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Homework Assignment # 11, due Nov. 30

1. (10 points) Let V be a vector space of dimension n with basis {b1, . . . , bn}, and let
{b1, . . . , bn} be the dual basis for the dual vector space V ∗ = Hom(V,R).

(a) Let Multk(V,R) be the space of multilinear maps ω : V × · · · × V︸ ︷︷ ︸
k

→ R, and for a

multi-index I = (i1, . . . , ik) with 1 ≤ is ≤ n let bI ∈ Multk(V,R) be defined by

bI(v1, . . . , vk) := bi1(v1) · · · bik(vk).

Show that the elements bI form a basis for Multk(V,R). Hint: argue that a k-linear
form ω ∈ Multk(V,R) is determined by the numbers ω(bJ) ∈ R obtained by evaluating
it on the k-tupels bJ := (bj1 , . . . , bjk) with J = (j1, . . . , jk) and 1 ≤ js ≤ n.

(b) What is the dimension of Multk(V,R)?

(c) Let Altk(V,R) be the space of alternating multilinear maps ω : V ×k → R, and for a
multi-index I = (i1, . . . , ik) with 1 ≤ is ≤ n let b∧I ∈ Altk(V,R) be defined by

b∧I(v1, . . . , vk) :=
∑
σ∈Sk

sign(σ)bi1(vσ(1)) · · · bik(vσ(k)).

Show that b∧I(bJ) =

{
1 if I = J

0 if I 6= J
for multi-indices I, J which are increasing, i.e.,

1 ≤ i1 < i2 < · · · < ik ≤ n.

(d) Show that the elements b∧I for increasing multi-indices I, form a basis for Altk(V,R).
Hint: argue that an alternating form ω ∈ Altk(V,R) is determined by the numbers
ω(bJ) ∈ R obtained by evaluating it on the k-tupels bJ := (bj1 , . . . , bjk) for an increasing
multi-index J . As noted in class, this in particular implies that the dimension of
Altk(V,R) is

(
n
k

)
.

Note: in class we wrote bi1 ∧ · · · ∧ bik for the element bI ∈ Altk(V,R) defined above. This
was not a good idea, since it is not clear that bI is in fact equal to the wedge product of the
bis , which we defined later in class. This is in fact true, as will be proved as part of the next
problem.

2. (10 points) We recall that the wedge product

Altk(V,R)× Alt`(V,R)
∧−→ Altk+`(V,R)

is a bilinear associative product defined by

(ω ∧ η)(v1, . . . , vk+`) :=
1

k!`!

∑
σ∈Sk+`

sign(σ)ω(vσ(1), . . . , vσ(k))η(vσ(k+1), . . . , vσ(k+`))

for ω ∈ Altk(V,R), η ∈ Alt`(V,R), v1, . . . , vk+` ∈ V .
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(a) Show that

(bi1 ∧ · · · ∧ bik)(bJ) =

{
1 I = J

0 I 6= J

where I = (i1, . . . , ik), J = (j1, . . . , jk) are increasing sequence, and we use the same
notation and terminology as in problem (1). Hint: Use induction over k.

This shows in particular that the alternating k-form bI ∈ Altk(V,R) from 1(c) is in
fact equal to bi1 ∧ · · · ∧ bik .

(b) Show that the wedge product is graded commutative, i.e.,

η ∧ ω = (−1)k`ω ∧ η for ω ∈ Altkl(V,R), η ∈ Alt`(V,R).

Hint: First consider the case k = ` = 1, then argue that it suffices to prove the
statement in the case ω = bi1 ∧ · · · ∧ bik , η = bj1 ∧ · · · ∧ bj` .

3. (10 points) Let M , N be smooth manifolds and F : M → N a smooth map. Then a
differential form ω ∈ Ωk(N) leads to a form F ∗ω ∈ Ωk(M), called the pullback of ω along F
which is defined by

(F ∗ω)p(v1, . . . , vk) := ωp(DFp(v1), . . . , DFp(vk)) for p ∈M , v1, . . . , vk ∈ TpM.

In more detail: the k-form F ∗ω is a section of the vector bundle Altk(TM ;R), and hence it
can be evaluated at p ∈ M to obtain an element (F ∗ω)p in the fiber of that vector bundle
over p, which is Altk(TpM ;R). In other words, (F ∗ω)p is an alternating multilinear map

(F ∗ω)p : TpM × · · · × TpM︸ ︷︷ ︸
k

−→ R,

and hence it can be evaluated on the k tangent vectors v1, . . . , vk ∈ TpM to obtain a
real number (F ∗ω)p(v1, . . . , vk). On the right hand side of the equation defining F ∗ω, the
map DFp : TpM → TF (p)N is the differential of F . Hence the alternating multilinear map

ωF (p) ∈ Altk(TF (p)N ;R) can be evaluated on DFp(v1), . . . , DFp(vk) to obtain the real number
ωp(DFp(v1), . . . , DFp(vk)).

Let F : Rn → Rn be a smooth map. Show that

F ∗(dx1 ∧ · · · ∧ dxn) = det(DF ) dx1 ∧ · · · ∧ dxn (0.1)

Here DF : Rn → Hom(Rn,Rn) is the differential of DF , which maps x ∈ Rn to DFx : Rn →
Rn, the differential of F at the point x ∈ Rn. Hint: Evaluated at a point x ∈ Rn both sides
of the equation are vectors of the 1-dimensional vector space Altn(TxRn,R) = Altn(Rn,R).
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Hence it suffices to show equality after evaluating both sides on (e1, . . . , en), where e1, . . . , en
is the standard basis of Rn.

4. (10 points) For any smooth manifold M the de Rham differential (also called exterior
differential) is the unique map d : Ωk(M)→ Ωk+1(M) with the following properties:

(i) d is linear.

(ii) For a function f ∈ C∞(M) = Ω0(M) the 1-form df ∈ Ω1(M) = C∞(M,T ∗M) is the
usual differential of f .

(iii) d is a graded derivation with respect to the wedge product; i.e.,

d(ω ∧ η) = (dω) ∧ η + (−1)kω ∧ dη for ω ∈ Ωk(M), η ∈ Ωl(M).

(iv) d2 = 0.

We recall that for M = Rn, every k-form η ∈ Ωk(Rn) can be written uniquely in the form

η =
∑

i1<···<ik

fi1,...,ikdx
i1 ∧ · · · ∧ dxik

for smooth functions fi1,...,ik ∈ C∞(Rn). The point of this problem is to give an explicit
formula for d for M = Rn (which works equally well locally, on a coordinate patch of a
smooth n-manifold).

(a) Show that for f ∈ C∞(Rn) the differential df ∈ Ω1(Rn) is given by

df =
n∑
i=1

∂f

∂xi
dxi

(b) Show that for ω = fdxi1 ∧ · · · ∧ dxik ∈ Ωk(Rn)

dω =
n∑
j=1

∂f

∂xj
dxj ∧ dxi1 ∧ · · · ∧ dxik .

5. (10 points) Show that the exterior derivative for differential forms on R3 corresponds to
the classical operations of gradient resp. curl resp. divergence. More precisely, show that
there is a commutative diagram

C∞(R3)
grad // Vect(R3) curl //

∼=
��

Vect(R3) div //

∼=
��

C∞(R3)

∼=
��

Ω0(R3) d // Ω1(R3) d // Ω2(R3) d // Ω3(R3)
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Here Vect(R3) is the space of vector fields on R3, and we recall that grad, curl and divergence
are given by the formulas

grad(f) =

(
∂f

∂x
,
∂f

∂y
,
∂f

∂z

)
curl(f1, f2, f3) =

(
∂f3
∂y
− ∂f2

∂z
,
∂f1
∂z
− ∂f3
∂x

,
∂f2
∂x
− ∂f1

∂y

)
div(f1, f2, f3) =

∂f1
∂x

+
∂f2
∂y

+
∂f3
∂z

Here we identify a vector field on R3 with a triple (f1, f2, f3) of smooth functions on R3. The
vertical isomorphisms are given by

(f1, f2, f3) 7→ f1dx+ f2dy + f3dz

(f1, f2, f3) 7→ f1dy ∧ dz + f2dz ∧ dx+ f3dx ∧ dy
f 7→ fdx ∧ dy ∧ dz


