Homework Assignment # 3, due Sept. 14, 2023

1. (10 points) Show that the complex projective space \mathbb{CP}^1 is homeomorphic to the 2-sphere S^2 . Hint: recall that \mathbb{CP}^1 is a quotient of $\mathbb{C}^2 \setminus \{0\}$ and hence a point of \mathbb{CP}^1 is an equivalence class $[z_0, z_1]$ of elements $(z_0, z_1) \in \mathbb{CP}^1 = (\mathbb{C}^2 \setminus \{0\})$. Construct a bijection f between \mathbb{CP}^1 with the point [0, 1] removed and \mathbb{C} . Compose the map f with the map $g: \mathbb{C} = \mathbb{R}^2 \to S^2 \setminus \{(0, 0, 1)\}$ which is the inverse of the stereographic projection map (see the formula from the previous homework set). Simplify the explicit formula for $g \circ f: \mathbb{CP}^1 \setminus \{[0, 1]\} \longrightarrow S^2 \setminus \{(0, 0, 1)\}$ to show that it extends to a continuous bijection between \mathbb{CP}^1 and S^2 .

2. (10 points) Which of the topological groups $GL_n(\mathbb{R})$, O(n), SO(n) are connected? Hint: To show that one of these topological groups is connected, it might be easier to show that it is path-connected. Note that to prove this, it suffices to find a path connecting any element with the identity element (why?). Use without proof the fact that every element in SO(n) (the group of linear maps $f: \mathbb{R}^n \to \mathbb{R}^n$ which are isometries with determinant one) for a suitable choice of basis of \mathbb{R}^n is represented by a matrix of block diagonal form whose diagonal blocks are the 1×1 matrix with entry +1 and/or 2×2 rotational matrices

$$R = \begin{pmatrix} \cos\phi & -\sin\phi\\ \sin\phi & \cos\phi \end{pmatrix}$$

Here "block diagonal" means that all other entries are zero.

3. (10 points) The definition of a manifold involves the technical conditions of being Hausdorff and second countable. Show that these properties are "inherited" by subspaces in the following sense. Let X be a topological space and A a subspace.

- (a) Show that if X is Hausdorff, then so is A.
- (b) Show that if X is second countable, then so is A.

4. (10 points) Let Σ , Σ' be compact connected 2-manifolds. Show that the Euler characteristic of the connected sum $\Sigma \# \Sigma'$ is given by the following formula:

$$\chi(\Sigma \# \Sigma') = \chi(\Sigma) + \chi(\Sigma') - 2.$$

In your proof, do **not** use the Classification Theorem for compact connected 2-manifolds, or the statement $\Sigma(W_1) \# \Sigma(W_2) \approx \Sigma(W_1 W_2)$ we'll prove in class on Tuesday.

5. (10 points) By the classification theorem for compact connected 2-manifolds, the connected sum T # T # K # K # K of two copies of the torus T and three copies of the Klein bottle K is homeomorphic to exactly one of the manifolds Σ_g (the surface of genus $g \ge 0$) or X_k (the connected sum of k copies of the real projective plane \mathbb{RP}^2). Which one is it? (provide detailed arguments!).