Homework Assignment \# 5, due Sep. 28

1. (10 points) A subspace $A \subset X$ of a topological space X is called a retract of X if there is a continuous map $r: X \rightarrow A$ whose restriction to A is the identity.
(a) Show that S^{1} is not a retract of D^{2}. Hint: Show that the assumption that there is a continuous map $r: D^{2} \rightarrow S^{1}$ which restricts to the identity on S^{1} leads to a contradiction by contemplating group homomorphisms $r_{*}: \pi_{1}\left(D^{2}, x_{0}\right) \rightarrow \pi_{1}\left(S^{1}, x_{0}\right)$ and $i_{*}: \pi_{1}\left(S^{1}, x_{0}\right) \rightarrow$ $\pi_{1}\left(D^{2}, x_{0}\right)$ induced by the retraction f resp. the inclusion map $i: S^{1} \hookrightarrow D^{2}$.
(b) Brouwer's Fixed Point Theorem states that every continuous map $f: D^{n} \rightarrow D^{n}$ has a fixed point, i.e., a point x with $f(x)=x$. Prove this for $n=2$. Hint: show that if f has no fixed point, then a retraction map $r: D^{2} \rightarrow S^{1}$ can be constructed out of f.
2. (10 points) The goal of this problem is to construct elements in the fundamental group of the torus T, the Klein bottle K and the projective plane $\mathbb{R}^{2} \mathbb{P}^{2}$ and to show that they satisfy certain relations.
(a) Recall that T is homeomorphic to $\Sigma\left(a b a^{-1} b^{-1}\right)$, the quotient of the polygon P_{4} with four edges (also known as "square") according using the edge identification determined by the word $a b a^{-1} b^{-1}$. Let $p: P_{4} \rightarrow \Sigma\left(a b a^{-1} b^{-1}\right)$ be the projection map. Let $\widetilde{\alpha}_{i}, \widetilde{\beta}_{i}: I \rightarrow P_{4}$ be the linear edge paths as shown in the the picture below (the edge $\widetilde{\alpha}_{1}$ is identified with $\widetilde{\alpha}_{2}$ and $\widetilde{\beta}_{1}$ is identified with $\widetilde{\beta}_{2}$ to obtain $\left.\Sigma\left(a b a^{-1} b^{-1}\right) \approx P_{4} / \sim\right)$

Let $\alpha=p \circ \widetilde{\alpha}_{i}, \beta=p \circ \widetilde{\beta}_{i}$ be the based loops in $\left(\Sigma\left(a b a^{-1} b^{-1}\right), v\right)$, with $v:=p\left(v_{i}\right) \in$ $\Sigma\left(a b a^{-1} b^{-1}\right)$, and let $a:=[\alpha], b:=[\beta]$ be the elements of the fundamental group $\pi_{1}\left(\Sigma\left(a b a^{-1} b^{-1}\right), v\right)$ represented by these based loops. Show that these elements satisfy the relation $a b a^{-1} b^{-1}=1 \in \pi_{1}\left(\Sigma\left(a b a^{-1} b^{-1}\right), v\right)$.
(b) Similarly, construct elements a, b in the fundamental group of the Klein bottle $K \approx$ $\Sigma\left(a b a^{-1} b\right)$ and show that they satisfy the relation $a b a^{-1} b=1$.
(c) Similarly, construct an element a in the fundamental group of the real projective plane $\mathrm{RP}^{2} \approx \Sigma(a a)$ and show that it satisfies the relation $a^{2}=1$.
(d) Recall that $\mathbb{R P}^{2}$ is also homeomorphic to $\Sigma(a b a b)$. Can we use the same techniques as above to construct elements a, b in the fundamental group of $\Sigma(a b a b)$ which satisfy the relation $a b a b=1$? If yes, construct these elements and prove the relation; if no, explain the difference to the previous cases.
3. (10 points) Two topological spaces X, Y are homotopy equivalent if there are maps $f: X \rightarrow Y$ and $g: Y \rightarrow X$ such that $g \circ f: X \rightarrow X$ is homotopic to id_{X} and $f \circ g: Y \rightarrow$ Y is homotopic to id_{Y}. Show that the following five topological spaces are all homotopy equivalent:
(1) the circle S^{1},
(2) the open cylinder $S^{1} \times \mathbb{R}$,
(3) the annulus $A=\left\{(x, y) \mid 1 \leq x^{2}+y^{2} \leq 2\right\}$,
(4) the solid torus $S^{1} \times D^{2}$,
(5) the Möbius strip

Hint: A subspace $A \subset X$ is a retract of X if there is map $r: X \rightarrow A$ which restricts to the identity on A. It is a deformation retract of X if in addition the composition $X \xrightarrow{r} A \stackrel{i}{\hookrightarrow} X$ with the inclusion map i is homotopic to the identity on X. Note that if A is a deformation retract of X, then $r \circ i=\mathrm{id}_{A}$ and $i \circ r \sim \mathrm{id}_{X}$. In particular, A is homotopy equivalent to X. Show that each of the spaces (2)-(5) contains a subspace S homeomorphic to the circle S^{1} which is a deformation retract of the bigger space it is contained in.
4. (10 points) Let $f:\left(S^{1}, 1\right) \rightarrow\left(S^{1}, 1\right)$ be the basepoint preserving map defined by $f(z)=z^{n}$ for some $n \in \mathbb{Z}$ and let

$$
f_{*}: \pi_{1}\left(S^{1}, 1\right) \longrightarrow \pi_{1}\left(S^{1}, 1\right)
$$

be the induced homomorphism on the fundamental group. Calculate explicitly the group homomorphism f_{*}. By this, we mean the following: the winding number gives an explicit isomorphism $\pi_{1}\left(S^{1}, 1\right) \cong \mathbb{Z}$. Via this isomorphism, the automorphism f_{*} of the group $\pi_{1}\left(S^{1}, 1\right)$ corresponds to an automorphism of the group \mathbb{Z}. Any automorphism of \mathbb{Z} is of the form $\mathbb{Z} \rightarrow \mathbb{Z}, m \mapsto k m$, i.e., is given by multiplication by some integer $k \in \mathbb{Z}$. In other words, "calculate explicitly" means "determine the integer $k \in \mathbb{Z}$ such that the following diagram commutes":

5. (10 points) A d-fold covering map is a covering map $p: \widetilde{X} \rightarrow X$ such that for each point $x \in X$, the fiber $p^{-1}(x)$ consists of d points.
(a) Let X be compact 2-manifold and let $p: \widetilde{X} \rightarrow X$ be a d-fold covering map. Show that $\chi(\widetilde{X})=d \cdot \chi(X)$. Hint: Choose a pattern of polygons Γ on X such that each polygon is contained in some evenly covered subset $U \subset X$. Argue that Γ determines a compatible pattern of polygons $\widetilde{\Gamma}$.
(b) Let $\widetilde{X} \rightarrow X$ is a d-fold covering of orientable compact connected 2-manifolds. Give a formula expressing the genus \widetilde{g} of \widetilde{X} in terms of the genus g of X.

