Homework Assignment \# 6, due Oct. 5

1. (10 points) Let $\left(X, x_{0}\right),\left(Y, y_{0}\right)$ be pointed spaces. We recall that writing $f:\left(X, x_{0}\right) \rightarrow$ $\left(Y, y_{0}\right)$ means that f is a map from X to Y which is basepoint-preserving in the sense that $f\left(x_{0}\right)=y_{0}$. Maps $f_{0}, f_{1}:\left(X, x_{0}\right) \rightarrow\left(Y, y_{0}\right)$ basepoint-preserving homotopic, notation $f_{0} \sim_{\text {bp }} f_{1}$, if there is a homotopy $H: X \times I \rightarrow Y$ from f_{0} to f_{1} which is basepoint-preserving in the sense that $H\left(x_{0}, t\right)=y_{0}$ for all $t \in I$. A map $f:\left(X, x_{0}\right) \rightarrow\left(Y, y_{0}\right)$ is a basepointpreserving homotopy equivalence if there is a map $g:\left(Y, y_{0}\right) \rightarrow\left(X, x_{0}\right)$ such that $g \circ f \sim_{\mathrm{bp}} \mathrm{id}_{X}$ and $f \circ g \sim_{\mathrm{bp}} \mathrm{id}_{Y}$.
(a) Show that if $f, g:\left(X, x_{0}\right) \rightarrow\left(Y, y_{0}\right)$ are basepoint-preserving homotopic, then the induced homomorphisms $f_{*}, g_{*}: \pi_{1}\left(X, x_{0}\right) \rightarrow \pi_{1}\left(Y, y_{0}\right)$ are equal.
(b) Show that if $f:\left(X, x_{0}\right) \rightarrow\left(Y, y_{0}\right)$ is a basepoint-preserving homotopy equivalence, then the induced map $f_{*}: \pi_{1}\left(X, x_{0}\right) \rightarrow \pi_{1}\left(Y, y_{0}\right)$ is an isomorphism.
2. (10 points) In this problem you are ask to show that an object X in a category \mathcal{C} is the categorical product of two other objects. Recall that this means that you need to construct morphisms $p_{1}: X \rightarrow X_{1}$ and $p_{2}: X \rightarrow X_{2}$ and show that the following diagram in \mathcal{C} has the property of being a product diagram discussed in the lectures:

$$
X_{1} \stackrel{p_{1}}{\longleftrightarrow} X \xrightarrow{p_{2}} X_{2}
$$

(a) Show that the cartesian product $G_{1} \times G_{2}$ of two groups G_{1}, G_{2}, equipped with the usual multiplication given by $\left(g_{1}, g_{2}\right) \cdot\left(h_{1}, h_{2}\right):=\left(g_{1} h_{1}, g_{2} h_{2}\right)$ is the categorical product of G_{1} and G_{2} in the category Grp of groups and group homomorphisms.
(b) Let $\left(X_{1}, x_{1}\right),\left(X_{2}, x_{2}\right)$ be pointed topological spaces. Show that the pointed space ($X_{1} \times$ $\left.X_{2},\left(x_{1}, x_{2}\right)\right)$ is the categorical product of $\left(X_{1}, x_{1}\right)$ and $\left(X_{2}, x_{2}\right)$ in the category Top ${ }_{*}$ of pointed topological spaces and basepoint-preserving maps.
3. (10 points)
(a) Show that the free product $G_{1} * G_{2}$ of groups G_{1}, G_{2} is the coproduct of G_{1} and G_{2} in the category Grp of groups and group homomorphisms. Hint: proving this amounts to constructing homomorphisms $i_{1}: G_{1} \rightarrow G_{1} * G_{2}$ and $i_{2}: G_{2} \rightarrow G_{1} * G_{2}$ and verifying that the diagram

$$
G_{1} \xrightarrow{i_{1}} G_{1} * G_{2} \stackrel{i_{2}}{\longleftarrow} G_{2}
$$

is a coproduct diagram.
(b) Let $G_{1} \stackrel{j_{1}}{\longleftarrow} H \xrightarrow{j_{2}} G_{2}$ be a diagram of groups and homomorphisms. Show that the free product with amalgamation $G_{1} *_{H} G_{2}$ is a pushout of the diagram above in the category of groups. Hint: Showing that $G_{1} *_{H} G_{2}$ is a pushout of the diagram above means that there are homomorphisms $k_{1}: G_{1} \rightarrow G_{1} *_{H} G_{2}$ and $k_{2}: G_{2} \rightarrow G_{1} *_{H} G_{2}$ such that the diagram

is commutative, and has the property of being a pushout diagram.
4. (10 points) Let M, N be path-connected manifolds of dimension $n \geq 3$. The goal of this problem is to compute the fundamental group of their connected sum $M \# N$ in terms of the fundamental groups of M and N. We provide an alternative description of the connected sum $M \# N$, which is easier for the problem at hand, works for smooth manifolds, and uses pushout diagrams (it is not hard to show that this version of $M \# N$ is homeomorphic to the version presented in class).

For the construction of the connected sum we pick points $x_{0} \in M, y_{0} \in N$ and maps $\phi: B_{2}^{n} \rightarrow M, \psi: B_{2}^{n} \rightarrow N$ which are are homeomorphisms onto their image with $\phi(0)=x_{0}$, $\psi(0)=y_{0}$; here $B_{2}^{n}=\left\{v \in \mathbb{R}^{n} \mid\|v\|<2\right\} \subset \mathbb{R}^{n}$ is the open ball of radius 2. Let α be the homeomorphism

$$
\alpha: S^{n-1} \times(-1,1) \xrightarrow{\approx} B_{2}^{n} \backslash\{0\} \quad \text { given by } \quad(v, t) \mapsto(1-t) v,
$$

and let $g: S^{n-1} \times(-1,1) \xrightarrow{\approx} S^{n-1} \times(-1,1)$ be the homeomorphism given by $g(v, t)=$ $g(v,-t)$. Let $M \# N$ be the space determined by the pushout diagram

In other words, $M \# N=\left(M \backslash\left\{x_{0}\right\}\right) \cup_{S^{n-1} \times(-1,1)}\left(N \backslash\left\{y_{0}\right\}\right)$ is obtained from the disjoint union $\left(M \backslash\left\{x_{0}\right\}\right) \amalg\left(N \backslash\left\{y_{0}\right\}\right)$ by identifying the point $\phi \circ \alpha \circ g(v, t) \in M \backslash\left\{x_{0}\right\}$ with the point $\psi \circ \alpha(v, t) \in N \backslash\left\{y_{0}\right\}$ for $(v, t) \in S^{n-1} \times(-1,1)$. Here is a picture of $M \# N$, where the red circle is the image of $S^{n-1} \times\{0\} \subset S^{n-1} \times(-1,1)$ under either map in the commutative diagram above.

(a) Determine the fundamental group of $M \backslash\left\{x_{0}\right\}$ in terms of the fundamental group of M. Hint: use the Seifert van Kampen Theorem.
(b) Determine the fundamental group of $M \# N$ in terms of the fundamental groups of M and N.
5. (10 points) Let X be the subspace of \mathbb{R}^{3} given by the union of the 2 -sphere S^{2} and the segment S of the x-axis given by $S=\left\{(t, 0,0) \in \mathbb{R}^{3} \mid-1 \leq t \leq 1\right\}$. Calculate the fundamental group of X. Hint: use the Seifert van Kampen Theorem.

