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Homework Assignment # 9, due Nov. 9

1. (10 points) Let M , N be smooth manifolds, and let π1 : M×N →M and π2 : M×N → N
be the projection maps. Show that for any (x, y) ∈M ×N the map

α : T(x,y)(M ×N) −→ TxM ⊕ TyN

defined by
α(v) = (Dπ1(v), Dπ2(v))

is an isomorphism. Here we suppress the subscripts of the differentials that indicate the point
of the domain, i.e., we write Dπ1 instead of (Dπ1)x,y. Hint: To prove this, it is unnecessary
to “unpack” the definition of the tangent space of manifolds by using either the geometric
or algebraic definition. Rather, only the functorial properties of the tangent space, i.e., the
chain rule, is needed, applied to suitable projection/inclusion maps. Remark: Using this
isomorphism, we will routinely identify TxM and TyN with subspaces of T(x,y)(M ×N).

2. (10 points) Let M be a smooth n manifold. For a point p ∈M let

DM : T geo
p M −→ T alg

p M = Der(C∞p (M),R)

be the map that sends [γ] ∈ T geo
p M to the derivation Dγ. More explicitly, if f is (the germ

of) a function f : M → R then Dγf ∈ R is the directional derivative of f in the direction of
γ defined by

Dγf := (f ◦ γ)′(0) = lim
t→0

f(γ(t))− f(p)

t
.

(a) Show that the geometric and the algebraic definition of the differential of a smooth
map F : M → N are compatible in the sense that for p ∈ M the following diagram is
commutative:

T geo
p M T geo

F (p)N

T alg
p M T alg

F (p)N

DF geo
p

DM DN

DF alg
p

(b) Show that the map DM is a bijection for any manifold M . Hint: use a chart for M and
part (a) to reduce to the case of open subsets U ⊂ Rn; we have proved in class that the
map DU : T geo

p U → T alg
p U is a bijection in that case.

3. (10 points) Let M , N be smooth manifolds, let F : M → N be a smooth map, and p ∈M .

(a) Show that the map

F ∗p : C∞F (p)(N) −→ C∞p (M) given by [f ] 7→ [f ◦ F ]

is a well-defined algebra homomorphism.
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(b) Show that if D : C∞p (M)→ R is a derivation, then the composition

C∞F (p)(N)
F ∗
p−→ C∞p (M)

D−→ R

is a derivation. In particular, we can define the (algebraic) differential

DalgFp : T alg
p M = Der(C∞p (M),R) −→ T alg

F (p)N = Der(C∞F (p)(M),R)

by DF alg
p (D) := D ◦ F ∗p .

(c) Show that the differential DF alg
p is a linear map.

(d) If G : N → Q is a smooth map, show that

D(G ◦ F )alg
p = DGalg

F (p) ◦DF
alg
p .

We note that this statement is the chain rule (for the algebraic construction of the
tangent space).

4. (10 points) Let Mn×k(R) be the vector space of n × k-matrices. For A ∈ Mn×k(R) let
At ∈ Mk×n(R) be the transpose of A, and let Sym(Rk) = {B ∈ Mk×k(R) | Bt = B} be the
vector space of symmetric k × k-matrices.

(a) Show that the map Φ: Mn×k(R)→ Sym(Rk), A 7→ AtA is smooth, and that its differen-
tial

DΦA : TAMn×k(R) = Mn×k(R) −→ TΦ(A)Sym(Rk) = Sym(Rk)

is given by DΦA(C) = CtA + AtC. Hint: Use the geometric description of tangent
spaces. More explicitly, the tangent space T geo

A Mn×k(R) can be identified with Mn×k(R)
by sending a matrix C ∈Mn×k(R) to the path γ(t) := A+ tC.

(b) Show that the identity matrix is a regular value of the map Φ. This implies in particular
that the level set Φ−1(identity matrix) is a smooth manifold. We recall that we showed
in class that Φ−1(identity matrix) is the Stiefel manifold Vk(Rn) of orthonormal k-frames
in Rn. Hint: to show that DΦA : TAMn×n(R)→ TeSym(Rk) is surjective for e = identity
matrix, compute DΦA(C) for C = AB for B ∈ Sym(Rk).

(c) What is the dimension of Vk(Rn)?

We remark that identifying Mn×k(R) in the usual way with the vector space Hom(Rk,Rn)
of linear maps f : Rk → Rn, a matrix belongs to Vk(Rn) if and only if the corresponding
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linear map f is an isometry, that is, if f preserves the length of vectors in the sense that
||f(v)|| = ||v||, or equivalently, if f preserves the scalar product in the sense that

〈f(v), f(w)〉 = 〈v, w〉 for all v, w ∈ Rk.

The manifold Vk(Rn) is called the Stiefel manifold. We observe that Vn(Rn) is the orthogonal
group O(n) of isometries Rn → Rn.

5. (10 points) Recall that the special linear group SLn(R) and the orthogonal group O(n)
are both submanifolds of the vector space Mn×n(R) of n × n matrices. In particular, the
tangent spaces TASLn(R) for A ∈ SLn(R) and TAO(n) for A ∈ O(n) are subspaces of the
tangent space TAMn×n(R), which can be identified with Mn×n(R), since Mn×n(R) is a vector
space.

(a) Show that TeSLn(R) = {C ∈ Mn×n | tr(C) = 0}, where e is the identity matrix, and
tr(C) denotes the trace of the matrix C.

(b) Show that TeO(n) = {C ∈Mn×n | Ct = −C}.

Hint for parts (a) and (b): SLn(R) and O(n) can be both be described as level sets F−1(c)
of a regular value c for a suitable smooth map F (as we did in class for SLn(R) and you did
for O(n) in problem 4 of this homework assignment; note that O(n) is equal to the Stiefel
manifold Vn(Rn)).

Remark: A Lie group is a group G which also is a smooth manifold and these structures
are compatible in the sense that the multiplication map G × G → G and the inverse map
G → G are smooth maps. The tangent space TeG at the identity element e ∈ G is called
the Lie algebra of G. In other words, this problem asks you to calculate the Lie algebra for
the Lie groups SLn(R) resp. O(n).


