Homework Assignment # 5, due Sep. 28

1. (10 points) A subspace $A \subset X$ of a topological space X is called a *retract of* X if there is a continuous map $r: X \to A$ whose restriction to A is the identity.

- (a) Show that S^1 is not a retract of D^2 . Hint: Show that the assumption that there is a continuous map $r: D^2 \to S^1$ which restricts to the identity on S^1 leads to a contradiction by contemplating group homomorphisms $r_*: \pi_1(D^2, x_0) \to \pi_1(S^1, x_0)$ and $i_*: \pi_1(S^1, x_0) \to \pi_1(D^2, x_0)$ induced by the retraction f resp. the inclusion map $i: S^1 \to D^2$.
- (b) Brouwer's Fixed Point Theorem states that every continuous map $f: D^n \to D^n$ has a fixed point, i.e., a point x with f(x) = x. Prove this for n = 2. Hint: show that if f has no fixed point, then a retraction map $r: D^2 \to S^1$ can be constructed out of f.

2. (10 points) The goal of this problem is to construct elements in the fundamental group of the torus T, the Klein bottle K and the projective plane \mathbb{RP}^2 and to show that they satisfy certain relations.

(a) Recall that T is homeomorphic to $\Sigma(aba^{-1}b^{-1})$, the quotient of the polygon P_4 with four edges (also known as "square") according using the edge identification determined by the word $aba^{-1}b^{-1}$. Let $p: P_4 \to \Sigma(aba^{-1}b^{-1})$ be the projection map. Let $\tilde{\alpha}_i, \tilde{\beta}_i: I \to P_4$ be the linear edge paths as shown in the the picture below (the edge $\tilde{\alpha}_1$ is identified with $\tilde{\alpha}_2$ and $\tilde{\beta}_1$ is identified with $\tilde{\beta}_2$ to obtain $\Sigma(aba^{-1}b^{-1}) \approx P_4/\sim$)

Let $\alpha = p \circ \widetilde{\alpha}_i$, $\beta = p \circ \widetilde{\beta}_i$ be the based loops in $(\Sigma(aba^{-1}b^{-1}), v)$, with $v := p(v_i) \in \Sigma(aba^{-1}b^{-1})$, and let $a := [\alpha]$, $b := [\beta]$ be the elements of the fundamental group $\pi_1(\Sigma(aba^{-1}b^{-1}), v)$ represented by these based loops. Show that these elements satisfy the relation $aba^{-1}b^{-1} = 1 \in \pi_1(\Sigma(aba^{-1}b^{-1}), v)$.

- (b) Similarly, construct elements a, b in the fundamental group of the Klein bottle $K \approx \Sigma(aba^{-1}b)$ and show that they satisfy the relation $aba^{-1}b = 1$.
- (c) Similarly, construct an element a in the fundamental group of the real projective plane $\mathrm{RP}^2 \approx \Sigma(aa)$ and show that it satisfies the relation $a^2 = 1$.

(d) Recall that \mathbb{RP}^2 is also homeomorphic to $\Sigma(abab)$. Can we use the same techniques as above to construct elements a, b in the fundamental group of $\Sigma(abab)$ which satisfy the relation abab = 1? If yes, construct these elements and prove the relation; if no, explain the difference to the previous cases.

3. (10 points) Two topological spaces X, Y are homotopy equivalent if there are maps $f: X \to Y$ and $g: Y \to X$ such that $g \circ f: X \to X$ is homotopic to id_X and $f \circ g: Y \to Y$ is homotopic to id_Y . Show that the following five topological spaces are all homotopy equivalent:

- (1) the circle S^1 ,
- (2) the open cylinder $S^1 \times \mathbb{R}$,
- (3) the annulus $A = \{(x, y) \mid 1 \le x^2 + y^2 \le 2\},\$
- (4) the solid torus $S^1 \times D^2$,
- (5) the Möbius strip

Hint: A subspace $A \subset X$ is a *retract of* X if there is map $r: X \to A$ which restricts to the identity on A. It is a *deformation retract* of X if in addition the composition $X \xrightarrow{r} A \xrightarrow{i} X$ with the inclusion map i is homotopic to the identity on X. Note that if A is a deformation retract of X, then $r \circ i = id_A$ and $i \circ r \sim id_X$. In particular, A is homotopy equivalent to X. Show that each of the spaces (2)-(5) contains a subspace S homeomorphic to the circle S^1 which is a deformation retract of the bigger space it is contained in.

4. (10 points) Let $f: (S^1, 1) \to (S^1, 1)$ be the basepoint preserving map defined by $f(z) = z^n$ for some $n \in \mathbb{Z}$ and let

$$f_* \colon \pi_1(S^1, 1) \longrightarrow \pi_1(S^1, 1)$$

be the induced homomorphism on the fundamental group. Calculate explicitly the group homomorphism f_* . By this, we mean the following: the winding number gives an explicit isomorphism $\pi_1(S^1, 1) \cong \mathbb{Z}$. Via this isomorphism, the automorphism f_* of the group $\pi_1(S^1, 1)$ corresponds to an automorphism of the group \mathbb{Z} . Any automorphism of \mathbb{Z} is of the form $\mathbb{Z} \to \mathbb{Z}, m \mapsto km$, i.e., is given by multiplication by some integer $k \in \mathbb{Z}$. In other words, "calculate explicitly" means "determine the integer $k \in \mathbb{Z}$ such that the following diagram commutes":

$$\pi_1(S^1, 1) \xrightarrow{f_*} \pi_1(S^1, 1)$$

$$w \downarrow \cong \qquad \cong \downarrow W$$

$$\mathbb{Z} \xrightarrow{k} \mathbb{Z}$$

5. (10 points) A *d*-fold covering map is a covering map $p: \widetilde{X} \to X$ such that for each point $x \in X$, the fiber $p^{-1}(x)$ consists of d points.

- (a) Let X be compact 2-manifold and let $p: \widetilde{X} \to X$ be a d-fold covering map. Show that $\chi(\widetilde{X}) = d \cdot \chi(X)$. Hint: Choose a pattern of polygons Γ on X such that each polygon is contained in some evenly covered subset $U \subset X$. Argue that Γ determines a compatible pattern of polygons $\widetilde{\Gamma}$.
- (b) Let $\widetilde{X} \to X$ is a *d*-fold covering of orientable compact connected 2-manifolds. Give a formula expressing the genus \widetilde{g} of \widetilde{X} in terms of the genus g of X.