Homework Assignment \# 11, due Nov. 30

1. (10 points) Let V be a vector space of dimension n with basis $\left\{b_{1}, \ldots, b_{n}\right\}$, and let $\left\{b^{1}, \ldots, b^{n}\right\}$ be the dual basis for the dual vector space $V^{*}=\operatorname{Hom}(V, \mathbb{R})$.
(a) Let $\operatorname{Mult}^{k}(V, \mathbb{R})$ be the space of multilinear maps $\omega: \underbrace{V \times \cdots \times V}_{k} \rightarrow \mathbb{R}$, and for a multi-index $I=\left(i_{1}, \ldots, i_{k}\right)$ with $1 \leq i_{s} \leq n$ let $b^{I} \in \operatorname{Mult}^{k}(V, \mathbb{R})$ be defined by

$$
b^{I}\left(v_{1}, \ldots, v_{k}\right):=b^{i_{1}}\left(v_{1}\right) \cdots b^{i_{k}}\left(v_{k}\right)
$$

Show that the elements b^{I} form a basis for $\operatorname{Mult}{ }^{k}(V, \mathbb{R})$. Hint: argue that a k-linear form $\omega \in \operatorname{Mult}^{k}(V, \mathbb{R})$ is determined by the numbers $\omega\left(b_{J}\right) \in \mathbb{R}$ obtained by evaluating it on the k-tupels $b_{J}:=\left(b_{j_{1}}, \ldots, b_{j_{k}}\right)$ with $J=\left(j_{1}, \ldots, j_{k}\right)$ and $1 \leq j_{s} \leq n$.
(b) What is the dimension of $\operatorname{Mult}^{k}(V, \mathbb{R})$?
(c) Let $\operatorname{Alt}^{k}(V, \mathbb{R})$ be the space of alternating multilinear maps $\omega: V^{\times k} \rightarrow \mathbb{R}$, and for a multi-index $I=\left(i_{1}, \ldots, i_{k}\right)$ with $1 \leq i_{s} \leq n$ let $b^{\wedge I} \in \operatorname{Alt}^{k}(V, \mathbb{R})$ be defined by

$$
b^{\wedge I}\left(v_{1}, \ldots, v_{k}\right):=\sum_{\sigma \in S_{k}} \operatorname{sign}(\sigma) b^{i_{1}}\left(v_{\sigma(1)}\right) \cdots b^{i_{k}}\left(v_{\sigma(k)}\right) .
$$

Show that $b^{\wedge I}\left(b_{J}\right)=\left\{\begin{array}{ll}1 & \text { if } I=J \\ 0 & \text { if } I \neq J\end{array}\right.$ for multi-indices I, J which are increasing, i.e., $1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n$.
(d) Show that the elements $b^{\wedge I}$ for increasing multi-indices I, form a basis for $\mathrm{Alt}^{k}(V, \mathbb{R})$. Hint: argue that an alternating form $\omega \in \operatorname{Alt}^{k}(V, \mathbb{R})$ is determined by the numbers $\omega\left(b_{J}\right) \in \mathbb{R}$ obtained by evaluating it on the k-tupels $b_{J}:=\left(b_{j_{1}}, \ldots, b_{j_{k}}\right)$ for an increasing multi-index J. As noted in class, this in particular implies that the dimension of $\operatorname{Alt}^{k}(V, \mathbb{R})$ is $\binom{n}{k}$.
Note: in class we wrote $b^{i_{1}} \wedge \cdots \wedge b^{i_{k}}$ for the element $b^{I} \in \operatorname{Alt}^{k}(V, \mathbb{R})$ defined above. This was not a good idea, since it is not clear that b^{I} is in fact equal to the wedge product of the $b^{i_{s}}$, which we defined later in class. This is in fact true, as will be proved as part of the next problem.
2. (10 points) We recall that the wedge product

$$
\operatorname{Alt}^{k}(V, \mathbb{R}) \times \operatorname{Alt}^{\ell}(V, \mathbb{R}) \xrightarrow{\wedge} \operatorname{Alt}^{k+\ell}(V, \mathbb{R})
$$

is a bilinear associative product defined by

$$
(\omega \wedge \eta)\left(v_{1}, \ldots, v_{k+\ell}\right):=\frac{1}{k!\ell!} \sum_{\sigma \in S_{k+\ell}} \operatorname{sign}(\sigma) \omega\left(v_{\sigma(1)}, \ldots, v_{\sigma(k)}\right) \eta\left(v_{\sigma(k+1)}, \ldots, v_{\sigma(k+\ell)}\right)
$$

for $\omega \in \operatorname{Alt}^{k}(V, \mathbb{R}), \eta \in \operatorname{Alt}^{\ell}(V, \mathbb{R}), v_{1}, \ldots, v_{k+\ell} \in V$.
(a) Show that

$$
\left(b^{i_{1}} \wedge \cdots \wedge b^{i_{k}}\right)\left(b_{J}\right)= \begin{cases}1 & I=J \\ 0 & I \neq J\end{cases}
$$

where $I=\left(i_{1}, \ldots, i_{k}\right), J=\left(j_{1}, \ldots, j_{k}\right)$ are increasing sequence, and we use the same notation and terminology as in problem (1). Hint: Use induction over k.
This shows in particular that the alternating k-form $b^{I} \in \operatorname{Alt}^{k}(V, \mathbb{R})$ from 1(c) is in fact equal to $b^{i_{1}} \wedge \cdots \wedge b^{i_{k}}$.
(b) Show that the wedge product is graded commutative, i.e.,

$$
\eta \wedge \omega=(-1)^{k \ell} \omega \wedge \eta \quad \text { for } \omega \in \operatorname{Alt}^{k} l(V, \mathbb{R}), \eta \in \operatorname{Alt}^{\ell}(V, \mathbb{R})
$$

Hint: First consider the case $k=\ell=1$, then argue that it suffices to prove the statement in the case $\omega=b^{i_{1}} \wedge \cdots \wedge b^{i_{k}}, \eta=b^{j_{1}} \wedge \cdots \wedge b^{j_{\ell}}$.
3. (10 points) Let M, N be smooth manifolds and $F: M \rightarrow N$ a smooth map. Then a differential form $\omega \in \Omega^{k}(N)$ leads to a form $F^{*} \omega \in \Omega^{k}(M)$, called the pullback of ω along F which is defined by

$$
\left(F^{*} \omega\right)_{p}\left(v_{1}, \ldots, v_{k}\right):=\omega_{p}\left(D F_{p}\left(v_{1}\right), \ldots, D F_{p}\left(v_{k}\right)\right) \quad \text { for } p \in M, v_{1}, \ldots, v_{k} \in T_{p} M
$$

In more detail: the k-form $F^{*} \omega$ is a section of the vector bundle $\operatorname{Alt}^{k}(T M ; \mathbb{R})$, and hence it can be evaluated at $p \in M$ to obtain an element $\left(F^{*} \omega\right)_{p}$ in the fiber of that vector bundle over p, which is $\operatorname{Alt}^{k}\left(T_{p} M ; \mathbb{R}\right)$. In other words, $\left(F^{*} \omega\right)_{p}$ is an alternating multilinear map

$$
\left(F^{*} \omega\right)_{p}: \underbrace{T_{p} M \times \cdots \times T_{p} M}_{k} \longrightarrow \mathbb{R},
$$

and hence it can be evaluated on the k tangent vectors $v_{1}, \ldots, v_{k} \in T_{p} M$ to obtain a real number $\left(F^{*} \omega\right)_{p}\left(v_{1}, \ldots, v_{k}\right)$. On the right hand side of the equation defining $F^{*} \omega$, the map $D F_{p}: T_{p} M \rightarrow T_{F(p)} N$ is the differential of F. Hence the alternating multilinear map $\omega_{F(p)} \in \operatorname{Alt}^{k}\left(T_{F(p)} N ; \mathbb{R}\right)$ can be evaluated on $D F_{p}\left(v_{1}\right), \ldots, D F_{p}\left(v_{k}\right)$ to obtain the real number $\omega_{p}\left(D F_{p}\left(v_{1}\right), \ldots, D F_{p}\left(v_{k}\right)\right)$.

Let $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a smooth map. Show that

$$
\begin{equation*}
F^{*}\left(d x^{1} \wedge \cdots \wedge d x^{n}\right)=\operatorname{det}(D F) d x^{1} \wedge \cdots \wedge d x^{n} \tag{0.1}
\end{equation*}
$$

Here $D F: \mathbb{R}^{n} \rightarrow \operatorname{Hom}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)$ is the differential of $D F$, which maps $x \in \mathbb{R}^{n}$ to $D F_{x}: \mathbb{R}^{n} \rightarrow$ \mathbb{R}^{n}, the differential of F at the point $x \in \mathbb{R}^{n}$. Hint: Evaluated at a point $x \in \mathbb{R}^{n}$ both sides of the equation are vectors of the 1 -dimensional vector space $\operatorname{Alt}^{n}\left(T_{x} \mathbb{R}^{n}, \mathbb{R}\right)=\operatorname{Alt}^{n}\left(\mathbb{R}^{n}, \mathbb{R}\right)$.

Hence it suffices to show equality after evaluating both sides on $\left(e_{1}, \ldots, e_{n}\right)$, where e_{1}, \ldots, e_{n} is the standard basis of \mathbb{R}^{n}.
4. (10 points) For any smooth manifold M the de Rham differential (also called exterior differential) is the unique map $d: \Omega^{k}(M) \rightarrow \Omega^{k+1}(M)$ with the following properties:
(i) d is linear.
(ii) For a function $f \in C^{\infty}(M)=\Omega^{0}(M)$ the 1-form $d f \in \Omega^{1}(M)=C^{\infty}\left(M, T^{*} M\right)$ is the usual differential of f.
(iii) d is a graded derivation with respect to the wedge product; i.e.,

$$
d(\omega \wedge \eta)=(d \omega) \wedge \eta+(-1)^{k} \omega \wedge d \eta \quad \text { for } \omega \in \Omega^{k}(M), \eta \in \Omega^{l}(M)
$$

(iv) $d^{2}=0$.

We recall that for $M=\mathbb{R}^{n}$, every k-form $\eta \in \Omega^{k}\left(\mathbb{R}^{n}\right)$ can be written uniquely in the form

$$
\eta=\sum_{i_{1}<\cdots<i_{k}} f_{i_{1}, \ldots, i_{k}} d x^{i_{1}} \wedge \cdots \wedge d x^{i_{k}}
$$

for smooth functions $f_{i_{1}, \ldots, i_{k}} \in C^{\infty}\left(\mathbb{R}^{n}\right)$. The point of this problem is to give an explicit formula for d for $M=\mathbb{R}^{n}$ (which works equally well locally, on a coordinate patch of a smooth n-manifold).
(a) Show that for $f \in C^{\infty}\left(\mathbb{R}^{n}\right)$ the differential $d f \in \Omega^{1}\left(\mathbb{R}^{n}\right)$ is given by

$$
d f=\sum_{i=1}^{n} \frac{\partial f}{\partial x^{i}} d x^{i}
$$

(b) Show that for $\omega=f d x^{i_{1}} \wedge \cdots \wedge d x^{i_{k}} \in \Omega^{k}\left(\mathbb{R}^{n}\right)$

$$
d \omega=\sum_{j=1}^{n} \frac{\partial f}{\partial x^{j}} d x^{j} \wedge d x^{i_{1}} \wedge \cdots \wedge d x^{i_{k}}
$$

5. (10 points) Show that the exterior derivative for differential forms on \mathbb{R}^{3} corresponds to the classical operations of gradient resp. curl resp. divergence. More precisely, show that there is a commutative diagram

Here $\operatorname{Vect}\left(\mathbb{R}^{3}\right)$ is the space of vector fields on \mathbb{R}^{3}, and we recall that grad, curl and divergence are given by the formulas

$$
\begin{aligned}
\operatorname{grad}(f) & =\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right) \\
\operatorname{curl}\left(f_{1}, f_{2}, f_{3}\right) & =\left(\frac{\partial f_{3}}{\partial y}-\frac{\partial f_{2}}{\partial z}, \frac{\partial f_{1}}{\partial z}-\frac{\partial f_{3}}{\partial x}, \frac{\partial f_{2}}{\partial x}-\frac{\partial f_{1}}{\partial y}\right) \\
\operatorname{div}\left(f_{1}, f_{2}, f_{3}\right) & =\frac{\partial f_{1}}{\partial x}+\frac{\partial f_{2}}{\partial y}+\frac{\partial f_{3}}{\partial z}
\end{aligned}
$$

Here we identify a vector field on \mathbb{R}^{3} with a triple $\left(f_{1}, f_{2}, f_{3}\right)$ of smooth functions on \mathbb{R}^{3}. The vertical isomorphisms are given by

$$
\begin{aligned}
\left(f_{1}, f_{2}, f_{3}\right) & \mapsto f_{1} d x+f_{2} d y+f_{3} d z \\
\left(f_{1}, f_{2}, f_{3}\right) & \mapsto f_{1} d y \wedge d z+f_{2} d z \wedge d x+f_{3} d x \wedge d y \\
f & \mapsto f d x \wedge d y \wedge d z
\end{aligned}
$$

