
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(b) Let (X1, x1), (X2, x2) be pointed topological spaces. Show that the pointed space
(X1 ×X2, (x1, x2)) is the categorical product of (X1, x1) and (X2, x2) in the category
Top∗ of pointed topological spaces and basepoint-preserving maps.

Proof. Part (a). For i = 1, 2, let pi : G1 ×G2 → Gi be the projection map (this is a group
homomorphism). To prove that the cartesian product G1 ×G2 is the categorical product of
G1, G2 in Grp, it suffices to show that the diagram

G1 G1 ×G2 G2
p1 p2

is a product diagram, i.e., that it satisfies the universal property

G1

H G1 ×G2

G2

f1

f2

∃!f

p1

p2

for any group homomorphisms fi : H → Gi. Given f1, f2, we define

f : H −→ G1 ×G2 by f(h) := (f1(h), f2(h)).

It is clear that this map f makes the diagram commutative, and that f is determined by f1,
f2.

Part (b). The proof of this part proceeds completely analogous to that of part (a): it
suffices to show that the diagram

(X1, x1) (X1 ×X2, (x1, x2)) X2
p1 p2

is a product diagram in the category Top∗ of pointed topological spaces and basepoint-
preserving maps (here p1, p2 denote the projection map to the first resp. second factor). In
other words, we need to check the universal property expressed by the diagram

(X1, x1)

(Y, y0) (X1 ×X2, (x1, x2))

(X2, x2)

f1

f2

∃!f

p1

p2

where f1, f2 are arbitrary basepoint-preserving maps. It is clear that the map f = (f1, f2)
with components f1, f2 that makes the above diagram commutative, and that it is the only
map with this property.
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3. (10 points)

(a) Show that the free product G1 ∗G2 of groups G1, G2 is the coproduct of G1 and G2 in
the category Grp of groups and group homomorphisms. Hint: proving this amounts
to constructing homomorphisms i1 : G1 → G1 ∗G2 and i2 : G2 → G1 ∗G2 and verifying
that the diagram

G1 G1 ∗G2 G2
i1 i2 (6.1)

is a coproduct diagram.

(b) Let G1 H G2
j1 j2

be a diagram of groups and homomorphisms. Show that

the free product with amalgamation G1 ∗HG2 is a pushout of the diagram above in the
category of groups. Hint: Showing that G1 ∗H G2 is a pushout of the diagram above
means that there are homomorphisms k1 : G1 → G1 ∗H G2 and k2 : G2 → G1 ∗H G2

such that the diagram

H G1

G2 G1 ∗H G2

j2

j1

k1

k2

(6.2)

is commutative, and has the property of being a pushout diagram.

Proof. Part(a). We recall that the free product G1 ∗ G2 is given by equivalence classes
of words with letters belonging to G1 q G2. Let i1 : G1 → G1 ∗ G2 be the map given by
sending g ∈ G1 to the equivalence class [g] ∈ G1 ∗ G2 of the one-letter word g. This is a
homomorphism since

i1(gg′) = [(gg′)] = [gg′] = [g][g′] = i1(g)i1(g′).

Here (gg′) is a one-letter (with letter gg′ ∈ G1), and gg′ is a two-letter word; while these
are different words, they are equivalent, and hence [(gg′)] = [gg′] ∈ G1 ∗ G2. Similarly,
i2 : G2 → G1 ∗G2, given by g 7→ [g], is a homomorphism. To prove part (a) it then suffice to
show that diagram (6.1) is a coproduct diagram, i.e., satisfies the universal property given
by the diagram

G1

G1 ∗G2 H

G2

i1
f1

∃!f

i2
f2
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for arbitrary homomorphisms f1, f2 to a group H.
Any element of G1∗G2 is represented by a word g1 . . . gk, for gi ∈ G1qG2. If f : G1∗G2 →

H is a homomorphism making the above diagram commutative, then

f([g1 . . . gk]) = f([g1] . . . [gk]) = f([g1]) . . . f([gk]) = fε(g1)(g1) · · · fε(gk)(gk) ∈ H,

where ε(g) ∈ {1, 2} for g ∈ G1 q G2 is given by ε(g) = i if g ∈ Gi. In particular, f is
determined by f1, f2, and hence there is at most one homomorphism f that makes the
diagram commutative.

To show that there is a homomorphism f that makes the above diagram commutative,
we define f by

f([g1 . . . gk]) := fε(g1)(g1) · · · fε(gk)(gk).

It remains to show that f is well-defined and a homomorphism. If the elements gi is an
identity element in G1 or G2, then [g1 . . . gk] = [g1 . . . ĝi . . . gk], where ĝi indicates that the
letter gi has been removed from the word g1 . . . gk. Then f([g1 . . . ĝi . . . gk]) ∈ H does not
have the factor fε(gi)(gi), but since this is the unit element in H, removing this factor does
not change the value of the product.

Similarly, if gi, gi+1 belong to the same factor, say G1, then

[g1 . . . gigi+1 . . . gk] = [g1 . . . (gigi+1) . . . gk] ∈ G1 ∗G2.

Both of these elements have the same image under f , since f1(gigi+1) = f1(gi)f1(gi+1), since
f1 is a homomorphism. Analogous arguments apply for gi, gi+1 ∈ G2. This shows that f is
well-defined.

To verify that f is homomorphism, let g1, . . . , gk, gk+1, . . . g` ∈ G1 qG2. Then

f([g1 . . . gkgk+1 . . . g`]) =fε(g1)(g1) · · · fε(gk)(gk) · fε(gk+1)(gk+1) · · · fεg` (g`)
=f([g1 . . . gk]) · f([gk+1 . . . g`])

This proves part (a).

Part(b). We recall that G1 ∗H G2, the free product of G1 and G2 with amalgamation over
H is the quotient of the free product G1 ∗ G2 by the normal subgroup N generated by the
elements [j1(h)j2(h)−1] ∈ G1 ∗G2. Following the hint, we construct a homomorphism k1 as
the composition

G1 G1 ∗G2 G1 ∗G2/N = G1 ∗H G2
i1 p

,

and similarly for k2 : G2 → G1 ∗G2. Then it suffices to show that diagram (6.2) is a pushout
diagram. To verify this universal property, we look at the following big diagram. Removing
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the object G1∗G2 from this diagram, and all morphisms with that (co)domain, the remaining
diagram is the diagram expressing the universal property of the pushout.

G1

H G1 ∗G2 G1 ∗H g2 K

G2

i1

k1

f1j1

j2

f̃

p ∃!f

i1

k1

f2

It should be emphasized that this is not a commutative diagram, since the left square of the
diagram is not commutative. All other parts of the diagram are required to be commutative.
We will be using this bigger diagram to construct the homomorphism f . By part (a), there is

a unique homomorphism f̃ that makes the diagram commutative. To construct f , it remains
to show that f̃ : G1 ∗ G2 → K factors through the quotient map p, i.e., that f̃(n) = 1 for
elements n belonging to the normal subgroup N ⊂ G1 ∗G2. Since N is the normal subgroup
generated by the elements [j1(h)j2(h)−1] ∈ G1 ∗G2 it suffices to show

f̃([j1(h)j2(h)−1] = 1 or, equivalently f̃([j1(h)]) = f̃([j2(h)]).

Now,

f̃([j1(h)]) = f̃(i1(j1(h))) = f1(j1(h)) = f2(j2(h)) = f̃(i2(j2(h))) = f̃([j2(h)]),

where the first and fifth equality is by definition of the maps i1, i2, the second and fourth
equality is by construction of f̃ , and the third equality is the commutativity of the outer
square.

This shows that f̃ factors through G1∗HG2, giving us a homomorphism f : G1∗HG2 → K
that makes the required parts of the diagram commutative. It is clear that there is at most
one such homomorphism, since f is determined by f1 and f2.

4. (10 points) Let M , N be path-connected manifolds of dimension n ≥ 3. The goal of this
problem is to compute the fundamental group of their connected sum M#N in terms of the
fundamental groups of M and N . We provide an alternative description of the connected
sum M#N , which is easier for the problem at hand, works for smooth manifolds, and uses
pushout diagrams (it is not hard to show that this version of M#N is homeomorphic to the
version presented in class).

For the construction of the connected sum we pick points x0 ∈ M , y0 ∈ N and maps
φ : Bn

2 → M , ψ : Bn
2 → N which are are homeomorphisms onto their image with φ(0) = x0,
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ψ(0) = y0; here Bn
2 = {v ∈ Rn | ||v|| < 2} ⊂ Rn is the open ball of radius 2. Let α be the

homeomorphism

α : Sn−1 × (−1, 1)
≈−→ Bn

2 \ {0} given by (v, t) 7→ (1− t)v,

and let g : Sn−1 × (−1, 1)
≈−→ Sn−1 × (−1, 1) be the homeomorphism given by g(v, t) =

g(v,−t). Let M#N be the space determined by the pushout diagram

Sn−1 × (−1, 1) N \ {y0}

M \ {x0} M#N.

ψ◦α

φ◦α◦g (6.3)

In other words, M#N = (M \ {x0}) ∪Sn−1×(−1,1) (N \ {y0}) is obtained from the disjoint
union (M \ {x0}) q (N \ {y0}) by identifying the point φ ◦ α ◦ g(v, t) ∈ M \ {x0} with the
point ψ ◦α(v, t) ∈ N \ {y0} for (v, t) ∈ Sn−1× (−1, 1). Here is a picture of M#N , where the
red circle is the image of Sn−1×{0} ⊂ Sn−1× (−1, 1) under either map in the commutative
diagram above.

︸ ︷︷ ︸
M\{x0} ︸ ︷︷ ︸

N\{y0}︸ ︷︷ ︸
φ(Bn2 \{0}))=ψ(Bn2 \{0}))

(a) Determine the fundamental group of M \ {x0} in terms of the fundamental group of
M . Hint: use the Seifert van Kampen Theorem.

(b) Determine the fundamental group of M#N in terms of the fundamental groups of M
and N .

Proof. Part (a). M is the union of the open subsets M1 := M \{x0} and M2 := φ(Bn
2 ) ⊂M .

Next we determine the fundamental groups of M2 and M1 ∩M2.

• The map φ : Bn
2 → M2 ⊂ M is a homeomorphism, and hence the induced map

φ∗ : π1(Bn
2 , v) → π1(M2, φ(v)) is an isomorphism for any base point v ∈ Bn

2 . Since
Bn

2 is convex, π1(Bn
2 , v) is trivial, and hence π1(M2, φ(v)) is trivial.
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• The intersection M1 ∩M2 = φ(Bn
2 ) \ {x0} = φ(Bn

2 \ {0}) is homeomorphic to Bn
2 \ {0}

via φ. The subspace Sn−1 ⊂ Bn
2 is a deformation retract of Bn

2 \ {0}, with retraction
map r : Bn

2 → Sn−1 given by r(v) := v/||v||, and the homotopy between i ◦ r and the
identity on Bn

2 provided by the linear homotopy H : Bn
2 × I → Bn

2 given by H(v, t) :=
(1 − t)v/||v|| + tv. Hence the inclusion map iSn−1 ↪→ Bn

2 induces an isomorphism
i∗ : π1(Sn−1, v) → π1(Bn

2 \ {0} for any basepoint v ∈ Sn−1. The assumption n ≥ 3
implies that π1(Sn−1, v), and hence π1(M1 ∩M2, φ(v)) are trivial.

In addition, since Sn−1 is path-connected, the homotopy equivalent space M1 ∩M2 is also
path-connected, allowing us to apply the Seifert van Kampen Theorem to the decomposition
M = M1 ∪M2, and hence

π1(M) ∼= π1(M1) ∗π1(M1∩M2) π1(M2) ∼= π1(M \ {x0}) ∗{ 1}{1} ∼= π1(M).

Part (b). The maps in the pushout diagram (6.3) are open embeddings; in particular, each
of these maps is a homeomorphism onto its image. Identifying M \{x0} (resp. N \{y0} resp.
Sn−1× (−1,+1)) with its image in M#N , M \{x0} and N \{y0} are open subsets of M#N
with intersection Sn−1 × (−1,+1). Since Sn−1 × (−1,+1) is path-connected, according to
the Seifert van Kampen Theorem,

π1(M#N) ∼= π1(M \ {x0}) ∗π1(Sn−1×(−1,+1)) π1(N \ {y0})
∼= π1(M) ∗{1} π1(N) ∼= π1(M) ∗ π1(N)

5. (10 points) Let X be the subspace of R3 given by the union of the 2-sphere S2 and
the segment S of the x-axis given by S = {(t, 0, 0) ∈ R3 | −1 ≤ t ≤ 1}. Calculate the
fundamental group of X. Hint: use the Seifert van Kampen Theorem.

Proof. In order to apply the Seifert van Kampen Theorem we write X = U ∪ V , where U ,
V are the following open subsets of X:

• U = (S2 \ {(0, 0, 1)}) ∪ S, and

• V = S2 ∪ (S \ {(0, 0, 0)})

To identify the fundamental groups of U , V and U ∩ V we show that these spaces are
homotopy equivalent to simpler spaces whose fundamental group we are familiar with. We
begin with the observation that X is homeomorphic to the quotient space of the disjoint
union of S2 and the interval I = [−1, 1] where the point (−1, 0, 0) ∈ S2 is identified with
−1 ∈ I and (1, 0, 0) ∈ S2 is identified with 1 ∈ I (the obvious map from the disjoint union
S2q I to X factors through the quotient space and provides a continuous bijection between
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this quotient space and X; this is a homeomorphism since the quotient space is compact as
the image of the compact space S2 q I and X ⊂ R3 is Hausdorff). From now on we will
identify X with this quotient space.

To understand the fundamental group of U , we note that via the stereographic projec-
tion S2 \ {(0, 0, 1)} is homeomorphic to R2, with the two points (±1, 0, 0) corresponding to
(±1, 0) ∈ R2). It follows that U is homeomorphic to (R2qI)/ ∼ where the endpoints ±1 ∈ I
are identified with (±1, 0) ∈ R2. We claim that (R2 q I)/ ∼ has the subspace (J q I)/ ∼ as
deformation retract where J = {(s, 0) ∈ R2 | −1 ≤ 0 ≤ 1}. The retract map

r : (R2 q I)/ ∼ −→ (J q I)/ ∼

is given by the identity on I, while its restriction r|R2 : R2 → J to R2 is given by

r(x, y) =


(−1, 0) ∈ J for x ≤ −1

(x, 0) ∈ J for −1 ≤ x ≤ +1

(+1, 0) ∈ J for x ≥ +1

The homotopy Ht between the identity map on (R2qI)/ ∼ and i◦r is similarly given by the
identity map on I and the linear homotopy Ht(x, y) = (1− t)(x, y) + tr(x, y) for (x, y) ∈ R2.
It follows that the retraction map r induces an isomorphism of fundamental groups

r∗ : π1(U, x0)
∼=−→ π1((J ∪ I)/ ∼, x0) ∼= Z,

where we use the basepoint x0 = [(1, 0)]. Since (J ∪ I)/ ∼ is homeomorphic to the circle, its
fundamental group is isomorphic to Z.

The subspace V of X = (S2 q I)/ ∼ is given by (S2 q [−1, 0) q (0,+1])/ ∼ where the
endpoints ±1 of the intervals [−1, 0) resp. (0,+1] are identified with (−1, 0, 0) ∈ S2 resp.
(1, 0, 0) ∈ S2. Since these half-open intervals deformation retract to their endpoints via a
linear homotopy, the space V deformation retracts to S2 and hence π1(V, x0) is trivial.

The subspace U ∩ V ⊂ U is homeomorphic via the stereographic projection to (R2 q
[−1, 0) q (0,+1])/ ∼, where the endpoints ±1 of these half-open intervals are identified
with (±1, 0). Deformation retracting these intervals to their endpoints shows that R2 is a
deformation retract of U ∩V and hence the fundamental group of U ∩V is trivial. Moreover,
since R2 is path connected, this implies that U ∩ V is path connected.

If follows by the Seifert van Kampen Theorem that

π1(X, x0) ∼= π1(U, x0) ∗π1(U∩V,x0) π1(V, x0) ∼= {1} ∗{1} Z ∼= Z.
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7 Homework Assignment # 7

1. (10 points) We recall that if G×X → X is the action of a group G on a set X, then the
subgroup Gx := {g ∈ G | gx = x} ⊆ G is the isotropy subgroup of the point x ∈ X. The
action is called free if the isotropy subgroup Gx is the trivial group for all x ∈ X. If X is a
topological space, the action is called continuous if for every g ∈ G the map X → X given
by x 7→ gx is continuous.

(a) Show that if G is a finite group which acts freely and continuously on a Hausdorff
space X, then the projection map p : X → G\X to the orbit space G\X is a covering
map. Hint: Use the assumptions that the action is free and X is Hausdorff to show
that for every x ∈ X there is an open neighborhood U such that the subsets gU ⊂ X
for g ∈ G are mutually disjoint.

(b) Show that if X is a manifold of dimension n, then also the orbit space G\X is a
manifold of dimension n (it is true, but in order to make this problem a little shorter,
don’t worry about proving that G\X is Hausdorff and second countable).

(c) Show that the map Z/2 × Sn → Sn given by (m, v) 7→ (−1)mv is a continuous free
action. We note that the orbit space Z/2\Sn is the real projective space RPn, and
hence part (b) of this problem provides a different way to show that RPn is a manifold
of dimension n.

(d) Show that the map

Z/k × S2n−1 −→ S2n−1 given by (m, v) 7→ e2πim/kv

is a continuous free action of the cyclic group Z/k on the sphere S2n−1 ⊂ Cn. By part
(b) the orbit space Z/k\S2n−1 is then a manifold of dimension 2n− 1, which is known
as a lens space. Note that for k = 2, this is the real projective space RP2n−1.

Proof. Part (a). For any point x ∈ X the points gx for g ∈ G are all distinct, since the action
is free (if gx = hx for g 6= h, then h−1gx = x and hence h−1g ∈ Gx, contradicting the freeness
assumption). This implies that there are open neighborhoods Ugx of gx ∈ X which are
mutually disjoint, since X is Hausdorff. We note that g−1Ugx is another open neighborhood
of x (it is open, since it is the image of the open set Ugx under the homeomorphism given
by the action of the group element g−1). Hence the finite intersection

U :=
⋂
g∈G

g−1Ugx
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is again an open neighborhood of x.
We claim that the subsets gU for g ∈ G are mutually disjoint. To prove this, assume

that y ∈ gU ∩ hU for g 6= h. Then in particular y belongs to g(g−1Ugx) = Ugx and to
h(h−1Uhx) = Uhx contradicting Ugx ∩ Uhx = ∅.

Given the point [x] ∈ G\X the subset V = p(U) ⊂ G\X is an open neighborhood of [x];
it is open since p−1(V ) =

⋃
g∈G gU is open. This open set is evenly covered, since for any

g ∈ G the restriction
p|gU : gU −→ V

is a homeomorphism, since it is a continuous bijection and an open map. To argue that p
is open, suppose that U ⊂ X is an open subset. Then p(U) is an open subset of G\X since
p−1(p(U)) =

⋃
g∈G gU is an open subset of X.

Part (b). To show that G\X is locally homeomorphic to Rn, let y ∈ G\X and let V ⊂ G\X
be an evenly covered open neighborhood of y. Then p−1(V ) is the disjoint of open subsets
Vα ⊂ X such that p|Vα : Vα → V is a homeomorphism. Let x be the unique point in Vα
with p(x) = y. Since X is a manifold of dimension n a possibly smaller neighborhood of
x is homeomorphic to an open subset of Rn. Via the restriction of p|Vα to this smaller
neighborhood we conclude that a neighborhood of y is homeomorphic to an open subset of
Rn.

Part (c). To show that the Z/2-action on Sn is free we note that for any point v ∈ Sn the
action of the non-trivial element 1 ∈ Z/2 maps v to its antipodal point −v. Since −v 6= v,
the isotropy subgroup is trivial group, i.e., the action is free.

Part (d). To show that the Z/k action on S2n−1 is free, assume [m] ∈ Z/k belongs to the
isotropy subgroup of some v = (v1, . . . , vn) ∈ S2n−1 ⊂ Cn, that is, e2πim/kv = v. Since v
is a unit vector, it has a non-zero component vi ∈ C. Then e2πim/kvi = vi which implies
e2πim/k = 1, which in turn implies that m ∈ Z must be a multiple of k. In particular, [m] is
the identity element in Z/k, proving that the action is free.

2. (10 points) Let p : (X̃, x̃0)→ (X, x0) be a covering map. Let Y be a path-connected and
let f : (Y, y0) → (X, x0 be a map such that the image f∗π1(Y, y0) is contained in the image

p∗π1(X̃, x̃0). We proved in class that then there exists a unique (not necessarily continuous)

map f̃ making the diagram

(X̃, x̃0)

(Y, y0) (X, x0)

p

f

f̃

commutative. We constructed f̃(y) by picking a path γ : I → Y from y0 to y, composed

with the map f : Y → X to obtain the path f ◦γ : I → X, and defined f̃(y) := f̃γ(1), where

f̃ ◦ γ : I → X̃ is the unique lift of f ◦ γ with starting point x̃0.
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Show that f̃ is continuous under the additional assumption that Y is locally path-connected.
Hint: It suffices to show that f̃ is continuous in some open neighborhood V of every point
y ∈ Y . Show that the assumption that Y is locally path-connected can be used to choose
for every point y ∈ Y a path-connected neighborhood V such that f(V ) is contained in a

evenly covered open subset U ⊂ X. To analyze f̃(y′) for y′ ∈ V , use the concatenation γ ∗ δ
of a path γ from y0 to y and δ : I → V from y to y′.

Proof. To prove continuity of f̃ at a point y ∈ Y , it suffices to prove continuity of f restricted
to some open neighborhood V ⊂ Y of y. Let U be an evenly covered open neighborhood of
f(y) ∈ X. Then f−1(U) is an open neighborhood of y, and thanks to the assumption that
Y is locally path-connected, there is path-connected open neighborhood V of y contained in
f−1(U).

To construct f̃(y′) for y′ ∈ V , we can use any path γ′ : I → Y from y0 to y′, for example
γ′ = γ ∗ δ, the concatenation of the path γ : I → Y from y0 to y and some path δ : I → V

from y to y′. Let f̃ ◦ γ : I → X̃ be the lift of f ◦ γ from x̃0 to f̃(y) (by definition of f̃(y))

and let f̃ ◦ δ be the unique lift of f ◦ δ with starting point f̃(y). These paths are shown in
the picture below.

y0

y

y′

γ δ

Y

x0

f(y)
f(y′)

f ◦ γ fδ

X

x̃0

f̃(y)
f̃(y′)

f̃ ◦ γ f̃ ◦ δ

X̃

f

p
f̃

Then the path f̃ ◦ γ ∗ f̃ ◦ δ is a lift of the path f ◦ γ ∗ f ◦ δ = f ◦ (γ ∗ δ), and hence by

definition f̃(y′) = f̃ ◦ γ ∗ f̃ ◦ δ(1) = f̃ ◦ δ(1). The key observation is that since δ is a path in
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V , f ◦ δ is a path in the evenly covered subset U , and hence its lift f̃ ◦ δ with starting point

f(y) ∈ Ũ is simply given by f̃ ◦ δ = p−1

|Ũ
f ◦ δ, the image of f ◦ δ under the inverse of the

homeomorphism p|Ũ : Ũ → U . In particular, f̃(y′) = p−1

|Ũ
f(y′). This holds for every point

y′ ∈ V , and hence f̃|V = p−1 ◦ f|V . In particular, f̃|V is continuous.

3. (10 points) Let p : (X̃, x̃0) → (X, x0) be a universal covering of a path-connected and
locally path-connected space X.

(a) It follows from the General Lifting Criterion that for g ∈ G := π1(X, x0) there is a

unique map φg : (X̃, x̃0)→ (X̃, gx̃0) making the diagram

(X̃, x̃0) (X̃, gx̃0)

(X, x0)

φg

p p

commutative. Here gx̃0 := γ̃(1) is the endpoint of a lift γ̃ : I → X̃ with γ̃(0) = x̃0 of
any based loop γ in (X, x0) which represents g ∈ π1(X, x0) (we have shown that γ̃(1)
depends only on [γ] ∈ π1(X, x0), not on the particular loop γ). Show that the map

G× X̃ −→ X̃ (g, x̃) 7→ φg(x̃)

is an action map.

Hint: it might be helpful to have the following explicit description of φ[α](x̃) for an

element [α] ∈ π1(X, x0) and x̃ ∈ X̃. Let α̃ : I → X̃ be a path from x̃0 to x̃, and let
α := p ◦ α̃ be the corresponding path in X. Then

φ[γ](x̃) = (̃γ ∗ α)(1) where (̃γ ∗ α) is the unique lift of γ ∗ α with (̃γ ∗ α)(0) = x̃0

In particular, to evaluate Φ[γ](x̃0) we can choose α = cx̃0 and hence Φ[γ](x̃0) = γ̃(1),

where γ̃ : I → X̃ is a lift of γ with γ̃(0) = x̃0.

(b) Show that the action is free, i.e., for every x̃ ∈ X̃, the only element of g ∈ G with
gx̃ = x̃ is the identity element. Hint: According to Proposition on p. 1 of the notes
from the lecture on Oct. 10 (specializing the statement to a universal covering space),
the map G→ p−1(x0) given by [γ] 7→ γ̃(1) is a bijection.

(c) Show that the action is transitive on the fiber p−1(x) for all x ∈ X, i.e., for x̃, x̃′ ∈
p−1(x) there is some g ∈ G such that gx̃ = x̃′.
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Proof. Part (a). To show that it is an action map, let g = [γ] ∈ G and h = [δ] ∈ G.

Let γ̃ : I → X̃ resp. be the lifts of γ resp. δ with starting point x̃0. Then by construction,
γ̃(1) = gx̃0 = φg(x̃0) and δ̃(1) = hx̃0 = φh(x̃0). To determine φgh = φ[γ∗δ] we need to

determine the unique lift γ̃ ∗ δ of γ ∗ δ with starting point x̃0. Noting that the starting point
of the path φg δ̃ is φg(δ̃(0)) = φg(x̃0) = γ̃(1), and hence we can form the path γ̃ ∗ (φgδ) which

is the desired lift γ̃ ∗ δ with starting point x̃0. Then

φgh(x̃0) = (gh)x̃0 = (γ̃ ∗ δ)(1) = (γ̃ ∗ (φgδ))(1) = (φgδ)(1) = φg(δ(1)) = φg(φh(x̃0)).

Hence φgh and φgφh are two deck transformations that map x̃0 to the same point. By the
uniqueness part of the General Lifting Criterion, then φgh = φg ◦ φh. This proves that this
is an action, since g(hx̃) = φg(φhx̃) = φgh(x̃) = (gh)x̃.

Part (b). Let g ∈ G and let φg : X̃ → X̃ be the associated deck transformation. If x̃ ∈ X̃
is some point fixed by the G-action, i.e., x̃ = gx̃ = φg(x̃), then the deck transformation φg is
the identity map, again by the uniqueness part of the General Lifting Criterion.

Part (c). We first show that G acts transitively on the fiber p−1(x0. If x̃ ∈ p−1(x0) let

γ̃ : I → X̃ be a path from x̃0 to x̃, let γ = p ◦ γ̃, and g := [γ] ∈ π1(X, x0). Then by
construction of the action gx̃0 = x̃. Given some other x̃′ ∈ p−1(x0), then there is some
g′ ∈ G with g′x̃0 = x̃′. It follows that (g′g−1)x̃ = g′(g−1x̃) = g′x̃0 = x̃′, which proves that G
acts transitively on the fiber p−1(x0) over the base point.

To show that G acts transitively on the fiber p−1(x′) over some other point x′ ∈ X, let
δ : I → X be a path from x0 to x′. This path determines a bijection

Ψδ : p−1(x0)
∼=−→ p−1(x′)

by sending x̃ ∈ p−1(x0) to δx̃0(1) to the endpoint of the unique lift δx̃0 : I → X̃ of the
path δ with starting point δx̃(0) = x̃. The inverse is given similarly by considering lifts

of δ̄. This map is compatible with deck transformations φ : X̃ → X̃ in the sense that
φ(Ψδ(x̃)) = Ψδ(φ(x̃)). This follows from the fact that if δ̃ is a path from x̃ ∈ p−1(x0)
to x̃′ ∈ p−1(x′), then φ ◦ δ is a lift of δ from φ(x̃) to φ(x̃′). In particular, the map Ψδ

is equivariant, i.e., Ψδ(gx̃) = gΨδ(x̃). Hence transitivity of the action on p−1(x0) implies
transitivity of the action on p−1(x′).

4. (10 points) Let (X, x0) be a pointed space which is path-connected, locally path-connected,
and semilocally simply connected. The goal of this assignment is the classification of iso-
morphism classes of objects of the category Cov∗(X, x0) of based path connected covering
spaces p : (E, e0) → (X, x0). More precisely, the goal is to show that there is a bijection Ψ
between

{based coverings p : (E, e0)→ (X, x0) with E path-connected}/isomorphism
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and
{subgroups of π1(X, x0)}.

It is given by sending a covering p to the subgroup p∗π1(E, e0) ⊂ π1(X, x0).

(a) Show that Ψ is injective. Hint: use the general lifting criterion to show that any two
path-connected based coverings p : (E, e0) → (X, x0) and p′ : (E ′, e′0) → (X, x0) are
isomorphic.

(b) Let p : X̃ → X be the universal covering of X, on which the fundamental group
G = π1(X, x0) acts freely by covering maps; this action is transitive on all fibers p−1(x)

for x ∈ X. Let H be a subgroup of G and let H\X̃ be the orbit space of action of

the subgroup H and let pH : (H\X̃, [x̃0])→ (X, x0), [x̃] 7→ p(x̃) be the projection map.
Here [x̃] = Hx̃ denotes the orbit through the point x̃. Show that pH is a covering and

that pH∗ π1(H\X̃, [x̃0]) ⊂ G is the subgroup H.

Proof. Part (a). Let p : (E, e0)→ (X, x0) and p′ : (E ′, e′0)→ (X, x0) be two coverings of X
with path-connected total spaces E, E ′ such that p∗π1(E, e0) = p′∗π1(E ′, e′0). The assumption
that X is locally path-connected implies that E and E ′ are locally path-connected. Hence
we can use the General Lifting Criterion to find unique pointed maps making the following
diagram commutative

(E, e0) (E ′, e′0)

(X, x0)

f

p

f ′

p′

Then the composition f ′ ◦ f : E → E is a covering transformation of E which fixes the
point e0. By the uniqueness part of the General Lifting Criterion, this is the identity of E.
Similarly, f ◦ f ′ is the identity of E ′, and hence the based coverings p and p′ are isomorphic.

Part (b). Let U ⊂ X be evenly covered subset for the universal covering p : X̃ → X.

Let Ũ ⊂ p−1(U) be an open subset such that p|Ũ : Ũ → U is a homeomorphism.

We claim that the subsets gŨ for g ∈ G are mutually disjoint. So assume gx̃ = g′x̃′ for
g, g′ ∈ G and x̃, x̃′ ∈ Ũ . Then p(x̃) = p(x̃′) since the G-action preserves the fibers. Hence
x̃ = x̃′, since pŨ is a homeomorphism. Finally, gx̃ = g′x̃ implies g = g′, since the G-action is

free. Summarizing, p−1(U) is the union of the mutually disjoint subsets gŨ for g ∈ G and

the restriction p|gŨ : gŨ → U is a homeomorphism.

We note that in the orbit space HX̃ a point ∈̃X̃ is identified with hx̃ for h ∈ H. It
follows that (pH)−1(U) is the disjoint union of HgŨ for Hg ∈ H\G. Hence pH restricted

to HgŨ maps HgŨ homeomorphically to U , showing that U is evenly covered and that
pH : H\X̃ → X is a covering.



8 HOMEWORK ASSIGNMENT # 8 44

To show that pH∗ π1(H\X̃, [x̃0]) is the subgroup H ⊂ π1(X, x0), we recall that a based
loop γ in (X, x0) represents an element in the image of the fundamental group of the covering

pH : H\X̃ → X if and only if its lift γ̃H : I → H\X̃ with starting point [x0] is a loop. Let

γ̃ : I → X̃ be the lift of γ with starting point x̃0, and let q : X̃ → H\X̃ be the projection
map. Then q ◦ γ̃ an explicit description of the lift γ̃H . In particular, γ̃H is a loop in pH if
and only if γ̃(1) ∈ H if and only if [γ] ∈ H.

8 Homework Assignment # 8

1. (10 points) A standard atlas for the sphere Sn is given by the hemisphere atlas, given by
the open subsets U ε

i := {(x0, . . . , xn) ∈ Rn+1 | εxi > 0} ⊂ Sn for i = 0, . . . , n and ε ∈ {±1},
and the homeomorphism

φεi : U
ε
i −→ Bn

1 given by φεi(x0, . . . , xn) = (x0, . . . , x̂i, . . . , xn)

(a) Show that {(U ε
i , φ

ε
i)} is a smooth atlas for Sn. You can use your calculus knowledge

about smooth functions on open subsets of R. Beware that the function
√
x is defined,

but not smooth at x = 0.

(b) Show that with respect to the smooth structure on Sn given by the smooth atlas from
part (a), the inclusion map i : Sn ↪→ Rn+1 is smooth.

Proof. Part (a). A short calculation shows that the inverse (φεi)
−1 : Bn → U ε

i is given by

(φεi)
−1(y) = (y1, . . . , yi−1, ε

√
1− ||y||2, yi+1, . . . , yn) for y = (y1, . . . , yn) ∈ Bn

1

To prove that the atlas is smooth, we need to verify that the transition map φδj ◦ (φεi)
−1 is

a smooth map on φεi(U
δ
j ∩ U ε

i ) ⊂ Bn
1 . This amounts to checking that the components of

this map are smooth. Now, composing with φδj just forgets the jth component, and hence it
suffices to show that the components of

(φεi)
−1 : φεi(U

δ
j ∩ U ε

i ) −→ Sn ⊂ Rn+1

are smooth. This is obvious for all components except the component ε
√

1− ||y||2, but
since y is an element of the open ball Bn

1 , 1 − ||y||2 6= 0, and hence the map Bn
1 → R,

y 7→ ε
√

1− ||y||2 is smooth.

Part (b). To check that i : Sn ↪→ Rn+1 is smooth, we need to check that the composition

Bn
1 U ε

i Rn+1
(φεi)

−1
i

is smooth. This amounts to showing that all components of this map are smooth, but this
is what we already proved in part (a).
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2. (10 points) We recall that the stereographic projection provides a homeomorphism be-
tween the open subsets U± := Sn \ {(∓1, 0, . . . , 0)} of Sn and Rn. More explicitly, the
stereographic projection is the map

ψ± : U± −→ Rn is defined by ψ±(x0, . . . , xn) :=
1

1± x0

(x1, . . . , xn),

and its inverse ψ−1
± : Rn → U± is given by the formula

ψ−1
± (y1, . . . , yn) =

1

||y||2 + 1
(±(1− ||y||2), 2y1, . . . , 2yn).

In particular, the two charts (U+, ψ+), (U−, ψ+) form an atlas for Sn.

(a) Show that {(U+, ψ+), (U−, ψ−)} is a smooth atlas for Sn.

(b) Show that the atlas above determines the same smooth structure on Sn as the smooth
atlas of the previous problem.

Proof. Part (a). We need to show that the transition function between the two charts,
given by the composition

ψ+(U+ ∩ U−) U+ ∩ U− ψ−(U+ ∩ U−)
ψ−1
+ ψ−

is a diffeomorphism. The intersection U+ ∩ U− consists of all points (x0, . . . , xn) ∈ Sn with
x0 6= ±1. The formula for ψ± shows that ψ+(U+ ∩U−) = Rn \ {0} as well as ψ−(U+ ∩U−) =
Rn \ {0}. Explicitly, for y = (y1, . . . , yn) ∈ Rn \ {0} we have

ψ−(ψ−1
+ (y)) = ψ−(

1

||y||2 + 1

(
(||y||2 − 1), 2y1, . . . , 2yn

)
)

=
1

1 + (||y||2−1)
||y||2+1

(
2y1

||y||2 + 1
, . . . ,

2yn
||y||2 + 1

)
=

1

||y||2 + 1 + (||y||2 − 1)
(2y1, . . . , 2yn)

=
1

||y||2
(y1, . . . , yn)

This map is smooth, since all its components are smooth functions (the function 1/||y||2 is
smooth for y ∈ Rn \ {0}. We note that the inverse of this map is the maps itself, and hence
the map is a diffeomorphism.
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Part (b). The map φεi : U
ε
i → Bn

1 (the open ball of radius 1 in Rn) is given by forgetting the
i-th coordinate. Hence the composition φεi ◦ψ−1

δ for δ ∈ {±1} is a smooth function, since all
components of ψ−1

δ are smooth.
A short calculation shows that the other composition ψδ ◦ (φεi)

−1 is given by

ψδ ◦ (φεi)
−1(y) =


1

1−δε
√

1−||y||2
(y1, . . . , yn) i = 0

1
1−δy1 (y2, . . . , yi−1, ε

√
1− ||y||2, yi, . . . , yn) i 6= 0

We note that there are two potential problems with the smoothness of these maps:

• The square root function is not differentiable at 0; so there is a potential issue when
1 − ||y||2, the argument of the square root, becomes zero. This doesn’t happen since
y ∈ Bn

1 , the open n-ball of radius 1.

• The function is undefined if the denominator becomes 0. We could discuss for which y
this happens in either case (i = 0 or i 6= 0) and show that those y are not in the domain
of the transition map. It is easier to say that by construction the transition map is
well-defined on its domain, and hence we don’t need to worry about those points.

3. (10 points) Let RPn be the real projective space of dimension n, which can be defined as
the quotient of Rn+1 \ {0} by identifying x with λx for a non-zero λ ∈ R.

(a) Show that the atlas {(Ui, φi)}i=0,...,n with Ui := {[x0, . . . , xn] | xi 6= 0} and the homeo-
morphism φi : Ui → Rn given by

φi([x0, . . . , xn]) =
1

xi
(x0, . . . , x̂i, . . . , xn)

is a smooth atlas.

(b) Show that the function h : RPn → R defined by

h([x]) =
1

||x||2
n∑
`=0

`x2
` for x = (x0, . . . , xn) ∈ Rn+1 \ {0}

is smooth.

Proof. Part (a). We need to show that the transition maps

Rn ⊃ φi(Ui ∩ Uj)
φ−1
i // Ui ∩ Uj

φj // φj(Ui ∩ Uj) ⊂ Rn
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are smooth for all i, j = 0, . . . , n. For w = (w1, . . . , wn) ∈ φi(Ui ∩ Uj), i 6= j we compute

φj(φ
−1
i (w) = φj([w1, . . . , wi, 1, wi+1, . . . , wn]

=

{
1

wj+1
(w1, . . . , ŵj+1, . . . , wi, 1, . . . , wn) 0 ≤ j < i

1
wj

(w1, . . . , wi, 1, wi+1, . . . , ŵj, . . . , wn) i < j ≤ n

As in the previous homework problem this shows that the transition map is smooth since its
components are all smooth functions (since the transition function is well-defined those ws
for which the denominator is 0 can’t be in the domain of the transition function).

Part (b). It is clear that h is well-defined since for λ ∈ R \ {0}

h([λx]) =
1

||λx||2
n∑
`=0

`(λx`)
2 =

1

||x||2
n∑
`=0

`x2
` = h([x]).

To show that h is smooth it suffices to show that the composition

f := h ◦ φ−1
k : Bn

1 → R

is smooth for 0 ≤ k ≤ n. We compute:

f(w1, . . . , wn) = h([w1, . . . , wk, 1, wk+1, . . . , wn])

=
1

||w||2 + 1

(
k−1∑
`=0

`w2
`+1 + k +

n∑
`=k+1

`w2
`

)
(8.1)

The numerator and denominator of this fraction are both quadratic functions and hence
smooth. The denominator function ||w||2 + 1 is non-where vanishing and hence f is a
smooth function.

4. (10 points) Show that the Cartesian product of M ×N of smooth manifolds of dimension
m resp. n is a smooth manifold of dimension m+ n.

Proof. Let (Ui, φi)i∈I be a smooth atlas for M , and (Vj, ψj)j∈J for N . We claim that the
collection of charts of M ×N given by

M ×N ⊃
open

Ui × Vj
φi×ψj // φi(Ui)× ψj(Vj) ⊂

open
Rm × Rn = Rm+n

for (i, j) ∈ I × J is a smooth atlas for M ×N . In particular, M ×N is a smooth manifold
of dimension m+ n.
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It is clear that φi × ψj is a homeomorphism with inverse given by φ−1
i × ψ−1

j . Also it is
clear that the open subsets Ui × Vj cover M × N . Hence this collection is an atlas, and it
only remains to show that this is a smooth atlas.

The transition map between the charts φi×ψj and φi′ ×ψj′ is given by (after restricting
the domains in the obvious way) by

(φi′ × ψj′) ◦ (φi × ψj)−1 = (φi′ × ψj′) ◦ (φ−1
i × ψ−1

j ) = (φi′ ◦ φ−1
i )× (ψj′ ◦ ψ−1

j )

The map φi′ ◦ φ−1
i is a transition map for a smooth atlas for M and hence a smooth map

between open subsets of Rm. Similarly the map ψj′ ◦ ψ−1
j is a smooth map between open

subsets of Rn. It follows that the Cartesian products of these maps is a smooth map (between
open subsets of Rm×Rn = Rm+n) and hence the atlas constructed above is in fact smooth.

5. (10 points) We recall that for an open subset U ⊂ Rm and p ∈ U the map

DU : T geo
p U −→ Rm given by [γ] 7→ γ′(0)

is a bijection. Show that for a smooth map Rm ⊃
open

U
F−→ V ⊂

open
Rn and p ∈ U , the diagram

T geo
x U T geo

F (p)V

Rm Rn

DU ∼=

DF geo
x

DV ∼=
dFx

is commutative. We note that this expresses the compatibility of the Jacobian dFx (the
traditional calculus definition of the derivative of the map F ) and DF geo

x (the new definition
of the derivative, which generalizes to manifolds).

Proof. Let [γ] ∈ T geo
p U . Then

DV (F∗([γ])) = DV ([F ◦ γ]) = (F ◦ γ)′(0) = dFγ(0)(γ
′(0)) = dFx(D

U([γ])).

Here the third equality is consequence of the chain rule (the ordinary calculus version).

9 Homework Assignment # 9

1. (10 points) Let M , N be smooth manifolds, and let π1 : M×N →M and π2 : M×N → N
be the projection maps. Show that for any (x, y) ∈M ×N the map

α : T(x,y)(M ×N) −→ TxM ⊕ TyN
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defined by
α(v) = (Dπ1(v), Dπ2(v))

is an isomorphism. Here we suppress the subscripts of the differentials that indicate the point
of the domain, i.e., we write Dπ1 instead of (Dπ1)x,y. Hint: To prove this, it is unnecessary
to “unpack” the definition of the tangent space of manifolds by using either the geometric
or algebraic definition. Rather, only the functorial properties of the tangent space, i.e., the
chain rule, is needed, applied to suitable projection/inclusion maps. Remark: Using this
isomorphism, we will routinely identify TxM and TyN with subspaces of T(x,y)(M ×N).

Proof. For ` = 1, 2 let i` : M` → M1 ×M2 be the inclusion map given by i1(x1) = (x1, p2),
i2(x2) = (p1, x2). Then for `, j = 1, 2 the composition

M`
i`−→M1 ×M2

πj−→Mj

is the identity map for ` = j, and the constant map x` 7→ pj otherwise. Differentiating it, it
follows that the composition

Tp`M`
Di`−→ T(p1,p2)(M1 ×M2)

Dπj−→ TpjMj

is the identity map for ` = j and the trivial map otherwise. It follows that the composition

Tp`M`
Di`−→ T(p1,p2)(M1 ×M2)

α−→ Tp1M1 ⊕ Tp2M2

sends a vector X` ∈ Tp`M` to (X1, 0) for ` = 1 and (0, X2) for ` = 2. Since every pair (X1, X2)
can be written as a sum of pairs of this type, the map α is surjective. This implies that α is
an isomorphism, since the dimension of domain and range is both dimM1 + dimM2.

2. (10 points) Let M be a smooth n manifold. For a point p ∈M let

DM : T geo
p M −→ T alg

p M = Der(C∞p (M),R)

be the map that sends [γ] ∈ T geo
p M to the derivation Dγ. More explicitly, if f is (the germ

of) a function f : M → R then Dγf ∈ R is the directional derivative of f in the direction of
γ defined by

Dγf := (f ◦ γ)′(0) = lim
t→0

f(γ(t))− f(p)

t
.

(a) Show that the geometric and the algebraic definition of the differential of a smooth
map F : M → N are compatible in the sense that for p ∈ M the following diagram is
commutative:

T geo
p M T geo

F (p)N

T alg
p M T alg

F (p)N

DF geo
p

DM DN

DF alg
p
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(b) Show that the map DM is a bijection for any manifold M . Hint: use a chart for M
and part (a) to reduce to the case of open subsets U ⊂ Rn; we have proved in class
that the map DU : T geo

p U → T alg
p U is a bijection in that case.

Proof. Part (a). To calculate (DF alg
p ◦DM)([γ]) ∈ T alg

F (p)N , we evaluate it on g ∈ C∞F (p)(N).

Since DF alg
p is defined by precomposing with F ∗, we obtain

((DF alg
p ◦DM)([γ]))(g) =(DF alg

p (DM([γ])))(g) = (DM([γ]))(F ∗g)

=(F ∗g ◦ γ)′(0) = (g ◦ F ◦ γ)′(0)

((DN ◦DF geo
p )([γ]))(g) = (DN([F ◦ γ])(g) = (g ◦ (F ◦ γ))′(0)

This shows that the diagram is commutative.

Part (b). Let (U, φ) be a smooth chart for M with p ∈ U , i.e., the chart (U, φ) is one of
the charts of the maximal smooth atlas of the smooth manifold M . Unwinding this we have
smooth maps

M U V ⊂ Rn.i
∼=
φ

The map φ is a diffeomorphism and hence its differential φ∗ is a bijection. The inclusion
map i of an open subset of a manifold induces a bijection on tangent spaces. So we have the
following sequence of bijections of tangent spaces (of the geometric or the algebraic flavor):

TpM TpU Tφ(p)V∼=
Dip

∼=
Dφp

By part (a) the isomorphisms between the geometric and algebraic flavor of tangent spaces
is compatible with induced maps and hence we have a commutative diagram

T geo
p M T geo

p U T geo
φ(p)V

T alg
p M T alg

p U T alg
φ(p)V

DM

∼=
Digeop

DU

∼=
Dφgeop

DV ∼=

∼=
Dialgp

∼=
Dφalgp

By a lemma from class the right hand side vertical map DV is a bijection. The commutativity
of the diagram and the fact that all horizontal maps are bijections then implies that the left
vertical map DM is a bijection.

3. (10 points) Let M , N be smooth manifolds, let F : M → N be a smooth map, and p ∈M .
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(a) Show that the map

F ∗p : C∞F (p)(N) −→ C∞p (M) given by [f ] 7→ [f ◦ F ]

is a well-defined algebra homomorphism.

(b) Show that if D : C∞p (M)→ R is a derivation, then the composition

C∞F (p)(N)
F ∗p−→ C∞p (M)

D−→ R

is a derivation. In particular, we can define the (algebraic) differential

DalgFp : T alg
p M = Der(C∞p (M),R) −→ T alg

F (p)N = Der(C∞F (p)(M),R) (9.1)

by DF alg
p (D) := D ◦ F ∗p .

(c) Show that the differential DF alg
p is a linear map.

(d) If G : N → Q is a smooth map, show that

D(G ◦ F )alg
p = DGalg

F (p) ◦DF
alg
p .

We note that this statement is the chain rule (for the algebraic construction of the
tangent space).

Proof. Part (a). Let f, f ′ ∈ C∞(N) represent the same element in the vector space C∞q (N),
q = F (p). That means that there is an open neighborhood V ⊂ N of q such that f|V = f ′|V .

This implies that (F ◦f)(x) = (F ◦f ′)(x) for x ∈ F−1(V ), which is an open neighborhood of p
by continuity of F . In particular, [F ◦f ] = [F ◦f ′] ∈ C∞q (M), which shows that [f ] 7→ [F ◦f ]
is a well-defined map F ∗p : C∞F (p)(N)→ C∞p (M).

To show that F ∗p is an algebra homomorphism we have to show that it is compatible
with scalar multiplication, addition and multiplication, which is verified in the following
computations for f, g ∈ C∞(N), c ∈ R.

F ∗p (c[f ]) = F ∗p ([cf ]) = [cf ◦ F ] = c[f ◦ F ] = cF ∗p ([f ])

F ∗p ([f ] + [g]) = F ∗p ([f + g]) = [(f + g) ◦ F ] = [(f ◦ F ) + (g ◦ F )]

= [f ◦ F ] + [g ◦ F ] = F ∗p ([f ]) + F ∗p ([g])

F ∗p ([f ] · [g]) = F ∗p ([f · g]) = [(f · g) ◦ F ] = [(f ◦ F ) · (g ◦ F )]

= [f ◦ F ] · [g ◦ F ] = F ∗p ([f ]) · F ∗p ([g])
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Part (b). To show that D ◦ F ∗ is a derivation, we need to show that it is a linear map and
that it satisfies the product property. The linearity is clear, since D and F ∗ are linear maps.
To check the product property, let f, g ∈ C∞F (p)(N). Then

D ◦ F ∗p (fg) =D((F ∗p f)(F ∗p g)) = D(F ∗p f)(F ∗p g)(p) + (F ∗p f)(p)D(F ∗p g)

=(D ◦ F ∗p )(f)g(F (p)) + f(F (p)(D ◦ F ∗p )(g),

which shows that D ◦ F ∗p is a derivation C∞F (p)(N)→ R.

Part (c). For D,D′ ∈ T alg
p M = Der(C∞p (M),R) we have

DF alg
p (D +D′) = (D +D′) ◦ F ∗p = D ◦ F ∗p +D′ ◦ F ∗p = DF alg

p (D) +DF alg
p (D′).

A similar calculation shows DF alg
p (cD) = cDF alg

p (D) for c ∈ R, and hence DF alg
p is a linear

map.

Part (d). Since (G ◦ F )alg
∗ is defined in terms of the induced map

(G ◦ F )∗p : C∞(G◦F )(p)(Q) −→ C∞p (M),

we first express (G ◦ F )∗p in terms of G∗F (p) and F ∗p . We note that for f ∈ C∞(Q)

(G ◦ F )∗(f) = f ◦ (G ◦ f) = (f ◦G) ◦ F = G∗f ◦ F = F ∗(G∗(f)) = (F ∗ ◦G∗)(f).

If Q ⊃ V
f−→ R represents an element of C∞(G◦F )(p)(Q), then [(G ◦ F )∗f ]p = [F ∗(G∗f)]p ∈

C∞p (M) and hence

(G ◦ F )∗p[f ](G◦F )(p) = [(G ◦ F )∗f ]p = [F ∗(G∗f)]p = F ∗p ([G∗f ]F (p)) = F ∗p (G∗F (p)[f ]p.

Let D ∈ T alg
p M = Der(C∞p (M),R). Then

(G ◦ F )alg
∗ (D) =D ◦ (G ◦ F )∗ = (D ◦ F ∗) ◦G∗

=(F alg
∗ (D)) ◦G∗ = Galg

∗ (F alg
∗ (D)).

4. (10 points) Let Mn×k(R) be the vector space of n × k-matrices. For A ∈ Mn×k(R) let
At ∈ Mk×n(R) be the transpose of A, and let Sym(Rk) = {B ∈ Mk×k(R) | Bt = B} be the
vector space of symmetric k × k-matrices.

(a) Show that the map Φ: Mn×k(R) → Sym(Rk), A 7→ AtA is smooth, and that its
differential

DΦA : TAMn×k(R) = Mn×k(R) −→ TΦ(A)Sym(Rk) = Sym(Rk)

is given by DΦA(C) = CtA + AtC. Hint: Use the geometric description of tangent
spaces. More explicitly, the tangent space T geo

A Mn×k(R) can be identified with Mn×k(R)
by sending a matrix C ∈Mn×k(R) to the path γ(t) := A+ tC.
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(b) Show that the identity matrix is a regular value of the map Φ. This implies in partic-
ular that the level set Φ−1(identity matrix) is a smooth manifold. We recall that we
showed in class that Φ−1(identity matrix) is the Stiefel manifold Vk(Rn) of orthonormal
k-frames in Rn. Hint: to show that DΦA : TAMn×n(R) → TeSym(Rk) is surjective for
e = identity matrix, compute DΦA(C) for C = AB for B ∈ Sym(Rk).

(c) What is the dimension of Vk(Rn)?

We remark that identifying Mn×k(R) in the usual way with the vector space Hom(Rk,Rn)
of linear maps f : Rk → Rn, a matrix belongs to Vk(Rn) if and only if the corresponding
linear map f is an isometry, that is, if f preserves the length of vectors in the sense that
||f(v)|| = ||v||, or equivalently, if f preserves the scalar product in the sense that

〈f(v), f(w)〉 = 〈v, w〉 for all v, w ∈ Rk.

The manifold Vk(Rn) is called the Stiefel manifold. We observe that Vn(Rn) is the orthogonal
group O(n) of isometries Rn → Rn.

Proof. Part (a). The entries of the matrix AtA are quadratic polynomials in the entries of
A and hence the map Φ is smooth. As suggested in the hint, we will calculate the differential
of Φ using the geometric version of tangent spaces described in terms of equivalence classes
of paths. So let C ∈ Mn×n(R) and interpret C as the tangent vector to A ∈ Mn×n(R)
represented by the linear path γ(s) := A+ sC.

To calculate

DΦA([γ]) =
dΦ(γ(s))

ds
(0) =

dΦ(A+ sC)

ds
(0)

we evaluate

Φ(A+ sC) = (A+ sC)t(A+ sC) = AtA+ s(CtA+ AtC) + s2CtC

and hence
∂Φ(A+ sC)

∂s
(0) = CtA+ AtC.

This proves that Φ∗(C) = CtA+ AtC.

Part (b). To show that for A ∈ Φ−1(I) (I ∈Mk×k(R) is the identity matrix) the differential

Φ∗ : Mn×k(R)→ Sym(Rk)

is surjective, let B ∈ Sym(Rk) and let C = AB ∈Mn×k(R). Then

Φ∗(C) = CtA+ AtC = (AB)tA+ At(AB) = BtAtA+ AtAB = Bt +B = 2B,

which proves surjectivity.
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Part (c). According to a theorem proved in class, if F : N → Q is a smooth map, then the
preimage F−1(c) of a regular value c ∈ Q is a manifold of dimension dimN − dimQ. Part
(b) show that this theorem is applicable in our situation and hence Vk(Rn) is a manifold of
dimension

dimMn×k(R)− dim Sym(Rk)

To calculate the dimensions of these vector spaces, we exhibit bases for them. A basis
of Mn×k(R) is provided by the matrices {A(i, j)}, 1 ≤ i ≤ n, 1 ≤ j ≤ k, whose entries
are all zero except the ij-th entry which is 1. There are nk matrices A(i, j) and hence
dimMn×n(R) = nk.

Similarly, a basis for the symmetric k × k matrices is given by the matrices {B(i, j)},
1 ≤ i ≤ j ≤ k; here B(i, j) is the matrix whose entries are zero except the ij-th entry and
the ji-th entry which are both 1 (obviously, these are the same entries for i = j). For a fixed
j between 1 and n, the number of matrices B(i, j) with 1 ≤ k ≤ j is j. It follows that

dim Sym(Rk) = 1 + 2 + 3 + · · ·+ k = k(k + 1)/2

Putting these statements together, we conclude

dimVk(Rn) = dimMn×k(R)− dim Sym(Rk) = nk − k(k + 1)

2

5. (10 points) Recall that the special linear group SLn(R) and the orthogonal group O(n)
are both submanifolds of the vector space Mn×n(R) of n × n matrices. In particular, the
tangent spaces TASLn(R) for A ∈ SLn(R) and TAO(n) for A ∈ O(n) are subspaces of the
tangent space TAMn×n(R), which can be identified with Mn×n(R), since Mn×n(R) is a vector
space.

(a) Show that TeSLn(R) = {C ∈ Mn×n | tr(C) = 0}, where e is the identity matrix, and
tr(C) denotes the trace of the matrix C.

(b) Show that TeO(n) = {C ∈Mn×n | Ct = −C}.

Hint for parts (a) and (b): SLn(R) and O(n) can be both be described as level sets F−1(c)
of a regular value c for a suitable smooth map F (as we did in class for SLn(R) and you did
for O(n) in problem 4 of this homework assignment; note that O(n) is equal to the Stiefel
manifold Vn(Rn)).

Remark: A Lie group is a group G which also is a smooth manifold and these structures
are compatible in the sense that the multiplication map G × G → G and the inverse map
G → G are smooth maps. The tangent space TeG at the identity element e ∈ G is called
the Lie algebra of G. In other words, this problem asks you to calculate the Lie algebra for
the Lie groups SLn(R) resp. O(n).
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Proof. Part (a). The special linear group SLn(R) can be described as the level set det−1(1)
of the determinant function det : Mn×n(R)→ R. In class we proved that 1 ∈ R is a regular
value of det, and hence hence SLn(R) is a submanifold of dimension n − 1 of Mn×n(R).
Moreover, the tangent space at any A ∈ SLn(R) according to our general theorem in class
is given by the kernel of the differential

D detA : TAMn×n(R) = Mn×n(R) −→ Tdet(A)R = R.

Also in class we calculated D detA(C) for C ∈Mn×n(R) and found

D detA(C) = det(c1, a2, . . . , an) + det(a1, c2, . . . , an) + · · ·+ det(a1, a2, . . . , cn),

where ai ∈ Rn are the column vectors of A, and similarly for ci. In particular, if A = e, the
identity matrix, then ai ∈ Rn is the i-th standard basis vector, all of whose entries are 0,
except the i-th which is 1. It follows that the determinants above greatly simplify and we
obtain

D dete(C) = c11 + c22 + · · ·+ cnn = tr(C)

where cij are the coefficients of C. This implies the statement of part (a).

Part (b). Using the same strategy as in part (a) and the calculation of DΦA from the
previous problem for k = n we find

TeO(n) = ker (DΦe : TeMn×n(R)→ TeSym(Rn))

={C ∈Mn×n(R) | Ct + C}
={C ∈Mn×n(R) | Ct = −C}.

10 Homework Assignment # 10

1. (10 points) Let M be a smooth manifold of dimension n. If f : M → R is a smooth
function, then for p ∈M its differential

dfp : TpM −→ Tf(p)R = R

is an element of Hom(TpM,R). This vector space dual to the tangent space TpM is called
the cotangent space, and is denoted T ∗pM .

(a) Let xi : Rn → R be the i-th coordinate function, which maps x = (x1, . . . , xn) ∈ Rn to
xi ∈ R. Show that for any point q ∈ Rn a basis of the cotangent space T ∗qRn is given
by {dxiq}i=1,...,n.
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(b) If M ⊃ U
φ−→ V ⊂ Rn is a smooth chart of M , the component functions of φ, given by

yi := xi ◦ φ are called local coordinates. Show that for p ∈ U , a basis of the cotangent
space T ∗pM is given by {dyip}i=1,...,n.

Hint for part (b): let (Dφp)
∗ : T ∗qRn → T ∗pM , q = φ(p) be the linear map dual to the

differential Dφp : TpM → TqRn defined by

(Dφp)
∗(ξ)(v) = ξ(Dφp(v)) for ξ ∈ T ∗qRn and v ∈ TpM.

Show first that (Dφp)
∗(dxiq) = dyip.

Proof. Part (a). We claim that the standard basis {ei}i=1,...,n of Rn = TqRn is dual to
{dxiq}i=1,...,n in the sense that dxiq(ej) = δij. In particular, {dxiq}i=1,...,n is a basis of T ∗qRn =
Hom(TqRn,R).

To prove the claim, we recall that for f ∈ C∞(Rn) and v ∈ TqRn = Rn

dfq(v) = 〈(gradf)q, v〉

and hence
dxiq(ej) = 〈(grad xi)q, ej〉 = 〈ei, ej〉 = δij.

Part (b). The differential Dφp : TpM → TqRn is an isomorphism since the smooth chart

M ⊃ U
φ−→ V ⊂ Rn is a diffeomorphism. It follows that its dual (Dφp)

∗ : T ∗qRn → T ∗pM is
an isomorphism as well. We claim that (Dφp)

∗(dxiq) = dyiq. This shows that {dyiq}i=1,...,n is
a basis, since it is the image of the basis {dxip}i=1,...,n under the isomorphisms φ∗.

To prove the claim we calculate for v ∈ TpM :

((Dφp)
∗(dxiq))(v) = dxiq(Dφp(v)) = ((dxi)q ◦Dφp)(v) = d(xi ◦ φ)p(v) = dyi(v).

2. (10 points) Let M be a smooth manifold and let f : M → R be a smooth function. Show
that the differential df is a smooth section of the cotangent bundle T ∗M . Hint: smoothness
of a section s is a local property and hence to check smoothness it suffices to check that the
composition Φα ◦ s is smooth for local trivializations Φα of the cotangent bundle T ∗M .

Proof. Following the hint, to check smoothness of the section df of the cotangent bundle
T ∗M , it suffices to check smoothness of the composition of df with the local trivializations
of T ∗M . We recall the construction of the local trivializations of T ∗M . Let

M ⊇
open

U
φ−→ V ⊆

open
Rn
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be a smooth chart for M , and let

TM|U
Φ−→ U × Rn (p, v) 7→ (p,Dφp(v))

be the associated local trivialization of the tangent bundle, where Dφp : TpM → Tφ(p)V = Rn

is the differential of φ at the point p ∈ U . Then the corresponding local trivialization for

T ∗M is the map T ∗M|U
Ψ−→ U × (Rn)∗ = Hom(Rn,R) given by

(p, ξ) 7→ (p, ((Dφp)
−1)∗(ξ)) = (p, ξ ◦ (Dφp)

−1) = (p, ξ ◦ (Dφ−1)φ(p)).

Here (Dφp)
−1 : Rn → TpM is the inverse of the linear isomorphism Dφp, which by the

functoriality of the differential (i.e., the chain rule) can be written as (Dφ−1)φ(p).
To show that df : U → T ∗M|U , p 7→ Tpf ∈ T ∗pM = Hom(TpM,R) is smooth it suffices to

show that the composition

U T ∗MU U × (Rn)∗

p (p, dfp) (p, dfp ◦ (Dφ−1)φ(p))

df Ψ

is smooth. We note that dfp ◦ (Dφ−1)φ(p) = D(f ◦ φ−1)φ(p), where the last equation is by
functoriality of the differential, i.e., the chain rule.

The function g := f ◦ φ−1 : V → R is smooth as the composition of smooth maps.
Its differential dg : V → (Rn)∗, x 7→ dgx is smooth, since a short calculation shows that
dgx(ei) = ∂f

∂xi
(x) where {ei}i=1,...,n is the standard basis of Rn. Hence

D(f ◦ φ−1)φ(p) = Dgφ(p),

the second component of the map Φ ◦ df is a smooth function of p (as the composition of
the smooth maps φ : U → V and dg : V → (Rn)∗). This shows that df is a smooth section
of the cotangent bundle T ∗M .

3. (10 points) We recall that the projective space RPn is a smooth manifold of dimension
n whose underlying set is the set of 1-dimensional subspaces of Rn+1. In particular, each
point p ∈ RPn determines tautologically a 1-dimensional subspace Ep ⊂ Rn+1. Let E be the
disjoint union E = qp∈RPnEp of the vector spaces Ep. More explicitly,

E = {([x], v) | [x] ∈ RPn, v ∈ 〈x〉},

where x ∈ Rn+1 \ {0}, 〈x〉 ⊂ Rn+1 is the one-dimensional subspace spanned by x, and
[x] ∈ RPn is the corresponding point in the projective space.
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(a) Use the Vector Bundle Construction Lemma to show that E is a smooth vector bundle
of rank 1 over RPn (which is called the tautological line bundle over RPn; line bundle
is a synonym for vector bundle of rank 1). Hint: Construct local trivializations of E
restricted to Ui = {[x0, . . . , xn] ∈ RPn | xi 6= 0}.

(b) Show that the complement of the zero section in E is diffeomorphic to Rn+1 \ {0}.

(c) Show that the line bundle E is not isomorphic to the trivial line bundle. Hint: consider
the complement of the zero-section of E and compare it with the complement of the
zero-section of the trivial line bundle.

Proof. Part (a). Let Φi : E|Ui → Ui × R be the map defined by Φi([x], v) = ([x], vi), where
v = (v0, . . . , vn) ∈ Rn+1. Evidently, Φi commutes with the projection maps to RPn and
restricts to a vector space isomorphism on the fibers. It is easy to check that the inverse is
given explicitly by Φ−1

i ([x], t) = ([x], t x
xi

). To use the Vector Bundle Construction Lemma
we just need to check the transition maps

(Ui ∩ Uj)× R E|Ui∩Uj (Ui ∩ Uj)× R
Φ−1
i Φj

are smooth. Explicitly, that composition is given by

(Φj ◦ Φ−1
i )([x], t) = Φj([x], t

x

xi
) = ([x], t

xj
xi

).

Hence it suffices to show that the map fij : Ui ∩ Uj → R given by [x] 7→ xj
xi

is smooth. Since
the domain is an open subset of the smooth manifold RPn, we need to use smooth charts
for RPn to check smoothness of this map. We recall that a smooth atlas for RPn is given by
{(Ui, φi)}i=0,...,n where

RPn ⊃ Ui Rnφi

≈ is given by [x] 7→ (
x0

xi
, . . . ,

x̂i
xi
, . . . ,

xn
xi

),

where the hat over the term xi
xi

means to skip it. The inverse

φ−1
i : Rn −→ Ui is given explicitly by φ−1

i (y1, . . . , yn) = [y1, . . . , yi, 1, yi+1, . . . , yn].

It follows that

(fij ◦ φ−1
i )(y1, . . . , yn) = fij([y1, . . . , yi, 1, yi+1, . . . , yn] =

{
yj j > i

yj+1 j < i

This shows that fij ◦φ−1
i and hence fij are smooth maps. Hence the transition maps Φj ◦Φ−1

i

are smooth, allowing us to conclude that E is a smooth vector bundle.
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Part (b). The zero-section is the section s : RPn → E given by s([x]) = ([x], 0). Let Z ⊂ E
be the image of the zero-section, which slightly abusively is also often called the zero-section.
Then the map

E \ Z = {([x], v) | [x] ∈ RPn, v ∈ 〈x〉, v 6= 0} F−→ Rn+1 \ {0}

given by F ([x], v) = v is a bijection with inverse given by F−1(v) = ([v], v). So we need to
show that F and F−1 are smooth. We note that Rn+1 \ {0} obtains its smooth structure as
open subset of Rn+1, while the smooth structure on E\Z is obtained as an open subset of the
smooth manifold E. So we can check smoothness of these maps by using smooth charts for E.
These are obtained by combining the local trivializations for the vector bundle E constructed
in part (a) with the smooth charts (Ui, φi) for the base space RPn; the composition

ψi : E|Ui Ui × R Rn × RΦi φi×idR

is then a smooth chart for E. Explicitly,

ψi([x], v) =(
x0

xi
, . . . ,

x̂i
xi
, . . . ,

xn
xi

); vi)

ψ−1
i (y1, . . . , yn; t) =([y1, . . . , yi, 1, yi+1, . . . , yn], t(y1, . . . , yi, 1, yi+1, . . . , yn)).

We note that the diffeomorphism ψi restricts to a diffeomorphism ψi : (E \Z)|Ui
∼= Rn×R×,

where R× = R \ {0}.
Hence to prove smoothness of F−1 and F is suffices to show that the following composi-

tions are smooth for i = 0, . . . , n:

Rn × R× (E \ Z)|Ui Rn+1 \ {0}

{v ∈ Rn+1 | vi 6= 0} (E \ Z)|Ui Rn × R×

ψ−1
i

∼=
F

F−1 ψi
∼=

Explicitly,

Fψ−1
i (y1, . . . , yn; t) =F ([y1, . . . , yi, 1, yi+1, . . . , yn], t(y1, . . . , yi, 1, yi+1, . . . , yn)

=(ty1, . . . , tyi, t, tyi+1, . . . , tyn)

and

ψF−1(v0, . . . , vn) = ψi([v], v) = (
v0

vi
, . . . ,

v̂i
vi
, . . . ,

vn
vi

; vi)

These are smooth maps.
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Part (c). If there were a vector bundle isomorphism Φ between E → RPn and the trivial
line bundle RPn × R→ RPn, then Φ would map the zero-section Z ⊂ E to the zero section
RPn×{0} ⊂ RPn×R (since the restriction of Φ to the fibers is a linear isomorphism). Hence
Φ would restrict to a homeomorphism

Φ|E\Z : E \ Z ≈−→ (RPn × R) \ (RPn × {0}) = RPn × (R \ {0}).

This is the desired contradiction, since by part (b), E \ Z is homeomorphic to Rn+1 \ {0},
which is connected, while RPn × (R \ {0}) is not connected.

4. (10 points) The goal of this problem is to prove the following construction lemma for
vector bundles over topological spaces.

Lemma 10.1. Let M be a topological space, and let {Ep} be a collection of vector spaces
parametrized by p ∈ M . Let E be the set given by the disjoint union of all these vector
spaces, which we write as

E :=
∐
p∈M

Ep = {(p, v) | p ∈M, v ∈ Ep}

and let π : E → M be the projection map defined by π(p, v) = p. Let {Uα}α∈A be an open
cover of M , and let for each α ∈ A, let Φα : π−1(Uα) −→ Uα×Rk be maps with the following
properties

(i) The diagram

E|Uα := π−1(Uα) Uα × Rk

Uα

π

Φα

π1
(10.2)

is commutative, where π1 is the projection onto the first factor.

(ii) For each p ∈ Uα, the restriction of Φα to Ep = π−1(p) is a vector space isomorphism
between Ep and {p} × Rk = Rk (which implies that Φα is a bijection).

(iii) For α, β ∈ A, the composition

(Uα ∩ Uβ)× Rk π−1(Uα ∩ Uβ) (Uα ∩ Uβ)× RkΦ−1
α Φβ

(10.3)

is continuous.

Then the total space E can be equipped with a topology such that π : E →M is a topological
vector bundle of rank k with local trivializations Φα.
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(a) Construct a topology on E by declaring U ⊂ E to be open if Φα(U ∩E|Uα) is an open
subset of Uα ×Rk for all α ∈ A. Show that this satisfies the conditions for a topology.

(b) Show that with this topology on E the projection map π : E →M is continuous

(c) Show that the map Φα is a homeomorphism (for the subspace topology on E|Uα). That
implies that (Uα,Φα) is a bundle atlas for π : E →M and which then finishes the proof
of the Lemma.

Proof. Part (a). We first check the this does indeed define a topology:

• Φα(E ∩ E|Uα) = Φα(E|Uα) = Uα × Rk, since Φα is a bijection. This is an open subset
of Uα × Rk, and hence E is open. Similarly, it follows that ∅ ⊂ E is open.

• Suppose that V1, . . . , Vn ⊂ E are open subsets. Then Φα(Vi ∩ E|Uα) is an open subset
of Uα × Rk and hence

Φα(V1 ∩ · · · ∩ Vn ∩ E|Uα) = Φα(V1 ∩ E|Uα) ∩ · · · ∩ Φα(Vn ∩ E|Uα)

is an open subset of Uα × Rk for all α ∈ A. This implies that V1 ∩ · · · ∩ Vn is an open
subset of E.

• Similarly, if Vi, i ∈ I is an open subset of E, then Φα(Vi ∩ E|Uα) is an open subset of
Uα × Rk for each i ∈ I and α ∈ A and hence

Φα(

(⋃
i∈I

Vi

)
∩ E|Uα) =

⋃
i∈I

Φα(Vi ∩ E|Uα)

is an open subset of Uα × Rk.

Part (b). To show that π : E → M is continuous, let V be an open subset of M . To show
that π−1(V ) ⊂ E is open, we consider

Φα(π−1(V ) ∩ E|Uα) = Φα(E|V ∩Uα) = (V ∩ Uα)× Rk.

Since V ∩ Uα ⊂ Uα is open for all α ∈ A, (V ∩ Uα) × Rk is an open subset of Uα × Rk and
hence π−1(V ) is open.

Part (c). Next we show that for β ∈ A the bijection Φβ : E|Uβ → Uβ × Rk is a homeo-
morphism (we find it convenient to give the fixed element in A a different name than our
generic element α ∈ A involved in the definition of the topology on E). To verify that that
Φβ is a homeomorphism it suffices to prove that a subset V of E|Uβ is open (with respect to
the subspace topology on E|Uβ ⊂ E) if and only if Φβ(V ) is an open subset of Uβ × Rk. If
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V is open in the subspace topology, then V = V ′ ∩ E|Uβ with V ′ an open subset of E. In
particular, Φβ(V ′ ∩ EUβ) = Φβ(V ) is an open subset of Uβ × Rk. Conversely, assume that
Φβ(V ) is open in Uβ × Rk, then for any α ∈ A

Φα(V ∩ E|Uα) =Φα(V ∩ E|Uβ∩Uα) = Φα ◦ Φ−1
β ◦ Φβ(V ∩ E|Uβ∩Uα)

=Φα ◦ Φ−1
β

(
Φβ(V ) ∩ (Uα × Rk)

)
is an open subset of Uα ×Rk, since Φβ(V ) ∩ (Uα ×Rk) is an open subset of (Uβ ∩ Uα)×Rk,
and the transition map

Φα ◦ Φ−1
β : (Uβ ∩ Uα)× Rk −→ (Uβ ∩ Uα)× Rk

is a homeomorphism by assumption.

5. (10 points) The goal of this problem is to prove the vector bundle construction lemma
from class. We recall that this has slightly stronger assumptions than the lemma of the
previous problem, namely M is required to be a smooth manifold, and the transition maps
(10.3) are required to be smooth.

(a) Show that E, equipped with the topology E constructed in the previous problem, is a
topological manifold of dimension n+k (don’t bother to check the technical conditions
of being Hausdorff and second countable). Hint: Let {(Vβ, ψβ)}β∈B be an atlas for M .
Show that the bundle chart Φα and the manifold chart ψβ can be used to construct a
chart

χα,β : E ⊃
open

E|Uα∩Vβ −→ Rn+k.

(b) Show that the charts {(E|Uα∩Vβ), χα,β)} for (α, β) ∈ A×B form a smooth atlas for E.

(c) Show that π : E → M is a smooth vector bundle of rank k with local trivializations
provided by Φα.

Proof. Part (a). Let χα,β be the composition of the following homeomorphisms

E|Uα∩Vβ (Uα ∩ Vβ)× Rk ψβ(Uα ∩ Vβ)× Rk ⊂ Rn+kΦα
≈

ψβ×idRk

≈ (10.4)

Strictly speaking, the maps involved in this composition are not the homeomorphisms Φα

and ψβ, but the homeomorphisms obtained by restricting the domains of these maps in the
evident way. Since the open subsets Uα ∩Vβ ⊂M form an open cover of M , their preimages
E|Uα∩Vβ = π−1(Uα∩Vβ) form an open covering of E. This shows that E is locally Euclidean.
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Part (b). We need to show that for any α, α′ ∈ A, β, β′ ∈ B the transition map χα,β ◦χ−1
α′,β′

is smooth. Setting U := Uα ∩ Uα′ ∩ Vβ ∩ Vβ′ , the transition map is given by the following
composition

ψβ′(U)× Rk U × Rk E|U U × Rk ψβ(U)× Rk
(ψβ′×id)−1 Φ−1

α′ Φα ψβ×id

We observe that the maps ψβ, ψβ′ are diffeomorphisms (since they belong to a smooth atlas
for M), and hence ψβ × id, ψβ′ × id are diffeomorphisms. The composition Φ−1

α′ ◦ Φα is
required to be smooth map (by assumption (iii) of Lemma ??) and hence all transition maps
for the charts (EUα∩Vβ , χα,β) are smooth.

Part (c). After constructing a smooth structure on E, it only remains to show that π : E →
M is smooth and that the local trivializations Φα : EUα → Uα×Rk are diffeomorphisms. The
first statement is an immediate consequence of the second one, since by the commutative
diagram (10.2) the restriction of π to E|Uα is the composition π1 ◦ Φα of smooth maps, and
hence π : E →M is smooth.

To show that Φα : E|Uα → Uα × Rk is a diffeomorphism, it suffices to show that its
restriction EUα∩Vβ −→ (Uα∩Vβ)×Rk is a diffeomorphism for all α ∈ A. The composition of
this map with the diffeomorphism ψβ × idRk , see (10.4), is the homeomorphism χα,β which
is part of our smooth atlas for E and hence a diffeomorphism. It follows that the restriction
of Φα to EUα∩Vβ is a diffeomorphism.

11 Homework Assignment # 11

1. (10 points) Let V be a vector space of dimension n with basis {b1, . . . , bn}, and let
{b1, . . . , bn} be the dual basis for the dual vector space V ∗ = Hom(V,R).

(a) Let Multk(V,R) be the space of multilinear maps ω : V × · · · × V︸ ︷︷ ︸
k

→ R, and for a

multi-index I = (i1, . . . , ik) with 1 ≤ is ≤ n let bI ∈ Multk(V,R) be defined by

bI(v1, . . . , vk) := bi1(v1) · · · bik(vk).

Show that the elements bI form a basis for Multk(V,R). Hint: argue that a k-linear
form ω ∈ Multk(V,R) is determined by the numbers ω(bJ) ∈ R obtained by evaluating
it on the k-tupels bJ := (bj1 , . . . , bjk) with J = (j1, . . . , jk) and 1 ≤ js ≤ n.

(b) What is the dimension of Multk(V,R)?

(c) Let Altk(V,R) be the space of alternating multilinear maps ω : V ×k → R, and for a
multi-index I = (i1, . . . , ik) with 1 ≤ is ≤ n let b∧I ∈ Altk(V,R) be defined by

b∧I(v1, . . . , vk) :=
∑
σ∈Sk

sign(σ)bi1(vσ(1)) · · · bik(vσ(k)).
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Show that b∧I(bJ) =

{
1 if I = J

0 if I 6= J
for multi-indices I, J which are increasing, i.e.,

1 ≤ i1 < i2 < · · · < ik ≤ n.

(d) Show that the elements b∧I for increasing multi-indices I, form a basis for Altk(V,R).
Hint: argue that an alternating form ω ∈ Altk(V,R) is determined by the numbers
ω(bJ) ∈ R obtained by evaluating it on the k-tupels bJ := (bj1 , . . . , bjk) for an increasing
multi-index J . As noted in class, this in particular implies that the dimension of
Altk(V,R) is

(
n
k

)
.

Note: in class we wrote bi1 ∧ · · · ∧ bik for the element bI ∈ Altk(V,R) defined above. This
was not a good idea, since it is not clear that bI is in fact equal to the wedge product of the
bis , which we defined later in class. This is in fact true, as will be proved as part of the next
problem.

Proof. Part (a). For ω ∈ Multk(V,R) consider ω(v1, . . . , vk) for vi ∈ V . Writing each vi as
a linear combination of the basis elements b1, . . . , bn, and using linearity of each slot of ω,
we can write ω(v1, . . . , vk) as a linear combination of the number ω(bJ) where J ranges over
all multi-indices J = (j1, . . . , jk) for 1 ≤ js ≤ n.

To show that the elements bI span Multk(V,R), we claim that for ω ∈ Multk(V,R)

ω =
∑
I

ω(bI)b
I , (11.1)

where the sum ranges over all multi-indices I = (i1, . . . , ik), 1 ≤ is ≤ n. To prove the claim,
it suffices by our earlier observation to evaluate both sides on bJ . We note that bI(bJ) = 0
unless I = J , and hence evaluating the right hand side of (11.1) on bJ the right hand side
simplifies to ω(bJ)bJ(bJ) = ω(bJ), which agrees with the left hand side evaluated on bJ .

To show that the elements bI are linearly independent, suppose 0 =
∑

I kIb
I with kI ∈ R.

Evaluating on bJ , the right hand side simplifies to kJb
J(bJ) = kJ , which shows that the

coefficients kJ are all zero.

Part (b). Part (a) shows that the dimension of Multk(V,R) is the cardinality of set of
multi-indices I = (i1, . . . , ik) with 1 ≤ is ≤ n. Since each index is can take on n values, and
there are k indices, there are nk multi-indices. This shows dim Multk(V,R) = nk.

Part (c).

b∧I(bJ) = b∧I(bj1 , . . . , bjk) =
∑
σ∈Sk

sign(σ)bi1(bjσ(1)) · · · b
ik(bjσ(k)).

We note that the summand sign(σ)bi1(bjσ(1)) · · · bik(bjσ(k)) is zero, unless the multi-indices
I = (i1, . . . , ik) and (jσ(1), . . . , jσ(k)) are the same. Since I and J are both increasing, the
summand must be trivial unless σ is the identity and I = J . If σ = id and I = J , then the
summand is bI(bJ) = 1, which proves part (c).
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Part (d). The argument here is entirely analogous to the argument in part (a). We first
observe that ω ∈ Altk(V,R) is determined by ω(bJ) for increasing indices J , i.e., J =
(j1, . . . , jk) with 1 ≤ j1 < j2 < · · · < jk ≤ n. This is the case, since after applying a
permutation σ ∈ Sk to a multi-index J , we can obtain a multi-index J ′ that is increasing,
but ω(bJ ′) = sign(σ)ω(bJ).

To show that the elements b∧I span Altk(V,R), we claim that

ω =
∑
I

ω(bI)b
∧I ,

where the sum is taken over increasing multi-indices I. To show this, we evaluate both sides
on bJ for increasing multi-indices J . On the right side, using part (c), we obtain∑

I

ω(bI)b
∧I(bJ) =

∑
I

ω(bI)δI,J = ω(bJ),

which agrees with evaluating the left hand side on bJ , thus proving the claim.
To prove linear independence of the elements b∧I , suppose

∑
I kIb

I = 0 for kI ∈ R. Then
evaluating on bJ , the right hand side simplifies to kJb

∧J(bJ) = kJ , which shows that the
coefficients kJ are all zero.

2. (10 points) We recall that the wedge product

Altk(V,R)× Alt`(V,R)
∧−→ Altk+`(V,R)

is a bilinear associative product defined by

(ω ∧ η)(v1, . . . , vk+`) :=
1

k!`!

∑
σ∈Sk+`

sign(σ)ω(vσ(1), . . . , vσ(k))η(vσ(k+1), . . . , vσ(k+`))

for ω ∈ Altk(V,R), η ∈ Alt`(V,R), v1, . . . , vk+` ∈ V .

(a) Show that

(bi1 ∧ · · · ∧ bik)(bJ) =

{
1 I = J

0 I 6= J

where I = (i1, . . . , ik), J = (j1, . . . , jk) are increasing sequence, and we use the same
notation and terminology as in problem (1). Hint: Use induction over k.

This shows in particular that the alternating k-form bI ∈ Altk(V,R) from 1(c) is in
fact equal to bi1 ∧ · · · ∧ bik .
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(b) Show that the wedge product is graded commutative, i.e.,

η ∧ ω = (−1)k`ω ∧ η for ω ∈ Altkl(V,R), η ∈ Alt`(V,R).

Hint: First consider the case k = ` = 1, then argue that it suffices to prove the
statement in the case ω = bi1 ∧ · · · ∧ bik , η = bj1 ∧ · · · ∧ bj` .

Proof. Part (a). Working by induction over k, let us assume that the desired statement

(bi1 ∧ · · · ∧ bik)(bJ) = δI,J

has been proved for increasing multi-indices of length k. Then we need to prove the statement
for increasing multi-indices I, J of length k + 1. Using the definition of the wedge product,
we compute

((bi1 ∧ · · · ∧ bik) ∧ bik+1)(bj1 , . . . , bjk+1
)

=
1

k!

∑
σ∈Sk+1

sign(σ)(bi1 ∧ · · · ∧ bik)(bjσ(1) , . . . , bjσ(k))b
ik+1(bjσ(k+1)

)

By our inductive hypothesis, we know that bik)(bjσ(1) , . . . , bjσ(k)) is non-zero if and only if

{i1, . . . , ik} = {jσ(1), . . . , jσ(k)}. Moreover, bik+1(bjσ(k+1)
) 6= 0 if and only if ik+1 = jσ(k+1).

Since I, J are both increasing multi-indices, these these conditions imply I = J , and σ ∈ Sk,
the subgroup of Sk+1 with σ(k + 1) = k + 1. Hence the above sum simplifies to

1

k!

∑
σ∈Sk

sign(σ)(bi1 ∧ · · · ∧ bik)(biσ(1) , . . . , biσ(k))b
ik+1(bik+1

)

=
1

k!

∑
σ∈Sk

(bi1 ∧ · · · ∧ bik)(bi1 , . . . , bik)

=(bi1 ∧ · · · ∧ bik)(bi1 , . . . , bik) = 1

Here the first equality holds since bi1 ∧ · · · ∧ bik is an alternating k-form, and bik+1(bik+1
) = 1.

The second equality follows, since Sk has cardinality k!.

Part (b). For ω, η ∈ Alt1(V,R) and v1, v2 ∈ V we have

(ω ∧ η)(v1, v2) =
1

1!1!

∑
σ∈S2

sign(σ)ω(vσ(1))η(vσ(2)) = ω(v1)η(v2)− ω(v2)η(v1)

(η ∧ ω)(v1, v2) =η(v1)ω(v2)− η(v2)ω(v1)

This proves ω ∧ η = −η ∧ ω as it should for η, ω ∈ Alt1(V,R) according to graded commu-
tativity.
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According to problem 1(d) and 2(a), the elements bi1∧· · ·∧bik form a basis for Altk(V,R).
So it suffices to prove graded commutativity for basis elements ω = bi1 ∧ · · · ∧ bik , η =
bj1 ∧ · · · ∧ bj` .

ω ∧ η =(bi1 ∧ · · · ∧ bik) ∧ (bj1 ∧ · · · ∧ bj`)
=(−1)kbj1 ∧ (bi1 ∧ · · · ∧ bik) ∧ (bj2 ∧ · · · ∧ bj`)
=(−1)k`(bj1 ∧ · · · ∧ bj`) ∧ (bi1 ∧ · · · ∧ bik)
=(−1)k`η ∧ ω

Here the sign (−1)k comes from permuting bj1 with each of the factors bis for s = 1, . . . , k.
Doing the same step for bj2 again gives a factor of (−1)k, e.t.c. Moving all bj’s past the bi’s
yields the sign (−1)k`

3. (10 points) Let M , N be smooth manifolds and F : M → N a smooth map. Then a
differential form ω ∈ Ωk(N) leads to a form F ∗ω ∈ Ωk(M), called the pullback of ω along F
which is defined by

(F ∗ω)p(v1, . . . , vk) := ωp(DFp(v1), . . . , DFp(vk)) for p ∈M , v1, . . . , vk ∈ TpM.

In more detail: the k-form F ∗ω is a section of the vector bundle Altk(TM ;R), and hence it
can be evaluated at p ∈ M to obtain an element (F ∗ω)p in the fiber of that vector bundle
over p, which is Altk(TpM ;R). In other words, (F ∗ω)p is an alternating multilinear map

(F ∗ω)p : TpM × · · · × TpM︸ ︷︷ ︸
k

−→ R,

and hence it can be evaluated on the k tangent vectors v1, . . . , vk ∈ TpM to obtain a
real number (F ∗ω)p(v1, . . . , vk). On the right hand side of the equation defining F ∗ω, the
map DFp : TpM → TF (p)N is the differential of F . Hence the alternating multilinear map

ωF (p) ∈ Altk(TF (p)N ;R) can be evaluated on DFp(v1), . . . , DFp(vk) to obtain the real number
ωp(DFp(v1), . . . , DFp(vk)).

Let F : Rn → Rn be a smooth map. Show that

F ∗(dx1 ∧ · · · ∧ dxn) = det(DF ) dx1 ∧ · · · ∧ dxn (11.2)

Here DF : Rn → Hom(Rn,Rn) is the differential of DF , which maps x ∈ Rn to DFx : Rn →
Rn, the differential of F at the point x ∈ Rn. Hint: Evaluated at a point x ∈ Rn both sides
of the equation are vectors of the 1-dimensional vector space Altn(TxRn,R) = Altn(Rn,R).
Hence it suffices to show equality after evaluating both sides on (e1, . . . , en), where e1, . . . , en
is the standard basis of Rn.
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Proof. Evaluating the n-forms given by either side of the equation at a point x ∈ Rn, we
obtain a vector in Altn(TxRn,R), the 1-dimensional vector space of multilinear alternating
maps

TxRn × · · · × TxRn︸ ︷︷ ︸
n

−→ R.

Hence it suffices to show that both sides evaluated on the standard n-tupel (e1, . . . , en)
agree. We calculate the left hand side, writing A for the n× n-matrix corresponding to the
differential DFx : TxRn = Rn → TxRn = Rn and Ai for the i-th column vector of A:

F ∗(dx1 ∧ · · · ∧ dxn)(e1, . . . , en) =(dx1 ∧ · · · ∧ dxn)(Dfx(e1), . . . , Dfx(en))

=(dx1 ∧ · · · ∧ dxn)(Ae1, . . . , Aen)

=(dx1 ∧ · · · ∧ dxn)(A1, . . . , An)

Evaluating det(DFx)dx1 ∧ · · · ∧ dxn on (e1, . . . , en) and writing it in terms of A, we have

det(DFx)dx
1 ∧ · · · ∧ dxn(e1, . . . , en) = det(A)dx1 ∧ · · · ∧ dxn(e1, . . . , en) = det(A1, . . . , An).

We note that the dependence of both sides on the column vectors Ai is multilinear and
alternating, a well-known property for the determinant. Since the space of such maps is
1-dimensional, we can test whether both functions of the matrix A agree by evaluating on
the identity matrix, for which the agreement is obvious.

4. (10 points) For any smooth manifold M the de Rham differential (also called exterior
differential) is the unique map d : Ωk(M)→ Ωk+1(M) with the following properties:

(i) d is linear.

(ii) For a function f ∈ C∞(M) = Ω0(M) the 1-form df ∈ Ω1(M) = C∞(M,T ∗M) is the
usual differential of f .

(iii) d is a graded derivation with respect to the wedge product; i.e.,

d(ω ∧ η) = (dω) ∧ η + (−1)kω ∧ dη for ω ∈ Ωk(M), η ∈ Ωl(M).

(iv) d2 = 0.

We recall that for M = Rn, every k-form η ∈ Ωk(Rn) can be written uniquely in the form

η =
∑

i1<···<ik

fi1,...,ikdx
i1 ∧ · · · ∧ dxik

for smooth functions fi1,...,ik ∈ C∞(Rn). The point of this problem is to give an explicit
formula for d for M = Rn (which works equally well locally, on a coordinate patch of a
smooth n-manifold).
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(a) Show that for f ∈ C∞(Rn) the differential df ∈ Ω1(Rn) is given by

df =
n∑
i=1

∂f

∂xi
dxi

(b) Show that for ω = fdxi1 ∧ · · · ∧ dxik ∈ Ωk(Rn)

dω =
n∑
j=1

∂f

∂xj
dxj ∧ dxi1 ∧ · · · ∧ dxik .

Proof. Part (a). We recall that the 1-form df evaluated on a tangent vector v ∈ TxM
is by definition the tangent map Dfx : TxM → Tf(x)R = R applied to v. Also, the partial

derivative ∂f
∂xi

(x) can be identified with the tangent map Dfx evaluated on ei (the i-th element
of the standard basis of Rn). It follows that

(
n∑
j=1

∂f

∂xj
dxj)x(ei) =

n∑
j=1

∂f

∂xj
(x)(dxj)x(ei) =

∂f

∂xi
(x) = Dfx(ei) = dfx(ei)

for all i. Hence the 1-forms
∑n

j=1
∂f
∂xj
dxj and df evaluated on all tangent vectors v ∈ TxRn

agree, which means that these 1-forms are the same.

Part (b). For general k we calculate

dω =d(fdxi1 ∧ · · · ∧ dxik)
=(df) ∧ dxi1 ∧ · · · ∧ dxik + f ∧ d(dxi1) ∧ · · · ∧ dxik + · · ·+±f ∧ dxi1 ∧ · · · ∧ d(dxik)

=(df) ∧ dxi1 ∧ · · · ∧ dxik =
n∑
j=1

∂f

∂xj
dxj ∧ dxi1 ∧ · · · ∧ dxik

Here the second equality is the derivation property (iii) of d, the third equality is a conse-
quence of d2 = 0.

5. (10 points) Show that the exterior derivative for differential forms on R3 corresponds to
the classical operations of gradient resp. curl resp. divergence. More precisely, show that
there is a commutative diagram

C∞(R3)
grad // Vect(R3) curl //

∼=
��

Vect(R3) div //

∼=
��

C∞(R3)

∼=
��

Ω0(R3) d // Ω1(R3) d // Ω2(R3) d // Ω3(R3)



11 HOMEWORK ASSIGNMENT # 11 70

Here Vect(R3) is the space of vector fields on R3, and we recall that grad, curl and divergence
are given by the formulas

grad(f) =

(
∂f

∂x
,
∂f

∂y
,
∂f

∂z

)
curl(f1, f2, f3) =

(
∂f3

∂y
− ∂f2

∂z
,
∂f1

∂z
− ∂f3

∂x
,
∂f2

∂x
− ∂f1

∂y

)
div(f1, f2, f3) =

∂f1

∂x
+
∂f2

∂y
+
∂f3

∂z

Here we identify a vector field on R3 with a triple (f1, f2, f3) of smooth functions on R3. The
vertical isomorphisms are given by

(f1, f2, f3) 7→ f1dx+ f2dy + f3dz

(f1, f2, f3) 7→ f1dy ∧ dz + f2dz ∧ dx+ f3dx ∧ dy
f 7→ fdx ∧ dy ∧ dz

Proof. Let f ∈ C∞(R3) = Ω0(R3). Then

df =
∂f

∂x
dx+

∂f

∂y
dy +

∂f

∂z
dz = Φ1(

∂f

∂x
,
∂f

∂y
,
∂f

∂z
) = Φ1(grad(f))

For (f1, f2, f3) ∈ Vect(R3) we calculate:

dΦ1(f1, f2, f3) =d (f1dx+ f2dy + f3dz)

=df1 ∧ dx+ df2 ∧ dy + df3 ∧ dz

=

(
∂f1

∂x
dx+

∂f1

∂y
dy +

∂f1

∂z
dz

)
∧ dx+

(
∂f2

∂x
dx+

∂f2

∂y
dy +

∂f2

∂z
dz

)
∧ dy

+

(
∂f3

∂x
dx+

∂f3

∂y
dy +

∂f3

∂z
dz

)
∧ dz

=

(
∂f3

∂y
− ∂f2

∂z

)
dy ∧ dz +

(
∂f1

∂z
− ∂f3

∂x

)
dz ∧ dx+

(
∂f2

∂x
− ∂f1

∂y

)
dx ∧ dy

For (f1, f2, f3) ∈ Vect(R3) we calculate:

dΦ2(f1, f2, f3) = d (f1dy ∧ dz + f2dz ∧ dx+ f3dx ∧ dy)

= df1 ∧ dy ∧ dz + df2 ∧ dz ∧ dx+ df3 ∧ dx ∧ dy

=
∂f1

∂x
dx ∧ dy ∧ dz +

∂f2

∂y
dy ∧ dz ∧ dx+

∂f3

∂z
dz ∧ dx ∧ dy

= (div(f1, f2, f3)dx ∧ dy ∧ dz = Φ3(div(f1, f2, f3))
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