Homework Assignment # 4, due Sept. 21

1. (10 points) Let $\alpha, \beta, \gamma: I \to X$ be paths in a topological space X. Assume that $\alpha(1) = \beta(0)$ and $\beta(1) = \gamma(0)$ which guarantees that the concatenated paths $\alpha * (\beta * \gamma)$ and $(\alpha * \beta) * \gamma$ can be formed. Show that these two paths are homotopic (relative endpoints). Verifying this shows that if α, β, γ are loops based at $x_0 \in X$ representing elements $a = [\alpha], b = [\beta], c = [\gamma]$ in $\pi_1(X; x_0)$, then a(bc) = (ab)c. In other words, this proves associativity of multiplication in $\pi_1(X; x_0)$, one of the last things to verify in order to prove that $\pi_1(X; x_0)$ is indeed a group.

Hint: Show that both paths can be written as the composition $\Psi \circ \phi$ of a suitable map $\phi: I \to [0,3]$ and the map

$$[0,3] \xrightarrow{\Psi} X \qquad \text{defined by} \quad \Psi(s) := \begin{cases} \alpha(s) & 0 \le s \le 1\\ \beta(s-1) & 1 \le s \le 2\\ \gamma(s-2) & 2 \le s \le 3 \end{cases}$$

Avoid writing down explicit homotopies; instead use the handy fact that any two paths with the same endpoints in a convex subset of \mathbb{R}^n are homotopic relative endpoints.

2. (10 points) Let X be a topological space and let β be a path from x_0 to x_1 . Show that the map

$$\Phi_{\beta} \colon \pi_1(X, x_0) \longrightarrow \pi_1(X, x_1) \qquad [\gamma] \mapsto [\bar{\beta} * \gamma * \beta]$$

is an isomorphism of groups. In particular, the isomorphism class of the fundamental group $\pi(X, x_0)$ of a path connected space does not depend on the choice of the base point $x_0 \in X$. Hint: Recall from class that for any path γ in X, there are homotopies

$$\gamma * \bar{\gamma} \simeq c_{\gamma(0)}$$
 $\bar{\gamma} * \gamma \simeq c_{\gamma(1)}$ $c_{\gamma(0)} * \gamma \simeq \gamma$, $\gamma * c_{\gamma(1)} \simeq \gamma$

where c_x for $x \in X$ denotes the constant path at x.

3. (10 points) A pointed topological space is a pair (X, x_0) consisting of a topological space X and a point $x_0 \in X$. Let (X, x_0) , (Y, y_0) be pointed topological spaces and let $f: (X, x_0) \to (Y, y_0)$ be a basepoint preserving map, i.e., a continuous map $f: X \to Y$ with $f(x_0) = y_0$.

- (a) Show that the map $f_*: \pi_1(X, x_0) \to \pi_1(Y, y_0)$ defined by $f_*([\gamma]) = [f \circ \gamma]$ is a well-defined.
- (b) Show that f_* is a group homomorphism.

The map $f_*: \pi_1(X, x_0) \to \pi_1(Y, y_0)$ is called the homomorphism of fundamental groups induced by f.

4. (10 points) Let (X, x_0) , (Y, y_0) be pointed topological spaces. Show that $\pi_1(X \times Y, (x_0, y_0))$ is isomorphic to the Cartesian product $\pi_1(X, x_0) \times \pi_1(Y, y_0)$ of the fundamental groups of (X, x_0) and (Y, y_0) .

Hint: use the base point preserving projection maps $p^X \colon X \times Y \to X, p^Y \colon X \times Y \to Y$, and the induced homomorphisms (see the previous problem)

$$p_*^X \colon \pi_1(X \times Y, (x_0, y_0)) \to \pi_1(X, x_0) \qquad p_*^Y \colon \pi_1(X \times Y, (x_0, y_0)) \to \pi_1(Y, y_0).$$

5. (10 points) The goal of this problem is to show that the winding number map

$$W \colon \pi_1(S^1, 1) \to \mathbb{Z}$$

is a group isomorphism. We recall that for a based loop γ in $(S^1, 1)$, the winding number $W(\gamma) \in \mathbb{Z}$ is defined by $W(\gamma) := \widetilde{\gamma}(1) \in \mathbb{Z}$, where $\widetilde{\gamma} : I \to \mathbb{R}$ is the unique lift of $\gamma : I \to S^1$ (i.e., $p \circ \widetilde{\gamma} = \gamma$) with starting point $\widetilde{\gamma}(0) = 0 \in \mathbb{R}$. We assume that W is well-defined, i.e., that the winding number $W(\gamma)$ of a based loop γ depends only on the homotopy class of γ relative endpoints (which will be proved in class on Tuesday, 9-19). Let

$$\Phi \colon \mathbb{Z} \longrightarrow \pi_1(S^1, 1)$$
 be defined by $\Phi(n) := [\gamma_n],$

where $\gamma_n \colon I \to (S^1, 1)$ is the based loop $\gamma_n(s) = e^{2\pi i n s}$.

- (a) Show that the composition $\mathbb{Z} \xrightarrow{\Phi} \pi_1(S^1, 1) \xrightarrow{W} \mathbb{Z}$ is the identity.
- (b) Show that the composition $\pi_1(S^1, 1) \xrightarrow{W} \mathbb{Z} \xrightarrow{\Phi} \pi_1(S^1, 1)$ is the identity. Hint: If $[\gamma] \in \pi_1(S^1, 1)$ and $\Phi(W([\gamma])) = [\gamma']$, you need to show that $\gamma \sim \gamma'$. Let $\tilde{\gamma}, \tilde{\gamma}' \colon I \to \mathbb{R}$ be the unique lifts of γ (resp. γ') with $\tilde{\gamma}(0) = 0 = \tilde{\gamma}'(0)$. Try to show that $\tilde{\gamma}(1) = \tilde{\gamma}'(1)$. Using the fact that paths with the same endpoints in a convex subspace are homotopic relative endpoints, why does this imply $\gamma \sim \gamma'$?
- (c) Show that W is a group homomorphism.