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1 Pointset Topology

1.1 Open subsets of R"
Definition 1.1. For z € R™ and r > 0, let

B.(z) :={y € R" | dist(z,y) < r}

be the open ball B,(z) of radius r around x. Here

dist(z,y) == llz = yll = V(@1 = y2)* + - + (20 — ya)?

is the distance between the points x and y.

A subset U C R™ is open if for each point there is some r > 0 such that B, (z) is contained

in U. Equivalently, U is open if and only if U is a union of open balls.
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The point of this definition is that it makes it possible to give a very compact definition
of continuity of maps f: R™ — R"™ which is equivalent to the usual e-0 definition.

Definition 1.2. A map f: R™ — R" is continuous if for every open subset U C R"™ the
preimage f~!(U) is open in R™. More generally, if V' C R™, W C R" are open subsets a
map f: V — W is continuous if for every open subset U C R" the preimage f~1(U) is open
in R™.

Examples of continuous maps.

1. From calculus we know that the following maps f: R D V — R are continuous:
polynomials, exponential functions, rational functions, trigonometric functions. Here
V' C R is the natural domain of these functions.

2. The maps R? — R given by (z1,13) + 1 + o or (1, T2) > T1Ts.

3. The coordinate functions z*: R™ — R given by (z1,...,7,) — 1, also known as
projection maps.

Warning. The open set characterization of continuity is great for more abstract statements,
like showing that the composition of continuous maps is continuous. However, checking that
a given map f is continuous by verifying that f~1(U) is open for an open subset U of the
codomain of f is usually cumbersome. A much better strategy is to recognize a given map
as “built from simpler maps” that we already know to be continuous. The following three
lemmas illustrate what we mean by “built from”.

Lemma 1.3. The composition of continuous maps is continuous.
We leave the simple proof to the reader.

Lemma 1.4. A map f: V — R" is continuous if and only if all its component maps f.: V —
R, fi := a2 o f are continuous (note that f(x) = (fi(x),..., fo(x)), which explains the
terminology “component maps”).

The proof of this statement will follow from the much more general continuity criterion
for maps to a product, which we will prove after introducing the product topology (see

Lemma [1.19)).

Lemma 1.5. Let fi, fo: R DV — R be continuous maps. Then also fi + fo and f1- fo are
continuous.

Proof. Let f: V — R? be the map with components maps fi, fo; i.e., f(z) = (fi(z), fo(2)).
The map f is continuous since it component maps are continuous. The map fi+ fo: V — R
can be factored as

v LRt LR

and hence is continuous as the composition of continuous maps. Replacing the map R? — R,
(1, 22) — x1 + z2 by the map (21, x2) — z122 similarly shows that f; - fo is continuous. [
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Example 1.6. (More Examples of continuous maps.)
1. Let f: R" — R be a polynomial map, i.e.,

f(z) = E iy i X Ty for x = (21,...,2,) € R" and coefficients a;, _,;, € R

i1500in

We observe that f is a sum of functions, and each summand is a product of projection
maps « — 3 and the constant map x — a;,,._;,. Hence the continuity of the project
maps and constant maps imply by Lemma the continuity of each summand, which
in turn implies the continuity of f.

2. Let Mp«n(R) = R™ be the vector space of n x n matrices. Then the map
Mysn(R) X My (R) — Myyn(R) (A,B) — AB

given by matrix multiplication is continuous. To see this, it suffices by Lemma
to check that each component map is continuous. This is the case, since each matrix

entry of AB is a polynomial and hence a continuous function of the matrix entries of
A and B.

1.2 Topological spaces

The characterization of continuous maps f: R™ — R" in terms of open subsets of R™
and R"™ suggests that we can define what we mean by a continuous map f: X — Y between
sets X, Y, once we pick collections Ty, Ty of subsets of X resp. Y that we consider the “open
subsets” of these sets. The next result summarizes the basic properties of open subsets of
R™, which then motivates the restrictions that we wish to put on such collections 7.

Lemma 1.7. Open subsets of R™ have the following properties.
(i) R™ and 0 are open.
(ii) Any union of open sets is open.

(iii) The intersection of any finite number of open sets is open.

Definition 1.8. A topological space is a set X together with a collection T of subsets of X,
called open sets which are required to satisfy conditions (i), (ii) and (iii) of the lemma above.
The collection T is called a topology on X. The sets in T are called the open sets, and their
complements in X are called closed sets. A subset of X may be neither closed nor open,
either closed or open, or both.

A map f: X — Y between topological spaces X, Y is continuous if the inverse image
f7H(V) of every open subset V' C Y is an open subset of X.
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It is easy to see that the composition of continuous maps is again continuous.
Example 1.9. (Examples of topological spaces.)

1. Let T be the collection of open subsets of R™ in the sense of Definition Then T
is a topology on R", the standard topology on R™ or metric topology on R™ (since this
topology is determined by the metric dist(z,y) = || — y|| on R").

2. Let X be a set. Then T = {all subsets of X} is a topology, the discrete topology. We
note that any map f: X — Y to a topological space Y is continuous. We will see later
that the only continuous maps R™ — X are the constant maps.

3. Let X be a set. Then T = {0, X'} is a topology, the indiscrete topology.

Sometimes it is convenient to define a topology T on a set X by first describing a smaller
collection B of subsets of X, and then defining T to be those subsets of X that can be
written as unions of subsets belonging to B. We’ve done this already when the topology on
R™: Let B be the collection of all open balls B,(z) C R™; we recall that B,(z) = {y € X |
dist(x,y) < r}. The standard topology on R™ consists of those subsets U which are unions
of subsets belonging to B.

Lemma 1.10. Let B be a collection of subsets of a set X satisfying the following conditions
(i) Ewvery point x € X belongs to some subset B € B.

(ii) If By, By € B, then for every x € By N By there is some B € B with v € B and
B C B1N B,.

Then T := {unions of subsets belonging to B} is a topology on X.

Definition 1.11. If the above conditions are satisfied, we call the collection B is called a
basis for the topology T. Conversely, X is a topological space, and B is a collection of open
subsets of X such that each open subset is a union of subsets belonging to B, we say that B
generates the topology.

We note that if B generates the topology of a topological space X, then B automatically
satisfies conditions (i) & (ii) above, i.e., B is in fact a basis for the given topology.
1.2.1 Subspace topology
Definition 1.12. Let X be a topological space, and A C X a subset. Then

T={ANU|U c X}

open

is a topology on A called the subspace topology.
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We note that the inclusion map 7: A — X is continuous for the subspace topology on A,
since for every open subset U C X, i~} (U) = U N A is an open subset of A by construction
of the subspace topology.

Example 1.13. (Examples of subspaces of R") Here are examples of subspaces of R"
(i.e., subsets of R™ equipped with the subspace topology) we will be talking about during
the semester:

1. The n-disk D™ := {x € R" | |z| <1} C R™, and D := {x € R" | |z| < r}, the n-disk
of radius r > 0.

2. The n-sphere S™ := {x € R"™ | |x| =1} C R
3. The torus T = {v € R?® | dist(v, K) =r} for 0 < r < 1. Here
K ={(z,y,0) [ 2" +y* =1} CR’

is the unit circle in the zy-plane, and dist(v, K) = inf,cx dist(v, w) is the distance
between v and K.

4. The general linear group
GL,(R) = {vector space isomorphisms f: R" — R"}
— {(v1,...,0,) | v; € R, det(vy,...,v,) # 0}
= {invertible n x n-matrices} C My, (R) = R
Here we think of (vy,...,v,) as an n X m-matrix with column vectors v;, and the
bijection is the usual one in linear algebra that sends a linear map f: R” — R"™ to the

matrix (f(e1),..., f(e,)) whose column vectors are the images of the standard basis
elements e; € R".

5. The special linear group

2

SLy(R) = {(v1,...,v,) | v; € R", det(vq,...,0,) =1} C Mpyn(R) =R"

6. The orthogonal group

O(n) = {linear isometries f: R" — R"}
={(v1,...,v,) | v; € R" v;’s are orthonormal} C M, ,(R) =R"

2

We recall that a collection of vectors v; € R™ is orthonormal if |v;| = 1 for all ¢, and v;
is perpendicular to v; for i # j.
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7. The special orthogonal group

SO(n) = {(v1,...,v,) € O(n) | det(vy,...,v,) =1} C Mypyn(R) = R™

8. The Stiefel manifold

Vi(R™) = {(v1,...,v) | v; € R", v;’s are orthonormal} C M, (R) = R"*

Lemma 1.14. (Continuity criterion for maps to a subspace.) Let X, Y be topological
spaces and let B be a subset of Y equipped with the subspace topology. Then a map f: X — B

18 continuous if and only if the composition X I B Y s continuous.
Proof. Homework O
Example 1.15. (Examples of continuous maps involving subspaces.)

1. The map GL,(R) — GL,(R), A — A~! is continuous. Homework problem. Hint:
by the above lemma, it suffices to prove continuity of the composition GL,(R) —
GL,(R) < M,x,(R), which in turn by Lemma [.4] amounts to checking continuity of
each matrix component of A=! as a function of the matrix components of A.

2. Let G be one of the groups SL,(R), O(n), SO(n), equipped with the subspace topology
as subsets of M, x,(R). Then the map G — G, A — A~! is continuous. To see that
this map is continuous, we note it is the restriction of the continuous map A — A1
on GL,(R) to the subspace G C GL,(R) and use the following handy fact.

Lemma 1.16. Let f: X — Y be a continuous map. If A C X, B C Y are subspaces
with f(A) C B, then the restriction fla: A — B is continuous (with respect to the subspace
topology on X and Y .

Proof. Consider the commutative diagram

f
L B

[

X—>Y

.

where 7,5 are the obvious inclusion maps. These inclusion maps are continuous w.r.t. the
subspace topology on A, B by Lemma|l.14] The continuity of f and ¢ implies the continuity
of foi=jo fl4 which again by Lemma implies the continuity of f 4. O
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1.2.2 Product topology

Definition 1.17. The product topology on the Cartesian product X x Y = {(z,y) | = €
X, y € Y} of topological spaces X, Y is the topology generated by the subsets
B={UxV|U Cc X,V C Y}
open open

The collection B obviously satisfies property (1) of a basis (see Definition [1.11]); property
(2) holds since (U x V)N (U' x V') = (UNU’) x (VNV’'). We note that the collection B is
not a topology since the union of U x V' and U’ x V' is typically not a Cartesian product. For
example, if X =Y =R and U,U’,V, V' are open intervals the products U x V and U’ x V'
are (open) rectangles whose union might look like the shaded region in the figure below.

UxV

U xV'

We note that the projection maps p;: X XY — X and po: X XY — Y are continuous: if
U is an open subset of X, then p;*(U) = U x Y is a product of open subsets, i.e., it belongs
to the collection B. In particular, it is an open subset of X x Y equipped with the product
topology, and hence p; is continuous. The argument for p, is analogous.

There is obviously a plethora of examples of product spaces, e.g., the product of any two
of the eight spaces of Example [I.13] Sometimes, the product topology on a product agrees
with a topology described in a different way, for example:

Lemma 1.18. The product topology on R™ x R™ (with each factor equipped with the metric
topology) agrees with the metric topology on R™T"™ = R™ x R™.
Proof: homework.

Other product spaces might be homeomorphic to topological spaces constructed com-
pletely differently. For example, we will see that the product S' x S! is homeomorphic to
the torus T' of Example (3) To work with product spaces, it is very useful to have the
following recognition principal for continuity of map to a product.

Lemma 1.19. (Continuity criterion for maps to a product.) Let X, Y, Y5 be topo-
logical spaces. Then a map f: X — Y7 X Yy is continuous if and only if the compositions

X Lyvixy, 2y,
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are continuous for i = 1,2, where p;: Y1 X Yo = Y] is the projection map.

We note that the composition p; o f is the i-th component map of f. So according to
the above lemma a map to a product is continuous if and only if all its component maps are
continuous. This is a far reaching generalization of Lemma [1.4] which was about maps with
target space R" =R x -+ x R.

For the proof of Lemma [1.19] as well as in many other situations, it will be helpful to
use the following simple result, the reader is charged with proving.

Lemma 1.20. Let f: X — Y be a map be topological spaces. Suppose the topology on the
codomain Y is generated by a basis B. Then f is continuous if and only if f~*(U) is open
i X for every U € B.

Proof of Lemma[1.19. 1f f: X — Y} xY; is continuous, then the component maps f; := p;o f
are continuous, since they are compositions of the continuous maps p; and f. Conversely,
assume that the component maps fi, fo are continuous. To show that f is continuous it
suffices by the previous lemma to show that f~!(U) is open where U belongs to the basis B
that generated the product topology. In other words, U is a product U = U; x U, of open
subsets U; C Yy, Uy C Y. Then

fHU) = fFHUx Uy) = frHU) N fH(Us) € X
is an open subset of X, since f; *(U;) is open in X by the assumed continuity of f;. [

The following result is consequence of the Continuity criterion for maps to a product; its
proof is a good illustration of how the criterion is used.

Lemma 1.21. Let G be one of the groups GL,(R), SL,(R), O(n), SO(n), equipped with
the subspace topology as subsets of My.n(R). Then G is a topological group, i.e., G is a
topological space and a group, and the topology and the group structure are compatible in the
sense that

e The multiplication map G x G - G is continuous, and

1

e the map G — G, g+ g~ is continuous.

Proof. We discussed continuity of the inverse map in Example To prove continuity of
the multiplication map p, we consider the commutative diagram

GxG a s G

] |

Mnxn(R) X ManGR) L> Mnxn(R)
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where ¢ is the inclusion map, and m is matrix multiplication which is continuous by Example
[1.6] It might be tempting to argue that p is the restriction of the continuous map m, and
hence it is continuous by Lemma [1.16, However, that assumes that G x G is equipped with
its subspace topology as a subset of My, (R) X M,.,(R), rather than as equipped with the
product topology. Proving that these topologies in fact agree is one way to finish the proof.

Alternatively, using Lemma [1.19, we argue that the map i X i: G X G — My, (R) x
M, «n(R) is continuous since its component maps are: the first component map is the com-
position of the continuous maps

Gx G2 G- Mywn(R)

and hence continuous; similarly for the second component map. Hence mo(ix1) is continuous,
which equals 7 o by the commutativity of the diagram. It follows that p is continuous by
the criterion for continuity of a map to a subspace O

1.2.3 Quotient topology.

Definition 1.22. Let X be a topological space and let ~ be an equivalence relation on X.
We denote by X/ ~ be the set of equivalence classes and by

p: X — X/~ T — [x]

be the projection map that sends a point x € X to its equivalence class [z]. The quotient
topology on X/ ~ is given by the collection of subsets

T ={U C X/ ~|p *(U) is an open subset of X}.
The set X/ ~ equipped with the quotient topology is called the quotient space.

We note that the projection map p: X — X/ ~ is continuous, since if U is an open
subset of X/ ~ with respect to the quotient topology, then by definition of that topology
p~}(U) is an open subset of X.

The quotient topology is often used to construct a topology on a set Y which is not a
subset of some Euclidean space R™, or for which it is not clear how to construct a metric. If
there is a surjective map

p: X =Y

from a topological space X, then Y can be identified with the quotient space X/ ~, where the
equivalence relation is given by x ~ ' if and only if p(z) = p(2’). In particular, Y = X/ ~
can be equipped with the quotient topology. Here are important examples.

Example 1.23. (Examples of quotient spaces).
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1. Let A be a subset of a topological space X. Define a equivalence relation ~ on X by
x~yifz=yorzye A We use the notation X/A for the quotient space X/ ~. A
concrete example is provided by D"/S"~1 which is homeomorphic to the sphere S,
as we will see later.

2. The real projective space of dimension n is the set
RP" := {1-dimensional subspaces of R"*'}.

The map
S" — RP" R™™ 5 v subspace generated by v

is surjective, leading to the identification
RP" = S"/(v ~ £v),
and the quotient topology on RP™.

3. Similarly, working with complex vector spaces, we obtain a quotient topology on the
the complex projective space

CP" := {1-dimensional subspaces of C"*'} = S /(v ~ zv), ze St

4. Generalizing, we can consider the Grassmann manifold
Gr(R"*) := {k-dimensional subspaces of R"**}.
There is a surjective map
ViR ) = {(vy,...,v;) | v; € R™™* v;’s are orthonormal}  — G (R™™)

given by sending (vy, ..., vx) € Vi(R"*) to the k-dimensional subspace of R"** spanned
by the v;’s. Hence the subspace topology on the Stiefel manifold Vj(R"**) c Rk
gives a quotient topology on the Grassmann manifold Gy (R"*) = Vi (R"™*)/ ~. The
same construction works for the complex Grassmann manifold Gy (C"**).

As the example [1.23|1) shows, a quotient space ¥ = X/ ~ might be homeomorphic
to a topological space Z constructed in a different way. To establish the homeomorphism
between Y and Z, we need to construct continuous maps

Y —Zz g: Z =Y

that are inverse to each other. The next lemma shows that it is easy to check continuity of
the map f, the map out of the quotient space.
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Lemma 1.24. (Continuity criterion for maps out of a quotient space). Let X be a
topological space, p: X —'Y a surjective map, and let Y be equipped with the quotient topol-
ogy. A map f:Y — Z to a topological space Z is continuous if and only if the composition

Xty 1,7

18 continuous.

Proof: homework

As we will see in the next section, there are many situations where the continuity of the
inverse map for a continuous bijection f is automatic. So in the examples below, and for the
exercises in this section, we will defer checking the continuity of f~! to that section.

Example 1.25. (1) We claim that the quotient space [—1,+1]/{#£1} is homeomorphic to
St via the map f: [—1,+1]/{£1} — S given by [t] — ™. Geometrically speaking,
the map f wraps the interval [—1, +1] once around the circle. Here is a picture.

glue

N

-1 +1

It is easy to check that the map f is a bijection. To see that f is continuous, consider
the composition

[—1,+1] — 2= [-1, +1]/{£1} L= §' = C =R?,

where p is the projection map and ¢ the inclusion map. This composition sends t €
[—1,+1] to €™ = (cos7t,sinwt) € R?. By Lemma it is a continuous function,
since its component functions sin7t and cosnt are continuous functions. By Lemma
[1.24] the continuity of 7o fop implies the continuity of io f, which by Lemma implies
the continuity of f. As mentioned above, we’ll postpone the proof of the continuity of
the inverse map f~! to the next section.

(2) More generally, D"/S™! is homeomorphic to S™. (proof: homework)

(3) Consider the quotient space of the square [—1,+1] x [—1,+1] given by identifying
(s,—1) with (s,1) for all s € [—1, 1]. It can be visualized as a square whose top edge is
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to be glued with its bottom edge. In the picture below we indicate that identification
by labeling those two edges by the same letter.

glue

4

The quotient ([—1,+1] x [=1,+1]) /(s,—1) ~ (s, +1) is homeomorphic to the cylinder
C={(r,y,2) ER® |z € [-1,+1],* + 2* = 1}.

The proof is essentially the same as in (1). A homeomorphism from the quotient space
to C'is given by f([s,t]) = (s,sinnt,cosnt). The picture below shows the cylinder C'
with the image of the edge a indicated.

Consider again the square, but this time using an equivalence relations that identifies
more points than the one in the previous example. As before we identify (s, —1) and
(s,1) for s € [-1, 1], and in addition we identify (—1,¢) with (1,¢) for ¢t € [—1,1]. Here
is the picture, where again corresponding points of edges labeled by the same letter

are to be identified.
a
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We claim that the quotient space is homeomorphic to the torus
T:={rcR®|d(x,K)=d},

where K = {(z1,%2,0) | 22 + 22 = 1} is the unit circle in the xy-plane and 0 < d < 1
is a real number (see ) via a homeomorphism that maps the edges of the square to the
loops in T indicated in the following picture below.

Exercise: prove this by writing down an explicit map from the quotient space to T,
and arguing that this map is a continuous bijection (as always in this section, we defer
the proof of the continuity of the inverse to the next section).

(5) We claim that the quotient space D"/ ~ with equivalence relation generated by v ~ —v
for v € S"~! € D™ is homeomorphic to the real projective space RP". More precisely,
let f: D™ — S™ be the embedding of the n-disk as the upper hemisphere of S™.
Explicitly, f(z) for x = (z1,...,x,) is given by the formula

flxe, ... x,) = (xl,...,xn,\/1—@%4_..._’_30%))

Lemma 1.26. The map f: D"/ ~ — RP" = S"/ ~ given by [z] — [f(2)] is a
continuous bijection.

With more tools at our disposal in the next section we will argue that this map is in
fact a homeomorphism.

Proof. To check that f is well-defined, we note that get identified in D™ are  ~ —z
for x € D™ = S*~'. For such =, f(x) = (z1,...,2,,0) and f(—z) = —(z1,...,2,,0),
showing that f is well-defined.

Next we argue that f is continuous. The map f is continuous since its components are
continuous functions. By construction of f we have the commutative diagram

pr—L ~gn

N

D"~ L5~
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(7)

(8)

where the vertical maps are the projection maps. Since f is continuous, so is the
composition py o f = p; o f, and hence f (a map out of a quotient space is continuous
if and only if its pre-composition with the projection map is).

The map f provides a bijection between D™ and the upper hemisphere of S (including
the equator); the inverse map is given by sending a point (z1,...,2,41) in the upper
hemisphere to (z1,...,z,). Since every equivalence class in S™ can be represented
by a point in the upper hemisphere, this implies that f is surjective. Since the only
points in the upper hemisphere that are identified by the equivalence relation on S™
are antipodal points on the equator, this implies that f is injective. O

The quotient space [—1,1] x [=1,1]/ ~ with the equivalence relation generated by
(—1,t) ~ (1, —t) is represented graphically by the following picture.

This topological space is called the Mobius band. 1t is homeomorphic to a subspace of
R3 shown by the following picture

The quotient space of the square by edge identifications given by the picture

a

>

a

is the Klein bottle. It is harder to visualize, since it is not homeomorphic to a subspace
of R? (which can be proved by the methods of algebraic topology).

The quotient space of the square given by the picture

a

N
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is homeomorphic to the real projective plane RP?. Exercise: prove this (hint: use the
statement of example (5)). Like the Klein bottle, it is challenging to visualize the real
projective plane, since it is not homeomorphic to a subspace of R3.

1.3 Properties of topological spaces

In the previous subsection we described a number of examples of topological spaces X, Y
that we claimed to be homeomorphic. We typically constructed a bijection f: X — Y and
argued that f is continuous. However, we did not finish the proof that f is a homeomorphism,
since we defered the argument that the inverse map f~!': Y — X is continuous. We note
that not every continuous bijection is a homeomorphism.

For example, the map

f:00,1) — S'CR*=C  given by  t+~ ™ (1.27)

is a bijection. It is the restriction of the map ]7: R — R? given by the same formula; f
is continuous since its component functions cos27it and sin 27it are continuos, and hence
f is continuous (with the respect to the subspace topology on [0,1) C R and S!' C R?).
The inverse map g: S — [0,1) is not continuous, since [0,1/2) C [0,1) is open, but
g71([0,1/2)) = f([0,1/2)) consists of the lower semicircle (the intersection of the lower
open halfplane {(z,y) € R? | y < 0} with S*) and the point (1,0)) which we claim is not
an open subset of S*. To prove this, assume that f([0,1/2)) is in fact open in the subspace
topology, i.e., f([0,1/2)) = S* N U for some open subset U C R% Since (1,0) € U and
U is open, there is radius r > 0 such that the ball B,.((1,0)) is contained in U, and hence
S*N B.((1,0)) € S*NU = f(]0,1/2)). This is the desired contradiction, since no point with
positive y coordinate belongs to f([0,1/2)).

Fortunately, there are situations where the continuity of the inverse map is automatic as
the following proposition shows.

Proposition 1.28. (Continuity criterion of the inverse of a continuous bijection).
Let f: X =Y be a continuous bijection. Then f is a homeomorphism provided X is compact
and Y 1s Hausdorff.

This result does not apply to the function since the domain of the map is non-
compact.

The goal of this section is to define these notions, prove the proposition above, and to
give a tools to recognize that a topological space is compact and/or Hausdorff.

1.3.1 Hausdorff spaces

Definition 1.29. Let X be a topological space, x; € X, i =1,2,... a sequence in X and
x € X. Then x is a limit of the x;’s if for any open subset U C X containing x there is some
N such that z; € U for all i > N.
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Caveat: If X is a topological space with the indiscrete topology [1.9] every point is the
limit of every sequence. There is at most one limit of the z; if the topological space has the
following property:

Definition 1.30. A topological space X is Hausdorff if for every x,y € X, x # y, there are
disjoint open subsets U,V C X withx e U, y € V.

Lemma 1.31. The Euclidean space R™ is Hausdorff. More generally, any subspace U C R™
1s Hausdorff.

Proof. Let z,y € U with x # y. Then the balls B,(x), B.(y) are open subsets in R" which
are disjoint if we choose the radius r small enough; for example the choice r := dist(z,y)/2
works. Then B,(z) N U and B,(y) N U are disjoint open neighborhoods of x resp. y in U,
showing that U is Hausdorff. O

Lemma 1.32. Let X be a topological space and A a closed subspace of X. If v; € A is a
sequence with limit x, then © € A.

Proof. Assume x ¢ A. Then x is a point in the open subset X \ A and hence by the
definition of limit, all but finitely many elements x,, must belong to X \ A, contradicting our
assumptions. ]

1.3.2 Compact spaces

Definition 1.33. An open cover of a topological space X is a collection of open subsets of
X whose union is X. If for every open cover of X there is a finite subcollection which also
covers X, then X is called compact.

Some books (like Munkres’ Topology) refer to open covers as open coverings, while newer
books (and wikipedia) seem to prefer the above terminology, probably for the same reasons
as me: to avoid confusion with covering spaces, a notion we’ll introduce soon.

Example 1.34. (Example of a non-compact space.) The real line R with the metric
topology is non-compact, since the collection of open intervals (n — 1,n+ 1) C R for n € Z
form an open cover of R, but it does not admit a finite subcover. Indeed, removing just any
one interval (k—1,k+1) from the cover, this is no longer a cover of R, since the point k € R
is not contained in any interval (n — 1,n + 1) for n # k.

While it is easy to show that a topological space X is non-compact (by finding an open
cover without a finite subcover), showing that X is compact from the definition of compact-
ness is hard: you need to ensure that every open cover has a finite subcover. That sounds
like a lot of work... Fortunately, there is a very simple classical characterization of compact
subspaces of Euclidean spaces, see Theorem [1.37]

Next we will prove some useful properties of compact spaces and maps between them,
which will be the essential ingredients of the proof of Proposition [1.28|
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Lemma 1.35. If f: X — Y is a continuous map and X is compact, then the image f(X)
is compact. In particular, if X is compact, then any quotient space X/ ~ is compact, since
the projection map X — X/ ~ is continuous with image X/ ~.

Proof. To show that f(X) is compact assume that {U,}, a € A is an open cover of the
subspace f(X). Then each U, is of the form U, =V, N f(X) for some open subset V, € Y.
Then {f~'(V,)}, a € A is an open cover of X. Since X is compact, there is a finite subset
A’ of A such that {f~*(V,)}, a € A" is a cover of X. This implies that {U,}, a € A is a
finite cover of f(X), and hence f(X) is compact. O

Lemma 1.36. 1. If K is a closed subspace of a compact space X, then K is compact.

2. If K is compact subspace of a Hausdorff space X, then K is closed.

Proof. The proof of part (1) is a homework problem. To prove (2), we need to show that
X \ K is open. Solet z € X \ K, and we aim to find an open neighborhood U of = which
is contained in U \ K. Since X is Hausdorff, and = ¢ K, for each y € K there are disjoint
open neighborhoods V, of y and U, of x. This situation is illustrated in the following figure.

( 7

X

S Re

(. J

Then V, N K is an open subset of K, and the collection of subsets {V,, N K'},cx is an open
cover of K. The compactness of K guarantees that this contains a finite subcover, i.e., there
are points yi,...,y, € K such that |J,_; ,V,, N K = K. In particular, K C U,_; ,, Vi

..........

-----

Un U V,, =0 and hence UNK =0,

i=1,....,n
which proves that U is an open subset in U \ K. O

Proof of Proposition [1.28 We need to show that the map ¢g: Y — X inverse to f is continu-
ous, i.e., that g~}(U) = f(U) is an open subset of Y for any open subset U of X. Equivalently
(by passing to complements), it suffices to show that ¢7'(C) = f(C) is a closed subset of Y
for any closed subset C' of C.

Now the assumption that X is compact implies that the closed subset C' C X is compact
by part (1) of Lemma[1.36 and hence f(C') C Y is compact by Lemma[1.35] The assumption
that Y is Hausdorff then implies by part (2) of Lemma that f(C) is closed. O
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Now we want to apply Proposition to show that the continuous bijections that we
constructed in Example [1.23] and Lemma [I.20] are in fact homeomorphism. This requires
that we are able to show that the domain of the map is compact, which is often done using
the the following compactness criterion for subspaces of Euclidean space R".

Theorem 1.37. (Heine-Borel Theorem) A subspace K C R" is compact if and only if
K is a closed subset of R™ and bounded, i.e., there is some R > 0 such that K is contained
in the ball Bg(0) of radius R around the origin.

With this tool in hand, we now revisit Example [1.25(1), (2) and (5):

Example [1.25](1) We have constructed a continuous bijection f: [—1,+1]/{x1} — S*.
The domain of f is compact since [—1,41] is a closed and bounded subset of R
and hence compact by the Heine-Borel Theorem. It follows that the quotient space
[—1,+1]/{=£1} is compact by Lemma [[.35] The codomain of f is the circle S* which
is Hausdorff as a subspace of R? by Lemma, m Hence f is a homeomorphism by

Proposition [I.2§|

Example [1.25/(2) The same argument as in the previous example shows that the contin-
uous bijection f: D"/S"™1 — S™ constructed in a homework problem is in fact a
bijection.

Example [1.25|(5) We have constructed a continuous bijection f: D"/ ~ — RP™. The
domain is compact, since it is a quotient of the closed bounded subspace R™ C R™. So
it remains to show that the codomain RP" is Hausdorff. It might be tempting to argue
that RIP" is Hausdorff, since it is a quotient of the Hausdorff space S™ C R"™. Alas,
Hausdorff is not a property inherited by quotient spaces as the example below shows.
So a more detailed argument is needed.

Lemma 1.38. The projective space RP" is Hausdorff.

Proof. Let p: 8™ — RP"™ be the projection map. For z € S™ let [z] = p(x) € RP" be
the equivalence class of x, consisting of the pair of antipodal points {x,—x} C S™. If
[x] # [y] € RP", then x, —z, y, —y are four distinct points in S™. Hence for sufficiently small
r the four balls of radius r around these points are pairwise disjoint. In particular,

U:=(B.(z)UB.(—x))NS" and  V:=(B,(y)UB.(—y))NnSs"

are disjoint open subsets of S™. Then p(U), p(V) are disjoint open subsets of RP™ since
p(p(U)) =U and p~'(p(V)) = V. O

Example 1.39. (Example of a Hausdorff space a quotient of which is not Haus-
dorff). The interval (—1,1) is a subspace of R and so we can form the quotient space
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X := R/(—1,1) where all points belonging to (—1,1) are identified. We claim that X is
not Hausdorff; more precisely, we claim that the points [—1],[1] € X do not have disjoint
open neighborhoods U 3 [—1], V' 3 [1]. To prove this, assume that there are disjoint open
neighborhoods. Then their preimages p~*(U), p~ (V) under the projection map p: R — X
are disjoint open subsets of R with —1 € p~!(U) and 1 € p~*(V). Due to these being open
subsets of R, it follows that p~'(U) must contain some point z € (—1,1) and that p~(V)
must contain some point y € (—1,1). It follows that U 3 p(x) = p(y) € V contradicting the
assumption that U and V are disjoint.

The proof of the Heine-Borel Theorem is based on the following two results.
Lemma 1.40. A closed interval [a,b] is compact.

This lemma has a short proof that can be found in any pointset topology book, e.g.,
[Mu].

Theorem 1.41. If X4, ..., X,, are compact topological spaces, then their product X1 x---x X,
18 compact.

For a proof see e.g. [Mu, Ch. 3, Thm. 5.7]. The statement is true more generally for a
product of infinitely many compact space (as discussed in [Mul p. 113], the correct definition

of the product topology for infinite products requires some care), and this result is called
Tychonoff’s Theorem, see [Mu, Ch. 5, Thm. 1.1].

Proof of the Heine-Borel Theorem. Let K be a compact subspace of R”. Then K is closed
by Lemma [1.36(2). The collection B,(0) N K, r € (0,00), is an open cover of K. By
compactness, K is covered by a finite number of these balls; if R is the maximum of the
radii of these finitely many balls, this implies K C Bg(0), i.e., K is bounded.

Conversely, let K C R” be closed and bounded, say K C B,.(0). We note that B,.(0) is
contained in the n-fold product

P:=[-rr]x--x[-rr CR"

which is compact by Theorem [I.41] So K is a closed subset of P and hence compact by
Lemma [1.36](1). O

Here is another interesting consequence of (the easier part of) the Heine-Borel Theorem.

Proposition 1.42. If f: X — R is a continuous function on a compact space X, then f
has a maximum and a minimum.

Proof. K = f(X) is a compact subset of R. Hence K is bounded, and thus K has an infimum
a :=inf K € R and a supremum b := sup K € R. The infimum (resp. supremum) of K is the
limit of a sequence of elements in K; since K is closed (by Lemmall.36] (2)), the limit points
a and b belong to K by Lemma [1.32] In other words, there are elements @pmin, Tmar € X
with f(Zmin) = a < f(z) for all x € X and f(Zmee) =0 > f(z) for all z € X. O
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1.3.3 Connected spaces

Definition 1.43. A topological space X is connected if it can’t be written as decomposed
in the form X = U UV, where U,V are two non-empty disjoint open subsets of X.

For example, if a,b,c,d are real numbers with a < b < ¢ < d, consider the subspace
X = (a,b) II (¢,d) C R. The topological space X is not connected, since U = (a,b),
V' = (¢, d) are open disjoint subsets of X whose union is X. This remains true if we replace
the open intervals by closed intervals. The space X' = [a,b] IT [c, d] is not connected, since
it is the disjoint union of the subsets U’ = [a,b], V' = [¢,d]. We want to emphasize that
while U’ and V' are not open as subsets of R, they are open subsets of X', since they can be
written as

U = (—oc0,c)N X’ V' = (b,00) N X,
showing that they are open subsets for the subspace topology of X’ C R.

Lemma 1.44. Any interval I in R (open, closed, half-open, bounded or not) is connected.

Proof. Using proof by contradiction, let us assume that [ has a decomposition [ = U UV
as the union of two non-empty disjoint open subsets. Pick points u € U and v € V, and let
us assume u < v without loss of generality. Then

[u,0] =U'UV"  with U :=UnN[uv] V' :=UnN][u,]

is a decomposition of [u,v] as the disjoint union of non-empty disjoint open subsets U’, V'
of [u,v]. We claim that the supremum ¢ := sup U’ belongs to both, U’ and V', thus leading
to the desired contradiction. Here is the argument.

e Assuming that ¢ doesn’t belong to U’, for any € > 0, there must be some element of
U’ belonging to the interval (¢ — €, ¢), allowing us to construct a sequence of elements
u; € U’ converging to c. This implies ¢ € U’ by Lemma [1.32], since U’ is a closed
subspace of [u,v] (its complement V' is open).

e By construction, every = € [u,v] with x > ¢ = supU’ belongs to V’. So we can
construct a sequence v; € V' converging to ¢. Since V' is a closed subset of [u,v], we
conclude ¢ € V.

]

Theorem 1.45. (Intermediate Value Theorem) Let X be a connected topological space,
and f: X — R a continuous map. If elements a,b € R belong to the image of f, then also
any real number ¢ between a and b belongs to the image of f.

Proof. Assume that c is not in the image of f. Then X = f~'(—o0,c) U f~!(c,00) is a
decomposion of X as a union of non-empty disjoint open subsets. O]
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There is another notion, closely related to the notion of connected topological space,
which might be easier to think of geometrically.

Definition 1.46. A topological space X is path connected if for any points x,y € X there
is a path connecting them. In other words, there is a continuous map v: [a,b] — X from
some interval to X with v(a) = x, y(b) = y.

Lemma 1.47. Any path connected topological space is connected.

Proof. Using proof by contradiction, let us assume that the topological space X is path
connected, but not connected. So there is a decomposition X = U UV of X as the union of
non-empty open subsets U,V C X. The assumption that X is path connected allows us to
find a path ~: [a,b] — X with v(a) € U and v(b) € V. Then we obtain the decomposition

[a,0] = FHU) U fH(V)

of the interval [a,b] as the disjoint union of open subsets. These are non-empty since a €
Y U) and b € f~1(V). This implies that [a, ] is not connected, the desired contradiction.
L]

For typical topological spaces we will consider, the properties “connected” and “path
connected” are equivalent. But here is an example known as the topologist’s sine curve
which is connected, but not path connected, see [Mu, Example 7, p. 156]. It is the following
subspace of R

1
X:{(x,sinE)ERQ|0<x<1}U{(O,y)€]R2]—1§y§1}.

References

[Mu] Munkres, James R. Topology: a first course, Prentice-Hall, Inc., Englewood Cliffs,
N.J., 1975. xvi+413 pp.

2 Topological manifolds

The purpose of this section is to provide interesting examples of topological spaces and home-
omorphisms between them. There are many examples of “weird” topological spaces. There
are non-Hausdorff spaces (they don’t have well-defined limits) or the topologist’s sine curve,
which is connected, but not path connected. While there is a huge literature concerning
pathological topological spaces, I must admit that I find those examples most interesting
that “show up in nature”. For example, topological spaces that appear as “configuration
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spaces” or “phase spaces” of physical systems. Often these are a particularly nice kind of
topological space known as manifold.

There is much to say about manifolds. For example, you can find the text books Intro-
duction to topological manifolds and Introduction to smooth manifolds on the reserved book
shelf for this course. For this section, our focus is to discuss manifolds of dimension 2. Unlike
higher dimensional manifolds, we can represent manifolds of dimension 2 by pictures, which
greatly helps the intuition about these objects.

2.1 Definition and basic examples of manifolds

Definition 2.1. A manifold of dimension n or n-manifold is a topological space X which
is locally homeomorphic to R", that is, every point x € X has an open neighborhood U
which is homeomorphic to an open subset V of R™. Moreover, it is useful and customary
to require that X is Hausdorff (see Definition and second countable, which means that
the topology of X has a countable basis.

In most examples, the technical conditions of being Hausdorff and second countable are
easy to check, since these properties are inherited by subspaces.

Homework 2.2. Show that a subspace of a Hausdorff space is Hausdorff. Show that a
subspace of a second countable space is second countable.

Examples of manifolds.

1. Any open subset U C R" is an n-manifold. The technical condition of being a second
countable Hausdorff space is satisfied for U as a subspace of the second countable
Hausdorff space R™; a countable basis for the topology on R"™ is provided by the
collection of balls B,.(z), for which the radius r as well as all components of x =
(x1,...,2,) € R™ are rational numbers.

2. The n-sphere S™ := {x € R" | ||z|| = 1} is an n-manifold. To prove this, let us look at
the subsets

Ul :={(zo,...,z,) e R | z; >0} C 9"
U7 = {(zo,...,z,) €ER"™ | z; <0} C 9"

We want to argue that the map
o : UijE — D" given by O (w0, .- ) 1= (Do, .o Ti 1, Ty Tig 1y - -+ 5 Ty

is a homeomorphism, where D" := {(vy,...,v,) € D" | v2 +--- 4+ v2 < 1} is the open
n-disk. It is easy to verify that the map

D" —UF o= (vi,...,00) = (U1, v, 2T = V]2 vigts - 0n)
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is in fact the inverse to ¢. Here ||v||2 = v2+- - - +2 is norm squared of v € D". Both
maps, gf)z-i and its inverse, are continuous since all their components are continuous.
This shows that (ﬁf is in fact a homeomorphism, and hence the n-sphere S™ is a
manifold of dimension n.

Homework 2.3. Show that the product X xY of manifold X of dimension m and a manifold
Y of dimension n is a manifold of dimension m +n. Make sure to prove that X x Y is second
countable and Hausdorft.

Homework 2.4. Show that the real projective space RP" is manifold of dimension n. Make
sure to prove that RP" is second countable (we know it is Hausdorff by Lemma |1.38)).

The following result is useful for showing that quotient spaces are second countable.

Lemma 2.5. Let X a topological space and let p: X — X/ ~ be the projection map onto a
quotient space of X. If p is an open map (i.e., the images of open subsets U C X under p
are open in X/ ~), and X is second countable, then X/ ~ is second countable.

Proof of Lemma. Let B be countable basis for the topology of X. We claim that the col-
lection B’ := {p(B) C Y | B € B} is a basis for the topology of X/ ~. To prove this, let
U C X/ ~ be open. Then p~*(U) C X is open, and hence p~'(U) = J,c4 Ba i a union
subsets B, € B. Then

U=p(p' (V) =p({J B.) = [ p(B.)

a€A a€A

is a union of subsets belonging to B’. This shows that B’ is a basis for the topology of
X/ ~. ]

2.6. Examples of manifolds of dimension 2.

1. The 2-torus T can be described as subspace of R?, as the product S! x S and as
the quotient of the square [0, 1] x [0, 1] by the identifying its edges as indicated in the
following picture (see Example [1.23(4)):

a

From the description of the torus as the product S x S! and Lemma ?? it follows that
the torus is a manifold of dimension 2.
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2. The real projective plane RP2. We recall from Example [1.23] (8) and Lemma that
RP? is homeomorphic to the quotient spaces of the square resp. disk by identifying
edges as indicated by the following pictures.

a

a

We prefer to draw the disk D? as a bigon here, since our goal is to describe all compact
connected 2-manifolds as quotients of polygons by suitably identifying edges. We think
of the bigon as a polygon with two vertices and two edges.

3. In Example MU) we defined the Klein bottle K as the quotient of the square with
the identification of edges given by the following picture.

a

a

It is not hard to verify directly that K is a manifold of dimension 2 (draw open
neighborhoods of a point in the interior of the square, on an edge of the square and
of the one point of K represented by the vertices to convince yourself). Alternatively,
we will see in Lemma ?7? that the Klein bottle is homeomorphic to the connected sum
RP2#RIP? of two copies of the projective plane RP?, which implies in particular that
K is a 2-manifold.

4. The surface X, of genus g is the subspace of R? given by the following picture:

s}
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Here g is the number of “holes” of ¥,. In particular ¥;, the surface of genus 1, is
the torus. By convention, the surface g of genus 0 is the 2-sphere S2. Since we have
described the surface of genus g as a subspace of R? given by a picture rather than
a formula, it is impossible to give a precise argument that this subspace is locally
homeomorphic to R?, but hopefully the picture makes this obvious at a heuristic level.

2.2 The connected sum construction

This construction produces a new manifold M#N of dimension n from two given manifolds
M and N of dimension n. The manifold M#N is called the connected sum of M and N.
The construction proceeds as follows. First we make some choices:

e We pick points x € M and y € N.

e We pick a homeomorphism ¢ between an open neighborhood U of z and the open
ball B(0) of radius 2 around the origin 0 € R™. Similarly, we pick a homeomorphism

¥: V=5 By(0) where V C N is an open neighborhood of y € N.

The existence of homeomorphisms ¢, 1) with these properties follows from the assumption
that M, N are manifolds of dimension n. This implies that there is an open neighborhood
U' € M of x and a homeomorphism ¢’ between U” and an open subset V' C R™. Composing
¢ by a translation in R" we can assume that ¢(x) = 0 € R™. Since V"’ is open, there is some
e > 0 such that the open ball B.(0) of radius € around 0 € R" is contained in V’. Then
restricting ¢’ to U := (¢/) "' (B.(0)) C M gives a homeomorphism between U and B(0).
Then the composition

multiplication by 2/e

U — B(0) B,(0)

~

is the desired homeomorphism ¢ between a neighborhood U of z € M and By(0) C R™.
Analogously, we construct the homeomorphism ). Here is a picture illustrating the situation.

By(0) C R™

N
DY O/U@ @p

M N
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The next step is to remove the open disc ¢~'(B;(0)) from the manifold M and the open
disc 971(B;(0)) from the manifold N. The following picture shows the resulting topological
spaces M\ ¢~ (B;1(0)) and N\¢)~!(B;(0)). Here the red circles mark the points corresponding
to the sphere S"~! C By(0) via the homeomorphisms ¢ and 1), respectively.

M\ ¢~H(B1(0)) N\ ¢~H(B1(0))
The final step is to pass to a quotient space of the union

M\ ¢ ' (B1(0)) U N\¢ '(By(0))

given by identifying points in ¢~1(S"!) with their images under the homeomorphism

o7 S TS 2 T H(0(2)).

The connected sum M#N is this quotient space. In terms of our pictures, the manifold
M#N is obtained by gluing the two red circles, and is given by the following picture.

M#N

Question: Is M#N independent of the choices made in its construction? A
crucial ingredient of the construction of the connected sum M#N are the homeomorphisms

M>o>U-% By(0) CR*and N DV N Bs(0) C R™. Since we remove in the first step of
the construction the open disks ¢~1(B;(0) C M and ¢~(B;(0) C N, the set M#N will be
different if we remove different disks.

Fact: Up to homeomorphism, the topological space M# N does not depend on these choices
if “we are careful with orientations”. Fortunately, for 2-dimensional manifolds, it is always
independent of the choices.

Later this semester we will define what an orientation for a smooth manifold is (which
is easier than defining an orientation for a topological manifold). We will restrict us to
2-manifolds, so orientations don’t play a role, and we use the fact above for 2-manifolds
without proof.
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Example 2.7. (Examples of connected sums).

1. Our pictures above show that the connected sum Yy#7T of the surface of genus two
and the torus is homeomorphic to the surface of genus 3. More generally, it is clear
from drawing appropriate pictures that the connected sum ¥ #¥, is homeomorphic
to Xg4y of genus g + ¢'. It follows that

THTH# .. #T ~35,.
~—_——

g

Strictly speaking, we have mathematically defined what we mean by a surface of genus
g only for g = 1 (it is the torus T') and for g = 0 (it is the sphere S?). For g > 1, we have
only drawn a picture of what we mean by a surface of genus g, and hence we can prove
the statement X #X, ~ Y ., only at that level of precision: by drawing pictures.
From mathematical point of view, we can (and will) view the above homeomorphism
now as the definition of the surface of genus g.

2. The connected sum X := RP?#. ..#RIP’QJ is a 2-manifold that, together with the

-~

k
surface of genus g, plays an important role in the Classification Theorem for compact

connected 2-manifolds [2.8] Munkres refers to X, as the k-fold projective plane [Mu2,
Definition on p. 462].

2.3 Classification of compact connected 2-manifolds

Theorem 2.8. (Classification of compact connected 2-manifolds.) Every compact
connected manifold of dimension 2 is homeomorphic to exactly one of the following manifolds:

o The surface of genus g, denoted X, which is the connected sum T# ... 4T of g copies
———

g
of the torus T, for g > 0, and the 2-sphere S* for g = 0.

e The connected sum X; = 1\R]P’2# e #]RIP’% of k copies of the real projective plane RIP?,

k

k> 1;

In this class, we won’t give a complete proof of this classification result, but we will
introduce the techniques used for the proof of this theorem (see e.g., [Mu2, Ch. 12]), and we
prove partial results. Like any classification result, the classification of 2-manifolds involves
two quite distinct aspects:

(1) the proof that the 2-manifolds X¢, 31, 3s,.. ., X3, Xs,. .. are pairwise non-homeomorphic.
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(2) the proof that any compact connected 2-manifold ¥ is homeomorphic to a manifold on
this list.

To distinguish ¥,, the surface of genus g, from X}, the connected sum of k£ copies of
RP?, the notion “orientable” can be used (alternatively, these can be distinguished by their
abelianized fundamental group as we will show in section ??). For a manifold M of any
dimension n one can define what it means for M to be ”orientable”, but that requires tools
not available to us in this course, namely homology groups. In section 7?7 we will define what
an “orientation” is on a smooth n-manifold M (this will be needed to integrate differential
forms of degree n over M), and M is “orientable” if and only if there is an orientation on
M. He we give a definition of orientability for 2-manifold which is easy to state.

Definition 2.9. A 2-manifold X is non-orientable if it contains a Mobius band.

For example, the real projective plane RP? is non-orientable, since representing RP? as
a square with boundary identifications (as in Example [2.6/(2)), the blue rectangle inside the
square becomes a Mobius band inside RIP? after the gluing the edges.

a

a

It follows that the connected sum RP2#3 with any other surface also is non-orientable, since
we can choose the disc to be removed from RP? in order to form the connected sum to be
located in the complement of the Mobius band in RP?. In particular, X, = RP2# ... #RP?
is non-orientable.

Heuristically, it is quite clear that X , the surface of genus g does not contain a Mdobius
band using the following argument. Think of ¥, as being made from some thin material,
and paint the outside of it with a different color than the inside. Then whenever you cut a
band from X, it will have two colors, unlike the Mobius band, which can only be painted in
one color. Needless to say, this isn’t a proof. While this line of argument can be made into a
proof, it seems better to invest time to develop powerful tools, like the fundamental group,
as we will do in the next chapter, which can easily distinguish orientable from non-orientable
2-manifolds.

In the next section, we will introduce the Euler characteristic for compact 2-manifolds and
will show that 3, is not homeomorphic to X, for g # ¢’ and that 3 is not homeomorphic
to Xy for k # k', see [2.16]

In Examples we showed that the torus, the Klein bottle and the projective plane RP?
can be described as quotients of a square (resp. a bigon in the case of RP?) by identifying edges
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with the same label. In section [2.5) we will show that every compact connected 2-manifold
can be described as quotients of polygons with labeled edges by identifying edges with the
same label.

2.4 The Euler characteristic of compact 2-manifolds

In this section we introduce the Euler characteristic of compact 2-manifolds. This invariant
will allows us to show that some compact 2-manifolds are not homeomorphic. Our definition
of the Euler characteristic is very geometric (and not particularly precise).

Definition 2.10. Let X be a compact 2-manifold. A graph I' on ¥ is a collection of finitely
many points vy,...,v; € 3 (called vertices) and finitely many paths e;: [0,1] — X, i =
1,...,¢ (called edges) such that

e the endpoints of e; belong to the set of vertices V' := {vy,..., v}
e the only intersection points of paths occur at their endpoints.

We call a graph I' a pattern of polygons if the complement of all vertices and edges in X is a
disjoint union of subspaces homeomorphic to open 2-disks.

Example 2.11. Both pictures below show examples of graphs I', IV on the torus 7. The
complement of I" in T is the open square, and hence I' is a pattern of polygons. The
complement of ' is a cylinder, and so I is not a pattern of polygons.

r I’

Let I' be a pattern of polygons on a compact 2-manifold X.

X(2;T) := #{vertices} — #{edges} + #{polygons}.

For example, the surface of a cube is homeomorphic to the sphere S2. Via this homeomor-
phisms, the vertices, edges and faces of the cube can be interpreted as a pattern of polygons
[cube on S2. More physically, think of the edges of the cube as a wireframe inside of a translu-
cent sphere equipped with a light source at its center. Then the shadows of the edges give
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pattern of polygons (in this case quadrilaterals) on the sphere. Similarly, the tetrahedron
can be interpreted as giving a pattern of polygons I'ea On the sphere.

Fcube Ftetra

We observe that

X(S% Teupe) =8 — 12+ 6 = 2
X(SQ;Fcube) =4—-6+4=2

give the same number, independent whether we choose the pattern Ieype 0oF Tietra on S2.
This is in fact true generally:

Lemma 2.12. Let I', TV be two patterns of polygons on a compact 2-manifold . Then
X(5: ) = x(5:1).

Proof. Step 1. By moving the vertices and edges of the graph [ a little bit, we can assume
that the vertex sets of I' and I are disjoint, and that that there are only finitely many
intersection points between edges of I' and edges of ['. We claim that then there is a pattern
of polygons I which is a refinement of both, I" and I'V. This means that I can be obtained
from I' (resp. I") by inductively adding new vertices on the interior of existing edges, and
adding new edges between two vertices of a polygon.

The graph I is constructed as follows:

e The vertices of I are the vertices of I, the vertices of I and all intersection points of
edges of I and edges of I".

e The edges of I are segments of edges of I' or I” whose endpoints are vertices of I'”.

The following picture shows (part of) the graph I on some surface ¥ with black vertices and
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edges and (part of) the graph I" colored red.

N

The graph I'” is simply the graph you see when we you ignore the color (and indicate that
every intersection point is a vertex by drawing a little dot). It is clear that the complement
of the graph I'” in ¥ is again a disjoint union of open balls, since each connected component
of the complement is an (open) polygon obtained by subdividing a polygon of I' by edges.

To show that I'” is a refinement of I we first add all intersection points of edges of I" and
[ as new vertices (which subdivide the existing edges of I'). Before we can add vertices of
[ we need to add new edges: if w is a vertex of I in the interior of some polygon P of '
(e.g., the top red vertex in the black hexagon in the center of the picture above), there is a
path through w along red edges that starts at some intersection point x of a red edge with
an edge of P and ends at an intersection point y of some red edge with an edge of P. The
following picture shows the vertex w, and the path along red edge segments (indicated by
arrows) starting at z and ending at y.
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We add this path as a new edge to our graph. Then we can add the red vertices w and
w’ to our graph (thus subdividing our new edge). Finally, we add the three additional red
edges that connect w resp. w’ to intersection points on the boundary of P. Doing this for
all polygons of I' we see that I'” is a refinement of I'.

Step 2. Let I'y be a pattern of polygons on ¥, and let I'y be obtained by adding a new vertex
to the interior of an edge of a graph I';. We claim that x(3;T's) = x(3;'1). To prove this,
let V(I';) be the number of vertices, E(I';) the number of edges and F(I';) the number of
faces of I';. We note that V(I'y) = V(I'1), due to the additional vertex, and E(I's) = E(I'1),
since the creation of the new vertex on an edge subdivides that edge in two edges. The
number of faces is unchanged and hence

N(Z5T) = V(T) = B(Dy) + F(Ty) = (V(TY) + 1) — (B(TY) + 1) + F(Iy) = x(SiTy),

Step 3. Let I'; be a pattern of polygons on ¥, and let I's be obtained by introducing a new
edge which connects two vertices of some polygon in I';. Then the number of edges and faces
goes up by one while the number of vertices is unchanged. Hence again, x(%,Ts) = x(%,T1).

Steps 2 and 3 show that the alternating sum x(3;I") doesn’t change when we refine
the graph I' by adding vertices or edges. In particular, due to the existence of a common
refinement I of graphs I and I” we conclude that

X(Z7 F) = X(Za F”) = X(Ev F/)'
O

Definition 2.13. Let X be a compact 2-manifold. The Fuler characteristic of 3 is defined
to be the integer x(X) := x(Z; ).

To calculate the Euler characteristic of the torus 7', the Klein bottle K and the real
projective plane RP? we use the fact that all three spaces can be described as quotients of
polygons by identifying edges equipped with the same label.

a a

a
b b b b
a a @
T K RP2

The square from which the torus and the Klein bottle is built has four vertices, four edges
and one face. However, we need to count vertices, edges and faces not for the square, but
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for the quotient space. The edges labeled a (resp. b) map to the same edge in the quotient
under the projection map. Similarly, all four vertices (of the square) and the two vertices
(of the bigon) map to the same vertex in the quotient. This shows that

X(T)=1-2+1=0
X(K)=1-241=0
X(RP*) =1—-1+1=-1
We note that a homeomorphism f: 3 =4 5 between two compact 2-manifolds allows us to
interpret a pattern of polygons I' on ¥ as a pattern of polygons on Y. This shows that the
Euler characteristic of homeomorphic manifolds agrees. In others words, the Euler charac-

teristic is an invariant that allows us to show that some 2-manifolds are not homeomorphic.
In particular, our calculations above imply:

Corollary 2.14. The compact 2-manifolds S?, T and RP? are pairwise non homeomorphic
to each other.

Lemma 2.15. Let &, ¥/ be compact 2-manifolds. Then x(L#X) = x(2) + x(X) — 2.
The proof is a homework problem.

Applying this inductively to the connected sums

S,=T#..#T and X, =RP#... #RP?
— ~~

g k

leads to the following result.

Corollary 2.16. x(3,) =2 —2g and x(X;) = 2 — k. In particular, ¥, is homeomorphic to
Yy if and only if g = ¢, and Xy, = Xy if and only if k = k'

2.5 A combinatorial description of compact connected 2-manifolds

The Euler characteristic is an invariant which is very useful to show that two compact
2-manifolds are not homeomorphic. As advertised earlier, the goal of this section is to show
that every compact connected 2-manifold is homeomorphic to the quotient of a polygon with
labeled edges by identifying edges with the same label (see Prop. . Moreover, we will
show that certain ways of relabeling the edges yields the same quotient space. This is the
key technique used in the proof of the Classification Theorem In this class we will only
illustrate this technique to show that the Klein bottle K is homeomorphic to RP?#RP? (a
homework problem) and that T#RP? is homeomorphic to RP?#RP2#RP? (see Lemma ?77).

We recall that all three manifolds 7', K and RP? can be described as polygons (squares
resp. bigons) with edge identifications as shown in the following table.
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space ‘ combinatorial picture ‘ word
a
T = torus b b aba=tb~!
a
a
g (2.17)
K = Klein bottle b b aba~'b
a
a
RP? = projective plane <> aa
a

If we choose a distinguished vertex for these polygons, indicated by a black dot in the
picture above, then the labeling of the edges by letters a,b and arrows can be encoded as
follows. Going along the edges of the polygon clockwise, starting at the distinguished vertex,
we write down for each edge

e the letter a if the edge has label a and the arrow of the edge points in the clockwise
direction, or

e the letter a=! if the edge has label a and the arrow of the edge points in the counter-
clockwise direction.

Doing this in order for all of the edges of the polygon, we obtain a string of symbols, that
is, a word whose letters are the edge labels and their inverses. The words obtained this way
for our examples are shown in the third column of the table above. This process can be
reversed by interpreting a word W consisting of letters a,a™',b,b71, ... as giving the edges
of a polygon P a label and a direction. This in turn determines an equivalence relation ~y;
on P according to which corresponding points on edges with the same label are identified,
and hence a quotient space X(W) := P/ ~y. Here is the formal definition.

Definition 2.18. Let L be a set whose elements we refer to as labels, typically a,b,--- € L.
Let W = xy25... 2, be an n letter word with letters x; belonging to the alphabet, which is
the set consisting of the symbols £ and ¢~ for £ € L. So typically, our alphabet is the set
A={a,a”',b,b7, ... }.

Let P, be an n-gon (i.e., the polygon with n edges) with a distinguished vertex. Go-
ing around P, clockwise, starting at the distinguished vertex, label the edges of P, by
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x1,To,...,T,. More precisely, if z; = ¢ or x; = £~! label the i-th edge by the label ¢ and
equip it with an arrow according to the convention explained above. Let ~y be the equiva-
lence relation on P, which identifies any point on an edge labeled ¢ with the corresponding
point on any other edge with the same label. Then the topological space associated to W,
denoted X(W) or ¥(z12z5. .. x,) is defined to be the quotient space P,/ ~y .

The word associated to a polygon with labeled oriented edges and a distinguished vertex
depends on the choice of that vertex. For example, for the torus with the labeling as in
(2.17) and the top left vertex as the distinguished vertex, the associated word is aba=1b~1.
If we choose the top right vertex (resp. the bottom right vertex) as distinguished vertex, the
associated word will be ba='b~'a (resp. a=*b~1ab). In other words, changing the distinguished
vertex changes the associated word W by a cyclic permutation; it does not change the
quotient space 3(W). Similarly, renaming the labels of the polygon (by a bijection of label
sets) or interchanging for a label ¢ the letters £ and ¢~! in the word W does not change the
quotient. For future reference, we state this remark as a lemma.

Lemma 2.19. The quotient space (W) = P,/ ~w is homeomorphic to S(W') if W' is
obtained from W by by cyclically permuting the letters of W, renaming the labels involved
via a bijection of label sets, or by interchanging the letters ¢ and ¢’ for a particular label £.

2.20. Warning. While all the spaces (V) mentioned as examples above were manifolds,
this is not generally the case. For example X(W) = X(aaaa) is not a manifold. To see
this, consider a point z; in the interior of an edge of the square P;. The equivalence class
(1] €€ X(W) = P/ ~w consists of the four points x1, x5, x3, 24, one on each edge as shown
in the picture below. An open neighborhood of a point z; consists of the dark semi-disk .S;
containing x;.

a 1

Ty @ S4

Y(aaaa) = a a

1?3 a
It follows that an open neighborhood of [z1] € (W) has the form
(S1US;US3USy)/ ~,

where the equivalence relation is the restriction of ~y, to the union of these semi-circles.
More geometrically, this is obtained by gluing these four semi-disks along there straight edge.
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Here is a picture of that quotient space; the red line is the line where the semi-disks are glued
together and the marked point is the point [z;] € X(W).

S

Remark 2.21. It is easy to show by elementary means that (W) is a 2-manifold if each
label occurs exactly twice in the word W. Conversely, the argument used in the example
above can be expanded to show that if the word W contains a label ¢ only once or more
that twice, then the quotient (V) is not a 2-manifold (we will be able to show this in the
following chapter using the fundamental group).

Proposition 2.22. Fvery compact connected 2-manifold ¥ is homeomorphic to the quotient
space (W) for a suitable word 3.

Proof. Let I' be a pattern of polygons on X, i.e., a graph on ¥ such that the complement of
all edges is a disjoint union of 2-discs (see Def. [2.10)). Orient all edges of ¥ and label them by
a label set L (mathematically speaking, choose a bijection between the set of edges and L).
Cutting ¥ along all edges of I' then results in a disjoint union of polyhedra P,,, ... P,,, whose
edges are labeled and oriented (here k is the number of faces of I, and P,, is the number of
edges of the i-th face). Then the quotient space of the disjoint union P := P, II---1I P,,
given by identifying all the edges with the same label can then be identified with the original
2-manifold (taping the pieces P,,,..., P,, together again is the inverse of the process of
cutting 3 along all edges of the graph I'). In other words,

Z%(Pnlﬂ"'ﬂpnk))/wa

where the equivalence relation ~ is given by identifying edges with the same label.

If there is only one polygon, then we are done. If £ > 1, we claim that the first polygon
must have an edge with a label which also occurs as a label of an edge of one of the other
polygon. Otherwise, all edges of the first polygon would be glued only to other edges of the
same polygon, and hence the quotient space is the disjoint union of the quotient of the first
polygon and the quotient of the union of the other polygons. That would contradict our
assumption that > is connected.

We note that cutting > along an edge of I' labeled ¢ results in two edges of P labeled /.
So if £ is the label of an edge of the first polygon as well as the label of some other polygon,
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we can glue those two polygons together along the edge labeled ¢, thus reducing the number
of polygons by one. The label £ is no longer a label of any edge of the new set of polygons,
but identifying all edges with the same label still yields the manifold .

Repeating this process, we can reduce to one polygon with labeled oriented edges, whose
quotient obtained by identifying edges with the same label is still homeomorphic to . [

Proposition 2.23. Let M, N be two compact connected 2-manifolds which are described
combinatorially as M = S(Wy), N = X(Ws), where Wy and Wy are words from disjoint
alphabets. Then the connected sum M#N is homeomorphic to (W Ws).

Proof. Let Wy =21 ...2,, and Wy =y, ...y,. Then M and N are described quotient spaces
by the combinatorial pictures

Lm—1
- xm
M=Y%(x...2,) =i
. .
T2
Y2
n
N = E(yl yn) -
Un
Yn—1

Here the dot marks the distinguished vertex. Now we remove an open disk D? from M and
N. In the pictures below, this is the disk enclosed by the curve labeled c. So after removing
the open disk bounded by the curve ¢, this curve is the boundary of the resulting manifold
with boundary.
Tm—1
xm

M\ D? =i
3 4
)
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Yo
Y1

N\ D? =

Yn
Yn—1

Finally gluing these two spaces along the boundary circle ¢ we obtain the connected sum
M#N, which looks as follows:

. .

M#N =i ve
k Xy Yn

......

This shows that the connected sum M#N is homeomorphic to
S(x1. Ty - yn) = S(WWs)
as claimed. O
Corollary 2.24. (1) X, = T# ... #T is homeomorphic to %(aibia; by agbeay by " . .. agbga,'b
g

(2) IR]PQ# . #]RIF’Q/ is homeomorphic to X(ajajasas . . . agay).

k
Proof. To prove part (1), we recall T' ~ X(aba~*b~'). Then

TH# ... #T ~(arbiay by )# ... #(agbga, b, ")

g

~Y(arbiay oyt agbgag_lbg_l),

where the last homeomorphism follows from the proposition. Similarly, to prove part (2),
we use that RP? ~ Y(aa) and hence

RP*# ... #RP? ~%(ara0)# . .. #5(aray)
k

~Y(araia2as . . . agag)

-1
g

).
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Proposition 2.25. Let Wy, Wy, W3 be words, and let a be a letter which does not occur in
these words. Then there are homeomorphisms

Z(WlaWZaW?,) =~ E(WlaaW;le) (226)
S(WiaWaaWs) = S(W Wy taaWs) (2.27)
Here Wyt is the inverse of the word Wy = xy ... x,, given explicitly by Wy ' = a7t .. a?

(as for products of elements of a group).
Proof. By part (2) of Lemma there are homeomorphisms
S(WiaWeaWs) = S(aWeaW') and S (WiaaW, 'Ws) ~ S(aaW, 'W')

where W' = W3W;. Hence it suffice to produce homeomorphisms

S(aWoaW') = L(aaW, ' W) (2.28)
S(aWeaW') = S (W5 taaW') (2.29)
The homeomorphism ([2.28)) is given by the composition of the following homeomorphisms
a
a
S(aWeaW') ~ W) W, o~ W Wa
@ a
c
W’ K
~ a ~o
a
Wy .
~ S(ccWy W) ~ S(aaWy W)
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1. Here the first homeomorphism is an equality, by definition of the quotient space
Y(aWaaW') associated to the word aWsaWW’;

2. The second homeomorphism arises by cutting the square along the diagonal. (Strictly
speaking, this “square” is a polygon which may have many many more than four
edges: the number of edges is the length of the word aWyaW’. However, if we draw
the edges corresponding to the words W’ and W5 vertically, and the two edges labeled
a horizontally, then this polygon very much looks like a square, and so we prefer to
use that terminology.) This results in two triangles (again, a slight abuse of language).
We label the two new edges by the same label ¢ (a new label distinct from all the other
labels used so far) and the indicated direction. In Definition we interpreted the
labeling of the edges of one polygon as giving an equivalence relation on the polygon
and hence an associated quotient space. Generalizing from one polygon with edge
labeling to a disjoint union of polygons with edge labeling, we again interpret these
pictures as giving us a quotient of the disjoint union of polygons by identifying all
edges with the same label. Note that the order in which we glue the edges is irrelevant,
and hence first gluing along the edge ¢ gives back the previous quotient space.

3. The third homeomorphism is tautological, since the picture shows the same two poly-
gons with the same edge labeling — we only moved the polygon drawn on the top right
in the second picture to be below the other polygon (and we flipped it), so that the
two edges labeled a in the two polygons are lined up.

4. The argument for the fourth homeomorphism is the same as for the second homeomor-
phism: first gluing along the edge labeled a, and then along the other edges gives the
same quotient as identifying all edges with the same label simultaneously.

5. The fifth homeomorphism holds by definition of ¥ (ccW, "W).

6. The sixth homeomorphism holds, since we may rename edges without changing the
quotient they describe (see Lemma [2.19)).

The homeomorphism ([2.29)) is constructed completely analogously by a sequence of pictures.
The difference comes from using the other diagonal to cut the square in the first picture
(going from the top right to the bottom left corner). ]

Proof of Lemma 7?7 (2). The desired homeomorphism is given by the following composition
of homeomorphism. The numbers below these homeomorphism indicate the reference to the
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appropriate Lemma/Proposition/Definition.

T#RP? =~ Y(aba 'b"H)#X ~ Y(aba 'b7! ~ X(abch
# = (aba V#3(cc) = (aba cc) (abcbac)
~ N(abbclac) =~ X(bbclaca) ==  X(bbc'c laa)
2:26) I9)(2)
= Y(b)#X(c e H#X (aa) = RP2#RP>#RP?

]

Outline of the constructive part of the Classification Theorem[2.8 Here by “constructive part”
we mean the statement that every compact connected 2-manifold is homeomorphic to either
Eg or X, k-

1. Show that every compact surface > admits a pattern of polygons I'. Usually, this
is stated as the stronger statement that every compact surface can be triangulated,
meaning that it admits a pattern of triangles. Labeling all edges of I' with a different
letter and an arrow, and then cutting ¥ along all edges gives a disjoint union of labeled
polygons. By construction, ¥ is the homeomorphic to the quotient space of this disjoint
union by gluing along the pair of edges with the same label (see [Mu2, Thm. 78.1]).

2. The number of polygons involved can be reduced by one by gluing pairs of edges with
the same label belonging to different polygons. Inductively, this shows that ¥ can be
obtained by edge identifications of one polygon (see [Mu2, Thm. 78.2]).

3. Use moves of the type described in Lemma [2.19] or Proposition to show that the
labeling of the edges of the polygon can be modified without changing the homeomor-
phism type of the quotient space to obtain the standard labeling for the surface of
genus g or the k-fold projective space Xj (see [Mu2, Thm. 77.5]).

[]
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3 The fundamental group

In this section we define the fundamental group of a topological space X. This is an invariant
which can be used to distinguish topological spaces. For example, we will see that all the
compact connected manifolds can be distinguished by their fundamental group. This is done
using the Seifert van Kampen Theorem, a powerful tool to calculate fundamental groups.
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3.1 The definition of the fundamental group

The basic idea of the fundamental group is that paths in different topological spaces might
have different behavior. For example, the picture below shows two paths «, § with the same
starting point and end point in the sphere and the torus. The difference between the two
situations is that for the sphere the path o can be deformed to give the path [, while the
paths on the torus cannot be deformed into one another.

T

\/

Y Y

Definition 3.1. A path in a topological space X is a continuous map 7: [0,1] — X. The
point y(0) € X is the starting point, the point (1) € X is the endpoint of the path v. With
a slight abuse of language, both point (1) and (0) might be referred to as endpoints of the
path ~v. If v(0) = = and v(1) = y, we say that v is a path from z to y.

Let 7,9 be two paths in X from x to y. These paths are homotopic relative endpoints or
path homotopic or simply homotopic if for every t € [0, 1] there is a path v; from z to y such
that

e v =7 and vy, = J;

e The map H: [0,1] x [0,1] — X, (s,t) — v(s) is continuous. This condition expresses
the idea that the family of paths 7, depends continuously on the parameter .

The map H is called a homotopy from v to §, and we write v ~ ¢ to say that ~ is homotopic
to d. It is easy to show that homotopic is an equivalence relation (we leave the proof to the
reader). We use the notation [y] for the homotopy class of a path 7.

Let U C R™ be a convex subset, i.e., for any points z,y € U the straight line segment
between x and y is contained in U. Explicitly, the straight line segment is the set

{1—-t)z+tyeR"|0<t <1}
Examples of convex subspaces of R™:

o R";
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e an open ball B,.(z) of radius r around some point = € R";
e a closed ball D,(x) := {y € R" | ||y — z|| < r} of radius r around some point x € R™;

The punctured space R"™ \ {v} is not convex, since for any nonzero w € R™ the straight line
segment between r = v + w and y = v — w contains the point v.

Lemma 3.2. Let U be a convex subset of R™, and let o, B be paths in U with the same
endpoints (i.e., a(0) = ((0) and a(1) = B(1)). Then « and B are homotopic (relative
endpoints). An explicit homotopy, called linear homotopy is given by the formula

H:[0,1] x [0,1] — U is given by  H(s,t):= (1 —1t)y(s) + td(s).

We note that for fixed s € [0, 1] the path ¢t — H(s,t) = (1 —t)y(s) +td(s) is the straight
line path from ~y(s) to d(s).

Definition 3.3. Let o, : I — X, be paths in a topological space X. If a(1) = 5(0), i.e., if
the endpoint of @ matches the starting point of 3, then we can form a new path «a * 3 called
the concatenation of a and 8 by first following the path a and then following the path f.
Explicitly, the path

a(2s)
p(2s —1)

i L

axf: ] —X is given by (a*ﬁ)(s):{

= O

IAINA
IA A

It has starting point «(0) and endpoint 3(1).

Let o, 8 and v be paths in X with «(1) = £(0) and §(1) = 7(0), then we can form the
concatenated paths a * f and /3 * . Since the endpoint of a x § is (1), it can further be
concatenated with 7, forming the path (a * ) * . Similarly, we can form the concatenation
ax (6 xv). We want to point out that these paths are typically not equal to each other:

o ax(f*7v)(s)is a point on the path «a for 0 < s < 1/2, on the path g for 1/2 < s < 3/4
and on the path v for 3/4 < s <1, while

o ((a*f)*7)(s) on the path o for 0 < s < 1/4, on the path  for 1/4 < s < 1/2, and
on the path v for 1/2 < s < 1.

Lemma 3.4. Concatenation is associative up to homotopy, that is, if o, B, v are paths in

X with a(1) = (0) and B(1) = v(0), then the paths
ax ([ *7) and CEYER! are homotopic;

in other words, [a* (8 x )] = [(a* B) *7].
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The associativity of the concatenation of paths up to homotopy suggests that we might
be able to construct a group associated to a topological space X by taking the elements
of this group to be homotopy classes of paths in X. The problem with this is that paths
can only be concatenated it the endpoint of the first path matches the starting point of the
second path, while any two elements of a group can be multiplied with each other. There
are two ways to deal with this issue:

e We pick a point o € X and only consider paths that start and end at zq; this is what
we will do in the definition below of the fundamental group of a topological space X.

e We give up the idea of constructing a group, but instead construct a groupoid which is
called the fundamental groupoid of X.

Definition 3.5. Let X be a topological space and let x5 € X be a point of X, usually
referred to as base point. Such a pair (X, xg) is called a pointed topological space. A based
loop in (X, xg) is a path v: [ — X with y(0) = 2o = y(1). Let

(X, xg) := {based loops in (X, zo)}/homotopy.
Proposition 3.6. The set w1 (X, xg) is a group, the fundamental group of (X, x¢), with

o multiplication given by concatenation of based loops, i.e., [a] - [B] := [a * B] for based
loops a, (B,

o the identity element of m (X, xo) is given by the homotopy class of the constant path
Cao (1€, Cxo(s) =0 forall s € I1);

e the inverse of an element [y] € m (X, xg) is given by [y], where ¥: I — X is the path
v run backwards, i.e., ¥(s) = v(1 — s).

The proof of this statement is pretty straightforward. The associativity of the product is
a consequence of Lemma which is a more general since it is a statement for composable
paths rather than just based loops. Similarly, the claim that the homotopy class of constant
path ¢, is the identity element of m (X, z) is a consequence of the first two homotopies of
the following lemma, while the last two homotopies imply that [] is the inverse to [y] for
a based loop in (X, xp). Again, it will be useful for us to state these homotopies for paths,
rather than just based loops.

Lemma 3.7. Let v: I — X be a path in a topological space X. Let 7: I — X be the path
defined by Y(s) :== v(1 — s) and let c,: I — X be the constant path at a point x € X. Then
there are homotopies

Y * Cy(a) ~ Y Cy(0) ¥ Y ~ Y Y *Y ™~ Cy(0) Y EY )
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Example 3.8. Let X be a convex subset of R", and zqg € X. Then by Lemma [3.2] any
based loop in (X, xg) is homotopic to the constant loop ¢,,. Hence the fundamental group
m1 (X, xo) is trivial.

Lemma 3.9. Let X be a topological space and let 5 be a path from xq to x1. Then the map
Os: m(X,20) — m(X,21) ] [Bryx

s an isomorphism of groups. In particular, the isomorphism class of the fundamental group
(X, x0) of a path connected space does not depend on the choice of the base point xo € X.

3.2 Fundamental group of S' and the winding number

Theorem 3.10. The fundamental group of the circle m (S, 1) is isomorphic to Z. The
isomorphism V: Z — (S, 1) is given by mapping n € Z to the element [w,] € m (S*, 1)
given by the based loop wy,: I — S defined by w,(s) = e*™"s,

Homework 3.11. Show that ¥ is a homomorpism.

We will proof this result in the next section, using the homotopy lifting property for the
covering map p: R — St ¢ s ¥ which we will prove when we talk about covering spaces.

Let W: m(S',1) — Z be the isomorphism inverse to W. It associates to each based loop
v: (I,0I) — (S',1) an integer W (v) € Z called the winding number of . Heuristically, it
counts how often the loop v “winds around” the circle. For example, by definition of W as
the inverse of ¥, the winding number W (w,) is equal to n, which matches the geometric
intuition that the loop w, winds counterclockwise around the circle n times (for negative n
this means that it winds around clockwise |n| times). In the next section we will provide a
much more direct definition of the winding number of based loops in S* [3.13]

The goal of this section is to define a winding number W (~) for maps v: S — C\ {w},
i.e., for loops in the punctured plane C \ {w}, and to use this to prove the fundamental
theorem of algebra. A basic property of the winding number W () is that it only depends
on the homotopy class of .

Definition 3.12. (Homotopy class of a map) Let X, Y be topological spaces and let
f,g: X = Y be continuous maps. A homotopy from f to g is a continuous map

H: XxI—Y

such that H restricts to f on X x {0} and to g on X x {1}, i.e., H(z,0) = f(z) and
H(z,1) = g(x) for all z € X. If there is a homotopy from f to g, we say f is homotopic to
g, and write f ~ g. It is not hard to show that this is an equivalence relation, we write [f]
for the homotopy class of f and [X, Y] for the set of homotopy classes of maps X — Y.



3 THE FUNDAMENTAL GROUP 47

Let w € C be a fixed element of the complex plane. Then there is a map

Z—Ww

f:C\{w} — 5! defined by f(z):= | K
Z2—w

If v: St — C\ {w} is a loop in the punctured plane C \ {w}, then f o~ is a loop in S.

In general, f(v(1)) # 1 € S, i.e., f o~ is not a loop based at 1 € S, and hence does not

represent an element of the fundamental group 7;(S*,1). This can be fixed by multiplying
the loop f o~ by f(y(1))~* € S'. More precisely, let

d,: St St be the based loop given by D.(2) = f(v(2) - f(v(1) 7.

It is easy to check that a homotopy H from « to 7/ induces a homotopy @5 from @, to ..
Explicitly,

Py S'x I — S is given by Oy(z,t) = f(H(z,t))- f(H(1,t)
This shows that there is a well-defined map
©: [S1,C\ {w}] — m(S,1)  givenby  &([y]) = [@,).

Definition 3.13. Let w € C, and let v: S — C\ {w} be a loop. Then W (y,w) € Z, the
winding number of v around the point w is the winding number W(®,) of the associated
based loop in S*. The discussion above shows that the winding number W (v, w) depends
only on the homotopy class of .

Example 3.14. For n € Z the map w,: S' — C\ {0},z + 2" has winding number
W(v,0) = n. To see this, we observe that w, is already a based loop in S! and hence
®,, = w, (as maps from S! to S'). Moreover, via the standard homeomorphism /91 = S1
given by t — 2™ the based loop w,: S' — S! corresponds to the based loop w,: I — S*,
wy(s) = 2™ mentioned in Theorem [3.10] which has winding number n.

Theorem 3.15. The Fundamental Theorem of Algebra. Let
p(2) = a2 + ap 12" a2+ ag

be a polynomial of degree n > 0. Then p has a zero, that is, there is some z € C such that
p(z) = 0.

Proof. Aiming for a proof by contradiction, we assume that p(z) belongs to C* := C\ {0}
for all z € C. This allows us to talk about the winding number W (~,0) € Z of the closed
curve

v: St — C* given by 2z p(2)
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around 0 € C. Since all the closed loops considered in this proof are in C*, we will just write
W (~y) instead of W (+,0). We will calculate W () in two different ways, the first one resulting
in W(vy) = 0, the other one resulting in W () = n. This is the desired contradiction.

The loop 7 is obtained by restricting the polynomial p(z) to the unit circle. Restricting
p(z) instead to the circle of radius r, we obtain the loop

¥p: St — C* defined by 2z~ p(rz).
We note that the loop ~, is homotopic to v = ;. A homotopy is given by
H:S'xI—C* givenby  H(zt)=p({tr+(t—1))z).

This implies that W () = W(~,) for all r, including r = 0.

First calculation. The loop 7y is the constant loop, and hence W (v, 0) = 0. It follows that
W(y)=0.

Second calculation. Instead of shrinking r to 0, we will now consider the loop =, for large
radius 7. Writing 7,(z) in the form

Ay a
Yo(2) = anr™ 2" 4 a1 g =" <anz" + nle" +-o 4 r_:) ,
we see that the term b,(z) 1= #==22" 4 ... 4+ 2 converges to 0 uniformly for z € S*. In

particular, for sufficiently large r we have
b.-(2)] < |anz"| for all z € S*.
It follows that a,2" + tb,(z) belongs to C* for all z € S* and ¢ € [0,1]. Then
H:S'x I —C* definedby  H(zt):=1r"(a,2" +tb.(2))

is a homotopy between 7,(z) and the loop v'(z) := r"a,z". The loop 4/ in turn is homotopic
to the 100p Yy, Vu(z) := 2" of Example [3.14 A homotopy H’: S x I — C* is given by
choosing a path § in C* with §(0) = r"a,, 6 = 1, and defining

H'(z,t) :=0(t)2".
Since homotopic loops have the same winding number, it follows that

W(y) =W(') =W(w,) =n.
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3.3 The covering map p: R — 5!

The goal of this section is to prove Theorem i.e., to show that the fundamental group
m1(S1, 1) is isomorphic to Z. It relies on a direct definition of the winding number W () € Z
of a based loop v: (I,0I) — (S*,1).

We first give a heuristic discussion of the definition of W () before spelling out the results
on covering spaces it is based upon. Consider the surjective map

p:R— 5! given by  p(t) = e*™".

We picture this map as the vertical projection of a vertical spiral onto a circle in the zy-plane
as in the picture

0eR

0000

N

k

1e St

$

As indicated in the picture, we choose 0 € R as the base point of the real line and p(0) =
1 € S' as the base point of the circle. Let v: (I,0I) — (S*,1) be a based loop, i.e., a path
v: I — S* which starts and ends at 1 € S*.

As the picture suggests, let us think R as a circular stairway located above the circular
track represented by S'. Let us interpret v(s) € S' as the location at time s € [0,1] of
person taking a leisurely walk along the circular track which starts and ends an hour later at
1 € S'. Suppose that this person is the owner of a dog who at the same time runs around on
the spiral staircase above and that 7(s) € R is the dog’s location at time s € [0, 1]. Suppose
that the dog starts his outing on the staircase at 0 € R, and that this faithful dog tries to
be as close as it can be to its owner, in other words, always vertically above its owner.

Question. At which location is the dog at the end of the outing?

Since the dog is always vertically above its owner, i.e., p(7(s)) = v(s), the dog’s ending
location 7(1) must belong to p~*(y(1)) = p~'(1) = Z C R. We observe that the dog’s ending
location does depend on the path ~ its owner takes. E.g., if the owner walks counterclockwise
once around the track, the dog ends up at 1 € R. If the owner walks around twice, the dog



3 THE FUNDAMENTAL GROUP 50

ends up at 2 € R. With a clockwise walk once around the track of the owner, the dog ends
up at —1 € R. In other words, the ending location of the dog is the winding number W (~)
of the owner’s loop v around the track. For this reason, the invariant W(y) could also be
referred to as the “faithful dog invariant”.

Intuitively, it is obvious that the path v the owner takes uniquely determines the path
of the dog. Mathematically, the path 7 with the property p o5 = ~ is called a “lift” of ~,
and its existence has to be proved. Also, it is intuitively clear that the lift ¥ is unique, once
we choose a particular starting point 7(0) € p~*(7(0)). Again that needs to be proved.

It turns out that this “path-lifting” does not just work for the specific map p: R — S*,
but for any covering map (see definition below). Later this semester we will make extensive
use of path-lifting for covering spaces, and for that reason we will define covering spaces now
and state their path lifting properties, but will refer the proof of their path-lifting properties
to the section on covering spaces.

Definition 3.16. A continuous map p: X > Xisa covering map if p is surjective, and if
for each x € X there is an open neighborhood U with the property that

e p~1(U) is the disjoint union of open subsets U, C X, a € A, and
e for every ¢ € I the restriction pyy, : U, — U is a homeomorphism.

Any open subset U C X with this property is called evenly covered. If p: X > Xisa
covering map, the space X is called a covering space of X.

Example 3.17. The map p: R — St p(t) = > is a covering map, since for any point
e?™ ¢ S1 an open neighborhood of U of 2™ is given by the image of the interval (¢t —¢, t+¢)
under p (this is an open map, as is easy to check in the same way we verified that S™ — RP"
is an open map). Then
p ' U) =+t —en+t+e)
nez

and these are disjoint open intervals for e small enough (any € < 1/2 works). It is easy to
show that p restricted to each interval (n +t¢ —e,n +t + €) is a homeomorphism to U. In
other words, U is evenly covered and hence p: R — S is a covering map.

Lemma 3.18. (Path-lifting for covering maps) Let p: X = X bea covering map. Let
v: I — X be path, and let Ty € X with p(To) = v(0). Then there is a unique path5: I — X
with ¥(0) = Ty which is a lift of 7, i.e., po7y = 7.

We remark that this statement can be formulated in the form of a commutative diagram:

{O}L;)}‘

3 -
\[ /// lp

| SR e

N
\
\
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e The solid arrows of the commutative outer square represent the assumptions of the
lemma: the data given in the lemma consists of the maps p, v, the inclusion map
{0} < I, and the point Ty € X, which can be interpreted as a map from the one-
point space {0} to X. The assumption p(Zg) = 7(0) of the lemma is equivalent to
commutativity of the square.

e The dashed arrow represents the statement of the lemma, the existence of the map
~ and its uniqueness. Note that commutativitity of the upper triangle expresses the
requirement 7(0) = Ty, while the commutativity of the lower triangle expresses the
requirement that 7 is a lift of .

Definition 3.19. Let v: (I,0I) — (S*,1) be based loop, and let 7: I — R the unique lift
of v with 7(0) = 0. Then W () :=7(1) € Z is the winding number of .

Lemma 3.20. The winding number W (~y) of a based loop v: (I,0I) — (S, 1) depends only
on the homotopy class [y] € m(S*, 1).

The proof of this result uses the following generalization of the path-lifting property of
covering maps.

Proposition 3.21. Let p: X = X be a covering map, let H:'Y x I — X be a homotopy
from f:Y = X tog: Y — X, andletf Y — X be alift of f, i.e. pOf f. Then there
18 a unique homotopy H:Y x I — X which is a lift of H (i.e. pOH H ) whose restriction

toY x {0} is the map f.

As the path-lifting property this homotopy lifting property of covering maps can be
expressed as a commutative diagram:

f ~

Yx] — "2 X

Proof of Lemma[3.20. Let v,~" be based loops in S! for the basepoint zo := 1 € S*, and let
5: I — R be a lift of v with ¥(0) =25 :=0 € R. Let H: I x [ — S! be a path homotopy

from v to 4/, and let H: I x I — R be the unique lift of H whose restriction to I x {0} is 7.

The following pictures show what we know or can deduce about the maps H, H. The
pictures show the square I x I, the domain of H and H, and indicate where the four boundary
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edges map to by labeling them by the corresponding path in S* resp. R.

/ =~

y ¥
> ———>—9

1 1 0 W)
> R
v v

H:IxI— S H:IxI—>R

The left picture shows the path homotopy H from v to 7/, so H restricted to the bottom
(resp. top) edge is the path 7 (resp. 7). Since H is a path homotopy, the endpoints stay
fixed during the homotopy, i.e., H maps both vertical edges to the basepoint 1 € S L

The homotopy H is a lift of H, which restricts to 7 on its bottom edge. In particular, it
maps the left bottom vertex to 7(0) = 0 and the right bottom vertex to 7(1) = W(v) € Z
(by definition of the winding number, Def. . Unlike H, the lift His a priori not a
path homotopy, but only a homotopy, i.e., there is no built-in requirement that H keeps the
endpoints fixed (note that we obtain the lifted homotopy by appealing to Proposition 77,
which deals with homotopies for maps Y — X, where it doesn’t make sense to talk about
“endpoints”).

Fortunately, we can prove that the lifted homotopy H is in fact a path homotopy: re-
stricting H to the vertical edges gives paths in R which are lifts of constant paths in S L
Hence by uniqueness of path lifting (Lemma ?7?) the restriction of H to the vertical edges
must be constant paths in R, and hence H is in fact a path homotopy. The left edge must
map to 0, since the bottom left vertex maps to 7(0) = 0, while the right edge must map to
W () since the bottom right edge maps to y(1) = W (7).

The path 7 obtained by restricting H to the top edge is a lift of 4/ with starting point
0 and endpoint W (). Since 7’ has starting point 0 and is a lift of 4/, its endpoint 7'(1) is
definition the winding number of 7/. Hence W (v') = W (~) as claimed. O

Theorem 3.22. The homomorphism W: w1(S',1) — Z that maps [y] € m(S', 1) to the
winding number W (~y) is an isomorphism. It is inverse to the map ® of Theorem |3.1(.

Proof. To show that W is a group homomorphism, let 7, 7/ be based loops in (S, 1), and
let 7,%": I — R be their lifts for the covering map p: R — S!, t — 2™ with starting point
0 € R. We need to determine the lift of the concatenated loop v * /. It is tempting to say
that that is 7% %', but this concatenation not be defined since the endpoint of the first path,
i.e., (1) = W(y), in general is not equal to the starting point of the second path 7'(0) = 0.
We can fix this problem by replacing 7" by the path 7': I — R defined by

V() :==W(y)+7(s).
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The path 7’ also is a lift of 4/, but its starting point is 7'(0) = W (y), and hence the
concatenation 7 x 7" is a continuous path which is a lift of v % 4/ with starting point 0 and
endpoint

G570 =F(1) = W) +70) = W) + W),
This shows that the winding number of v *~" is W (v) + W (%/).

To show that W is surjective, let n € Z, and let w,: I — S* be the based loop defined
by wy(s) = e*™s. Then @: I — R defined by W(s) = ns is a lift of w for the covering map
p: R — St ¥ (ie., pow, = w). Moreover, @,(0) = 0 and hence by the definition of
the winding number W(w) = w(1) = n.

Once we verify that W is injective, this also shows that W is an inverse to ® which was
defined by mapping n € Z to |w,] € m (S, 1).

To show that W is injective, let v, 7/ be based loops in (S',1) and assume that W (y) =
W(+). Let 4,7": I — R be lifts of y resp. ' with starting point 0 € R. Then (1) = W (v),
(1) = W(+') and hence the starting points and end points of these two paths in R agree.
Let H: I x I — R be the linear homotopy between these two paths, i.e.,

H(s,t) = (1 — )A(s) + t7/(s).

This is a path homotopy, i.e., H(0,t) and H(1,t) are independent of t. Then po H a path
homotopy between po75 =~ and p o7 =+, showing that [y] =[] € m (S, 1). O]

4 A little bit of category theory

So far, we've calculated the fundamental groups for very few spaces: for convex subspaces
of R", for the circle S' and products of the circle. The main technique for calculating the
fundamental group of more complicated spaces X is to write X as a union of open subspaces
X7 and X, such that the fundamental groups of X, X5 and the intersection X; N X, are
already known (and X; N X, is path-connected). The Seifert van Kampen Theorem then
gives a formula for the fundamental of X in terms of the fundamental groups of X, X5,
X1 N X5 and the group homomorphisms

7T1(X1 ﬂXQ) &) 771(X1)

(J'2)*l

T (XQ)

induced by the inclusion maps of X; N X, into X; resp. X,. More precisely, according to
the Seifert van Kampen Theorem, the fundamental group (X, x¢) is given by the pushout
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of the above diagram in the category of groups. Since the space X is the pushout of the
corresponding diagram

XlﬁXQ L) X1

A

X5

in the category of topological spaces, the Seifert van Kampen Theorem can be stated con-
ceptually by saying that “the fundamental group functor preserves pushouts”.

The goal of this chapter is to define “pushouts” and to calculate pushouts in the category
of topological space and the category of groups. In the first section we introduce the language
of categories and functors. In the second section, we first the more basic notions ‘categorical
product” and “categorical coproduct” before defining “pushouts”.

4.1 Functors and categories

In the previous sections we have discussed how we can associate to any pointed topolog-
ical space (X, xzy) a group m(X, ) (the fundamental group, Definition and how to
associate to a base point preserving map f: (X, xo) — (Y,yo) between pointed topologi-
cal spaces a group homomorphism f.: m (X, z9) — m(Y,yo) (the induced homomorphism
on fundamental groups, Definition ??). In other words, this construction associates to one
kind of mathematical object (a pointed topological space) a different kind of mathemati-
cal object (a group), and to appropriate maps between the first kind of objects (basepoint
preserving continuous maps) appropriate maps between the second kind of objects (group
homomorphisms).

Such a construction is called a functor between categories. The goal of this section is to
provide a quick introduction to categories and functors. Even if you haven’t seen the formal
definition of a category, it is likely that you already know many examples of categories. So
it seems appropriate to mention some mathematical objects and appropriate maps between
them that will then motivate the definition of a category.

When studying various mathematical objects, we usually also talk about the appropriate
kind of maps between these objects. The following table lists some well known examples.

mathematical objects ‘ appropriate maps

sets maps

groups group homomorphisms
vector spaces linear maps
topological spaces continuous maps

What is the structure that is common to all of these four types of mathematical objects
and the maps between them? There isn’t too much there, but we observe that composing
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“appropriate maps” leads again to “appropriate maps” (assuming the domain/source of one
map matches the codomain/target of the other map), and that there is an “identity map”
for every object. The following definition captures this structure, which is called a category.
The four kinds of mathematical objects and the maps between them are then examples of
categories.

Remark 4.1. Let X, Y, Z besets and let g: X — Y and f: Y — Z be maps. Then there
are two usual ways to write the composition, namely as

gof or as x Ly 4z

Using the first way to write compositions, it is natural to think of composition as the map
given by (g, f) — go f. Writing Maps(X,Y") for the set of maps from X to Y, this is the
map
Maps(Y, Z) x Maps(X,Y) — Maps(X,Z2)
(9.f) = gof

However, thinking about it the second way, it is more natural to think of composition as the
map

Maps(X,Y) x Maps(Y,Z) — Maps(X,2)
xLyvLz » xLyv Lz
Both ways have their advantages and disadvantages; to me, the second one seems more
elegant, but alas, the first way is probably too deeply entrenched in mathematics to be

thrown out. The sad effect is that there is there is no general consensus of how to write
compositions in categories. I will follow the first convention.

Definition 4.2. A category C consists of the following data:

e A class of objects, denoted ob(C); the elements of ob(C) are called the objects of the
category C.

e For each pair of objects X,Y € ob(C) a set more(X,Y). The elements of more(X,Y)
are called morphisms in C from X to Y or morphisms with domain (or source) X

and codomain (or target) Y. Alternative notations for this set include mor(X,Y) or
C(X,Y).

e For objects X,Y, Z € C there is a composition map

o: C(Y,Z)xC(X,)Y) — C(X,2) (9, f)—gof.
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e For each object X € ob(C) a morphism idyx € C(X, X) called identity morphism.
These data are subject to the following requirements:
associativity For morphisms f € C(U, X), g € C(X,Y), h € C(Y, Z) we have

(hog)of=ho(gof)eCU Z).
identity property For f € C(X,Y) we have foidy = f =idyof € C(X,Y).

Remark 4.3. For a morphism f € C(X,Y) we often write X 5 ¥ to indicate the domain

and codomain of f. For f € C(Y, Z) and g € C(X,Y) we often write X 25 Y L 7 for the
composition f o g.

Definition 4.4. Let C be a category. A morphism f € C(X,Y) is called an isomorphism if
there exists a morphism g € C(Y, X) such that f og =1idy and go f = idx. The category C
is a groupoid if every morphism is an isomorphism.

We can now recast our motivating examples of sets, groups, vector spaces and topological
spaces as categories.

Example 4.5.
category C ‘ objects ‘ morphisms ‘ isomorphisms
Set sets maps bijections
Grp groups group homomorphisms | group isomorphisms
Vect vector spaces linear maps linear isomorphisms
Top topological spaces continuous maps homeomorphisms

Our previous examples of category might suggest that morphisms are always maps of
sets compatible with additional structure these sets might have. In the following examples
of categories, this is not the case.

Example 4.6. (Examples of categories whose morphisms are not maps between
sets).

e To any group GG we can associate a category C as follows. The category C has one
object denoted *, and the set of morphisms C(x, %) from * to * is the set G of group
elements. The composition map

o: C(*,%) X C(*,%) —> C(x*, %)

is given by the map m: G x G — G that describes multiplication of elements of G.
The identity morphism id, is defined to be the identity element 1 € G of the group
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G. Associativity and the identity property hold for the category C, since the group
multiplication is associative and 1 € G is the identity element of the group G.

We note that every morphism g € C(x, *) is an isomorphism (its inverse is given by the
group element g~1), and hence C is a groupoid.

e To any topological space X we can associate a groupoid I1; (X), called the fundamental
groupoid of X. As the name suggests, this is a generalization of the fundamental group
of X. The objects of II;(X) are the points of X. For z,y, the set of morphisms
mor(z,y) is defined to be

mor(x,y) := {paths v: I — X with v(1) = z, 7(0) = y}/homotopy.
For z,y, z € X, the composition in this category is induced by concatenation of paths:

o: mor(y, z) X mor(z,y) — mor(z, z) is given by ([a, [B]) = [ =* B]

We recall that for any pointed topological space (X, z) we have defined its fundamental
group 71 (X, o), and for any pointed map f: (X, x¢) — (Y, yo) there is the group homomor-
phism

f*: ™ (Xu xO) — (Y7 yO) defined by [’Y] = [f © ’}/]

for a based loop ~y: (I,0I) — (X, x). This is compatible with compositions in the sense
that for pointed maps (X, xg) SN (Y, y0) -2 (Z, %)

(gofle=gso fu

it is also compatible with identities, i.e., if idx is the identity map of a pointed space (X, xy),
the induced map (idx). is the identity automorphism on the fundamental group m; (X, o).

This is an example of a functor, in this case a functor from the category Top, of pointed
topological spaces and basepoint preserving maps to the category Grp of groups. This is our
motivating example for the definition of functor.

Definition 4.7. Let C and D be categories. A functor F: C — D

e associates to every object X of C an object F'(X) of D;

e associates to every morphism f € C(X,Y) a morphism F(f) € D(F(X), F(Y)),
subject to the following compatibility requirements with:
compositions: F(go f) = F(g)o F(f) for f € C(X,Y) and g € C(Y, Z);

identities: F(idx) = idp(x) for any object X of C.
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Example 4.8. (Forgetful functors) Frequently, the objects of a category C consist of sets
with suitable additional structure (i.e., a group structure, the structure of vector space over
a field K, a topological space), and morphisms that consists of those maps of the underlying
sets that are compatible with the additional structure. Then we obtain a forgetful functor
F': C — Set by mapping each object of C to its underlying set, and mapping each morphism
to the underlying map of sets. This way we obtain forgetful functors

1. Grp — Set (by forgetting the group structure);
2. Vecty — Set (by forgetting the vector space structure);
3. Top — Set (by forgetting the topology);

Other forgetful functors forget just part of the structure. For example, there are forgetful
functors

4. Vectxy — Grp (by forgetting the scalar multiplication in a K-vector space V', but
remembering the abelian group structure);

5. Top, — Top (by forgetting the basepoint).
Example 4.9. (Free functors)

(1) The functor Set — Vecty that sends a set S to the K-vector space

K S := {(formal) finite linear combinations Z kss, ks € K}.

seS

Calling a linear combination ) __ ks finite means that only finitely many of the coef-
ficients ks € K are non-zero. Addition of these linear combinations and multplication
by some k € K gives K.S the structure of a vector space. Note that a basis of K5 is
given by the elements of S (by regarding s € S as a particular simple linear combi-
nation of elements in S). In particular, the vector space KS could be called the free
K-module generated by S.

A map f: S — T of sets determines a linear map

for KS— KT defined by f.() kes) =Y kof(s).

ses seS

Note that f(s) is in element of 7', and so » o ks f(s) is indeed a finite linear combi-
nation of elements of 7.
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(2) A functor Set — Ab to the category Ab of abelian groups and group homomorphisms
can be defined very similarly, by mapping a set S to

ZS := {(formal) finite linear combinations Z nss, ns € Z}.
s€S

Z.S is called the free abelian group generated by S. A map f: S — T of sets determines
a group homomorphism f,: ZS — ZT as in the example above.

(3) There is a functor Set — Grp which maps a set S to
F(S) := {words whose letters are s* for s € S}/ ~

Here a word obtained by deleting a string of the form ss~! or s~'s from a word W is
identified with W, and the equivalence relation ~ is generated by this. Concatenation
of words gives a well-defined multiplication on these equivalence classes. This gives
F(S) a group structure, with the identity element given by the empty word, and the
inverse given by replacing each letter s*! by s7! and writing the letters in reverse order.
The group F(S) is called the free group generated by S.

A map f: S — T of sets induces a homomorphism f,: F(S) — F(T) which maps (an
equivalence class of) a word si'...sy", e € {£1} to f(s1)" ... f(sk)®*.

4.2 Product, coproducts and pushouts
4.2.1 Products

Let X4, X5 be sets and let X := X; x Xy be their Cartesian product. The product X is
related to its factors X, X, via the projection maps

p1 p2
Xl < X > XQ.

We note that map f from a set Y to the product X = X; x X5 are easy to describe: a pair
of maps fi: Y — Xy, fo: Y — X5 uniquely determines a map f: Y — X whose component
maps are fi, fo. This statement can be concisely expressed by the commutative diagram
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We note the the commutativity of the top triangle, i.e., f; = p;o f expresses the requirement
that the first component of f is f;, while the commutativity of the bottom triangle forces
the second component of f to be fs.

The benefit of describing a property in terms of a commutative diagram is that the same
statement can be made in any category. This motivates the following definition.

Definition 4.10. Let X;, X, be objects in a category C. An object X in C is called
a categorical product (often denoted X; x Xs) if there are morphism p;: X — X; and

p2: X — X, such that the diagram X; «+>=— X —2— X, has the property expressed by
the commutative diagram

Xy
h Tpl

y - M x (4.11)
T I
Xy

Expressed in words, this is: for any pair of morphisms fi: Y — Xy, fo: Y — X, there is a
unique morphism f: Y — X making the diagram commutative.

The universal property (4.11)) implies that the map
C(Y,X) — C(Y, X;) x C(Y, X5) f—=(piof,p2of) (4.12)

is a bijection. In particular, it is easy to understand maps whose codomain is a categorical
product, i.e., maps to a categorical product.

A categorical product of two objects X;, X5 in a category C, i.e., an object X with
the property expressed by diagram (4.11)), might or might not exist. Here is a an example
showing that products might not exist in a category C.

Example 4.13. Non-existence of categorical products. where For let C be the category
whose objects are the sets of cardinality < n and whose morphisms are maps between
these sets. We claim that the categorical product of two sets X, X5 exists if and only if
| X1 || X2] < n, where | X| € Ny denotes the cardinality of a finite set X.

The number | X||X5| is the cardinality of the Cartesian product X; x X5 of these sets,
which we know is a categorical product of these in the category Set. If | X;||X5| < n, then
X3 x X5 belongs to the subcategory C, and is in particular also a categorical product of X;
and X5 in C.

To show that for |X;||X2| > n no categorical product X in C exists, suppose that X is a
categorical product of X; and X,. Then we have the bijection ([£.12). For finite sets X, Y,
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the morphism set morse (Y, X) = map(Y, X), the set of maps from Y to X has cardinality
|X|¥!. Hence the bijection (#.12)) implies

I = 130 M0 = (X[ xR)M,

and hence | X| = | X || X3| for |Y| = 1. This shows that there is no categorical product X of
X; and X5 in the subcategory C for | X;||X2| > n.

Even if a categorical product exists, it is in general not unique; in fact, any object
isomorphic to X will also have this property. However, X is unique up to isomorphisms in
the following sense.

Lemma 4.14. Let X1, X, be objects of a category C and let X and X' be categorical products
of X1 and X5. Then X and X' are isomorphic.

Proof. Let X; «2— X —24 X, and X! +2— X' —24 X} be the two diagrams that
satisfy the universal property (4.11) (the maps p;, p, exists due to the assumption that X,
X' are categorical products). Then consider the diagram

X1
P} 'Y
X' ﬁ:::‘_‘_‘_‘?_‘_‘_‘_:::; X
f
Py A
X

The morphism [ exists by the property for X (applied to Y = X’), g exists by the
property for X’ (applied to Y = X)), and the composition fog is the identity morphism
idx by the uniqueness statement of the property for X (applied to Y = X). Similarly,
go f =1idxs, and hence X, X' are isomorphic. O

Proposition 4.15. Let C be the category Set, Grp, Vect, Top or Top,. Then the categorical
product of objects X1 and Xs is given by the usual Cartesian product X1 x Xs equipped with
the usual projection maps p;: X1 X Xo = X; fori1=1,2.

Proof. For C = Set we have already checked that the Cartesian product of sets X;, X, has
the universal property of the categorical product — this was our motivating example.

To check that the Cartesian product X; x X, of two topological spaces X;, X5 has the
property , let f1: Y — Xjand fo: Y — X, be continuous maps. Then by the universal
property of X7 x X5 as sets, there exists a unique map of sets f: Y — X; x X5. So it only
remains to show that f is continuous. This is the case, since a map f: Y — X; x X5 to the



4 A LITTLE BIT OF CATEGORY THEORY 62

Cartesian product of topological spaces is continuous if and only if its component maps f,
f2 are continuous.

The same line of arguments works for the category of groups or vector spaces, since a
map f:Y — X; x X5 to a Cartesian product of groups (resp. vector spaces) is a group
homomorphism (resp. a linear map) if and only if its components maps fi, f are. Similarly,
for Top,, it suffices to observe that f is basepoint preserving if and only if f; and f; are.

O

4.2.2 Coproducts

Before characterizing the coproduct of objects X7, X5 in a category C by a universal property
in Definition [4.17], we discuss the disjoint union of sets as a motivating example.

Definition 4.16. Let X;, X5 be sets. The disjoint union of X; and X5, denoted X7 IT X,
is defined to be the set

X1 Xo :={(1,2) |z € Xi} U{(2,2) |z € Xo} C {1,2} x (X;UXy).

Let X; -5 X 1T <2 X, be the maps defined by i1(z) := (1,z) and iy(z) := (2, ).

Question: Can the disjoint union of two sets be characterized up to isomorphism by a
universal property, similar to the universal property (4.11)) for the product of sets?

We observe that the images i1 (X7) and i5(X3) are disjoint subsets of X; 11X, whose union
is all of X; II X,. Hence any map f from X; IT X5 to some set Y is uniquely determined by
its restriction to the image of i; resp. i5. Since the maps i1, io are injective, this means that
f is uniquely determined by the compositions f; := foi; and fo := f ois. As in the case of
the Cartesian product, this property of the disjoint union of sets can neatly be expressed by
the following commutative diagram.

Definition 4.17. Let X;, X5 be objects of a category C. An object X in C is called the
coproduct of X; and X5 (often denoted X; II X5) if there are morphisms

X 5 X <2 X,
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such that this pair of maps satisfies the universal property expressed by the following com-
mutative diagram

X3

z‘gT / (4.18)

Comparing the universal property of coproducts with the universal property of
products (4.11)), we notice that these are basically the same diagrams; the only difference
is that the direction of the maps in these diagram is the opposite. This motivates the
terminology “coproduct”; the prefix “co” in category theory often referring to reversing all
arrows in a diagram.

The universal of a coproduct X implies that the map

CX,Y) — C(X1,Y) x C(X,Y)  frs (foir fois) (4.19)

is a bijection. In particular, it is easy to understand morphisms whose domain is a coproduct.

A coproduct might or might not exist. For example, in the category C of sets of cardinality
< n, a coproduct of X;, X, exists if and only if |X;| + |X3| < n, as can be shown by
considerations analogous to those in Example [4.13] As in Lemma [4.14] any two coproducts
are isomorphic.

Proposition 4.20. Coproducts (of two arbitrary objects X1, Xy) exist in the categories Set,
Top, Top,, Vect and Grp. The following table shows the usual notation and terminology for
the coproduct in these categories.

category | coproduct of objects

Set X, I Xy, the disjoint union of sets Xy, Xo

Top X1 I Xy, the disjoint union of topological spaces X1, Xo
Top, X1V Xy, the wedge product of topological spaces X1, Xo
Grp Xy x Xy, the free product of groups Xy, Xo

The disjoint union of sets and its universal property was for us the example motivating
the general definition of the coproduct, and hence the theorem holds in case of the category
Set. To prove the result for the other categories, we will go through them one by one, first
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giving in each case an explicit construction of a candidate for the coproduct (including the
morphisms i; and i5), namely the disjoint union of topological spaces, the wedge product of
pointed topological spaces, and the free product of groups. Then we show in each case that
this object satisfies the universal property of the coproduct.

Definition 4.21. (The disjoint union of topological spaces). Let X;, X5 be topological
spaces. The disjoint union X, I X5 is the topological space whose underlying set is the
disjoint union of X; and X5, considered as sets. The topology on the set X; IT X5 is defined
by declaring a subset U C X; I X to be open if and only if 4;*(U) is an open subset of X;
and i, '(U) is an open subset of X,. With this topology on X; IT X, the maps

X; -5 X IX, <2 X, (4.22)

are both continuous.

Lemma 4.23. The diagram (4.22)) satisfies the universal property (4.18). In particular, the
disjoint union of topological spaces is the coproduct in the category Top.

Proof. 1t is clear that there is at most one continuous map f: X; II Xy — Y making the
diagram for given maps fi, fs, since the underlying set X II X5 is the coproduct of
the sets X, X5, and hence there is exactly one map f: X; IT Xy — Y making the diagram
commutative (without insisting on its continuity).

So it remains to show that f is continuous if f; and f, are. So let V' be an open subset
of Y. Then f~(V) is open, since i, '(f (V) = (f oir) (V) = f; }(V) is open, since f; is
continuous for £ =1, 2. O

Let (X1, 1), (X2, x2) be pointed topological spaces. We need to come up with a candidate
for the coproduct of these pointed spaces. Note that the disjoint union X; II X5 is not a
good candidate, since we would like the maps (4.22)

X, 5 X, IIX, <2 X,

to be basepoint preserving, but i;(x1) # ia(x2). The way to fix this is to pass to a quotient
space of X II X, where we identify these two points.

Definition 4.24. Let (X, 1), (X2, x2) be pointed topological spaces. The quotient space
X1 V X2 = (Xl I XQ)/{i1<I1), ZQ(.TQ)}

equipped with the base point * given by the equivalence class represented by these two points
i1(x1), i2(xq) is the wedge product of the pointed spaces X;, Xo.
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Lemma 4.25. For ¢ = 1,2 let ky: X, — X1 I Xy be the composition of i,: Xy — X7 1T Xo
and the projection map p: X1 I X9 — X1V Xs. Then the diagram

X, X v X, &2 X, (4.26)

satisfies the universal property (4.18)). In particular, the wedge product X; V Xo of pointed
topological spaces X1, Xs is the coproduct in the category Top,.

Proof. The universal property we need to check is expressed by the commutative diagram

Xy
kll fi
3y
X1V Xy oo Y (4.27)
kQT f2
Xo

By the universal property of the disjoint union X; IT X5, there is a unique continuous map
[: Xi T Xy — Y such that foi; = f; and foiy = fy. Since fi, fo are basepoint preserving,
f(i1(x1)) = f(z1) = yo and f(iz(x2)) = f(x2) = yo, where yo € Y is the basepoint in Y.
This implies that f factors through the quotient space X1V Xy = (X1 11.X7)/{i1(21), i2(22)},

i.e., f can be written as composition
XX, -5 X, v, -5y

for a unique map f. This map is basepoint preserving. It also is continuous: by the continuity
criterion for maps out of a quotient space [1.24] the map f is continuous if and only if the
composition fop = f is continuous. O

Definition 4.28. Let X;, X5 be groups. Their free product X, * X5 is the group whose
elements are equivalence classes of words s; ...s; whose letter s; belong to X; or X, (we
assume that X;, X, are disjoint as sets). The equivalence relation ~ on these words is
generated by

(1) $1...8;...Sk ~ S1...5;...8kif s; is the identity element of X; or Xy, and s;...5;... s
is the word obtained by deleting the letter s;.

(2) S1...8iSit1 -+ Sk~ S1...(S;Sit1)...sk if s; and s;41 both belong to X; or to X5 and
s; - 8i+1 € X; denotes their product in that group.
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The multiplication in X; * X5 is induced by concatenation of words. The identity
element is represented by the empty word, and the inverse of the element represented
by the word sy ... s is given by slzl ...s7". Let

Xl L) Xl * X2 (ZL X2 (429)

be the group homomorphisms given by sending an element s of X; or X, to the element
[s] € X1 x X, represented by the one-letter-word s.

Lemma 4.30. The diagram (4.29) satisfies the universal property (4.18). In particular, the
free product X1 x Xy of groups X1, X5 is the coproduct in the category Grp.

The proof of this lemma is left as a homework problem.

4.2.3 Pushouts

Before defining what a pushout is in a category in Definition [£.33] we consider a motivating
example of a pushout in the category of topological spaces.

Example 4.31. Let X;, X5 be open subsets of a topological space X. Then considering the
inclusion maps relating X7, X5, X and X; N Xy we have the following commutative square
in the category Top of topological spaces:

leXQ L> X1

i 2 (4.32)

X, —2 X

Let f1: X1 — Y and fy: X5 — Y be continuous maps which agree on the subspace X; N Xos.
Then there is a unique well-defined map f: X — Y whose restriction to X; is the map f;
and whose restriction to X5 is the map f5. Moreover, by an earlier homework problem, the
continuity of f; and f, imply the continuity of the map f (here we use the assumption that
Xi, X5 are open subsets of X).

We note that the last paragraph can be expressed as the following commutative diagram
of topological spaces and continuous maps.

leXQ L) Xl

i Jo

X, — 2 4 x

f2
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The advantage of expressing a statement in form of a commutative diagram is that we
can consider diagrams of the same shape in any category. Doing this for the diagram above
leads to the following definition.

Definition 4.33. Let C be a category, and let
A L) X1
.
X, —2 4 X

be a commutative diagram of objects and morphisms in C. This diagram is a pushout diagram
or pushout square if it satisfies the universal property expressed by the diagram

ALXl

W

X, —2 5 X (4.34)

f2
The object X is called a pushout of the diagram

A L X1
j2l (4.35)
X

We observe that if C is the category Set of sets, and A is the empty set, then the universal
property expressed by the diagram is that X is a coproduct of X; and X5 (more
generally, this is true if A is an object of the category C which is initial, which means that
there is a unique morphism from A to any other object of C). So a pushout is a generalization
of a coproduct.

Being a pushout is a universal property for X; in particular, a pushout of a diagram of
the shape in a category C might or might not exist, and any two pushouts of the same
diagram are isomorphic. Going back to Example , this fact that the diagram is
a pushout diagram implies that the space X is determined by the diagram of topological
spaces

XlﬂXQ L) X1

|
X

since X is a pushout of this diagram.
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Theorem 4.36. The pushout of any diagram (4.35)) exists in the categories Top, Top, and
Grp. The following table shows the usual notation and terminology for pushouts in these
categories.

category | pushout

Set X Ua Xy

Top X1 Ua Xy

Top, X1Ua X

Grp X1 x4 X, the amalgamated free product

There seems to be no standard terminology for X; U4 X5. Both of the notations X; U4 X5
and X7 x4 X5 suppress the dependence of this object on the morphisms j;, j». To indicate
the dependence, some people use the notation X; Uj, 4, Xo and Xy *;, 4., Xo.

To prove this, we need to

(i) construct a candidate object X for the pushout of a diagram of the shape (4.35]) in each
of the categories C considered,

(ii) define morphisms k1: X7 — X, ko: Xo — X
(iii) show that the square (4.32) commutes, and finally,

(iv) show that the square is in fact a pushout square.

Proof of Thml4.536 in the category Set. Here is our first try: take as candidate X for the
pushout the disjoint union X; IT X5. Consider the diagram

A—1 X

o s

X, 25 X, 11X,

where i1, ip are the standard inclusions into the disjoint union X; IT X5. Alas, there is a
problem at step (iii): this diagram is not commutative, since for a € A, the element 7;(j1(a))
belongs to the image of i1, while i5(j2(a)) belongs to the image of 75, and these two images
are disjoint subsets of X IT X.

We can fix this problem by replacing the disjoint union X; IT X5 by its quotient, where we
identify the points i1(j1(a)) and i3(ja(a)). Here is the formal definition for future reference.
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Definition 4.37. Let j;: A — X; and j2: A — X5 be maps of sets. Then we define
X1 Us X = (X1 T Xy)/ ~,
where the equivalence relation ~ is generated by i1(ji1(a)) ~ i2(j2(a)) for a € A. Here

1p: Xy — X1 X5 are the inclusion maps featured in the definition of the disjoint union [4.37]

Let p: X7 II X9 — X, Uy X5 be the projection map, and for m = 1,2, let k,, be the
composition

X, —m s XTI Xy —P s X, Uy X

Then by construction of X; Uy Xs, the diagram

A —I X

il Js

X2 L) X1 UAXQ

is commutative. So it remains to show that this diagram is a pushout square, the universal
property expressed by the diagram (4.34). To do so, we replicate that diagram, but add to
it the disjoint union X; IT X, and various maps with (co)domain X; IT X5.

The solid arrows are given and they make the diagram consisting of all solid arrows commu-
tative. Our goal is to show that there is a unique map f making the diagram commutative.
To construct f, we note that by the universal property of X; I X, as coproduct, the maps f;
and fy uniquely determine a map f the addition of which keeps the diagram commutative.

complete proof O

Still to do here: Definition of free amalgamated product of groups, and its universal
property as a pushout — using the same diagram as above, but in the category of groups
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4.3 The Seifert van Kampen Theorem

Theorem 4.38. Let U,V be open subsets of topological space X such that U UV = X and
UNYV is path connected. Let

vnv -2y
ljv liU
Vi—V>X

be the pushout diagram of topological spaces given by the inclusion maps (see Example 77
and Definition . Then for xq € UNV the induced commutative diagram of fundamental
groups

U
7T1(Uﬁ V,.To) ]—> 7T1(U, 1’0)
b
’/T1<‘/, .’13'0) z—V> ’/Tl(X, .270)
1s a pushout diagram in the category of groups.

The Seifert van Kampen Theorem says in particular that the fundamental group functor
preserves pushouts (under suitable additional assumptions).

Corollary 4.39. With the assumptions of the theorem, the fundamental group m (X, o) is
isomorphic to the free amalgamated product w1 (U, 2o) %z, (wnv.ee) T1(V, Zo).

Corollary 4.40. Let (X1,x1), (Xa,x2) be pointed topological spaces such that xi, x5 have
contractible open neighborhoods Uy, Us. Let j1: X1 — X1V Xo and jo: X9 — X1V X5 be the
incluston maps. Then the map

m1(X7) *m (X2) — m(X; V Xy)
given by
(X)) 3 e (j1).(0) € T (X V Xo)
m1(X2) 2 ca = (Jo)«(c2) € (X1 V X3)
s an isomorphism of groups.
proof missing

Lemma 4.41. Forn > 2 the fundamental group m (S™) is trivial.

proof missing
Groups are often described in terms of generators and relations. This description of a
group G is called a presentation of G.
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Definition 4.42. Let S = {s;,sy,...} be a set, and let r1,...,7, be words with letters s;,
s;'. The words r; in particular represent elements in the free group F(S) generated by the
set S (see Example [£.9[(3)). Abusing notation, we write r; € F(S). These data determine a
group

(s1,82,- | r1,...,1m0) == F(5)/N,

where N is the normal subgroup of F'(S) generated by r1,...,7, € F(S). It is often written
as (S| R), where R := {ry,..., 7}

A presentation of a group G consists of a set S, a set R = {ry,...,r:} of elements
r; € F(S), and a group isomorphism

¢: (S|R) — G.
The group homomorphism

F(S) —» F(S)/N = (S| R) —— G
maps the elements of S to elements of G which generate the group G. Hence the elements
of S are called generators of G. The elements r; € R map to the trivial element in G, and
are hence called relations.

Proposition 4.43. Let L = {ay,...,ax} be a label set and let w = af! ... a;5", ¢; € {£1}, be
an n-letter words with letters from the alphabet {ai,...,a;} U{a;",... a;'}. Let X(w) =
P,/ ~., be the quotient space of the n-gon P, via the edge identification determined by the

word w (see Definition[2.18). Assume:

Uis a letter).

(i) Ewvery label a; € L occurs in w (i.e., a; is a letter of w, or a;
(i1) All vertices of P, are equivalent for ~,,.
Then m (X(w)) = (ay,...,a; | w).

Example 4.44. The projective plane RP? and the Klein bottle K can be described as
polygons with edge identifications (see (2.17))). Hence by the previous result, it is easy to
read off the fundamental group.

1. RP? = Y(aa), and hence m(RP?) = (a | aa) = Z/2.
2. K =~ Y(aba='b), and hence m(K) = (a,b | aba™'b).

Similarly, we have described all compact connected 2-manifolds as polygons with edge
identifications, and hence it is easy to read off a presentation of their fundamental group
from this description.
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Proof of Prop.[{.43 To use the Seifert van Kampen Theorem for the calculation of the
fundamental group of X = ¥(w) = P,/ ~,, we need to write X as the union of open
subsets X1, Xo C X. Let p: P, — X be the projection map, let ¢ € P, be the center point
of the regular n-gon P,, let P, be the boundary of P,, consisting of all edges, and let

o

P, := P, \ 0P, be the interior of P,. Let

o

X1 :=p(P,) Xy :=p(P,\ {c}) and hence X;NX,;= p(]ODn \ {c}).

These are open subspaces of the quotient space X, since p~1(X) = P, and p1(Xy) = P,\{c}
are open subsets of P,.

Here is a picture of the polygon P, with its centerpoint ¢. The other things shown in the
picture will be explained as we go along.

Next we calculate the fundamental groups of X7, X5 and X; N X,. This requires us to
choose a basepoint in X; N X5. Let 7y be the distinguished vertex of P,, and let zy :=
p(To) € X. This is a good choice of a basepoint for X in the sense that each edge +; of P,
projects to a path in X which by assumption (ii) starts and ends at x, i.e., is a based loop
in (X, o) and hence represents an element in (X, xg).

However, applying the Seifert van Kampen Theorem requires the choice of a basepoint
in the intersection X; N X5, which is not the case for xy. We choose a point yy € X7 N X5
as follows. Let S}(c) be the circle of radius r around the center point ¢ € P,, where r > 0
is chosen such that S(c) is contained in the interior P,. Let

7o € S} c) C P,

be the intersection point of the straight line from 7y to ¢ with the circle S!(c) (see picture),
and let yo = p(¥o) € X1 N Xo.
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e The projection map p restricts to a homeomorphism from P, to X 1, since the equiva-
lence relation ~,, only identified distinct points in dP, with each other. Hence

m1(X1,90) = m(Py, Bo) = {1},
since P, is convex.

e Similarly, p restricts to a homeomorphism of P, \ {c} to X;N X5, and hence the induced
map p, yields an isomorphism

Dx: 7T1(1£’n \ {c}, %) = T (X1 N X2, 9).

We claim that the the circle S'(c) € P, \ {c} is a deformation retract of P, \ {c}. A
retraction

r: B\ {c} — S}(c)
is given by mapping a point z € P, \ {¢} to the intersection point r(z) of the straight
line connecting # and ¢ with the circle S*(¢). A homotopy from the identity on P, \ {c}
to the composition 7 o r is given by

H: (P\{c}) x I — SMe)  H(x,t) = (1 —t)z +tr(z).

In particular, (P, \ {c}, 7o) is isomorphic to m(S(c),7) = Z, and the path ~ that
runs once counterclockwise around the circle S!(c) starting and ending at 7 represents

o

a generator of m (P, \ {c}, 7). Hence

m (X1 NXo,90) =27  with generator  p.([y]) = [pon].

e We claim that Xy = (P, \ {c})/ ~. deformation retracts to the subspace 9P,/ ~,. To
prove this, we first show that dP, is a deformation retract of P,\{c}. Let 75: P,\{c} —
0P, be defined by mapping = € P, \ {¢} to the intersection point of the ray R, starting
at ¢ through = with the boundary P, (see picture). Let iy: P, — P, \ {c} be the
inclusion map. Then

Hy: (P, \{c}) x I — 0P,  defined by  Hy(x,t) := (1 — t)z + t7o(x)

is a homotopy f}[om the identity to 72 or. We observe that the retraction map o and
the homotopy H, is compatible with the equivalence relation ~,,. Hence they induce
well-defined maps r, and Hy on the quotient spaces that make the diagrams

P\ {c} — 2 s P, (P\{e)) x I — ™, 9P,

! ) ! )

(P \{e})/ ~w =2 OB,/ ~, (P \{e})/ ~uw XTI = 0P, ) ~,
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commutative. A by now familiar argument shows that the continuity of the maps 75,
H, implies the continuity of the maps 7y and Hs.

This proves our claim that X, deformation retracts to 9P,/ ~,,. We note that 7 (yy) =
Zo and hence 75(yg) = xo. It follows that the retraction map 75 induces an isomorphism

<T2)*: 7T1(X27y0) i) 7Tl(apn/ NwaxO)-

don’t delete until proof is done which is used to label and orient the edges of P, ac-
cording to the word w, as explained just before Definition [2.18) We recall that the label
and orientation of the j*® edge (counting clockwise starting from the distinguished vertex)
is determined by aZ, the j™ letter of the word w: the label of the j™ edge is a;; and the
arrow along this edge is pointing clockwise if €; = 41, and counterclockwise if €; = —1.

[]

5 Covering spaces

5.1 Homotopy lifting property for covering spaces

The goal of this section is to prove the path lifting and homotopy lifting properties of covering
maps expressed by Lemma and Proposition respectively. We begin by recalling the
definition of a covering map (Definition|3.16)), and then state their homotopy lifting property.

Definition 5.1. A continuous map p: X > Xisa covering map if p is surjective, and if for
each x € X there is an open neighborhood U with the property that

e p }(U) is the disjoint union of open subsets U, C )?, a € A, and

e for every ¢ € I the restriction pyy, : U, — U is a homeomorphism.

Any open subset U C X with this property is called evenly covered. If p: X =5 Xisa
covering map, the space X is called a covering space of X.

Proposition 5.2. (Homotopy lifting for covering maps) Let p: X=X bea covering
map, let f: Y xI — X be a homotopy, and let fy: Y x{0} — X be a lift of fo: Y x{0} - X,
the restriction of f to Y x {0} CY x I. Then there is a unique lift f: Y x I — X which
restricts on'Y x {0} to f.

For a one-point-space Y, the map f: I — X is a path in X, and ]7: I — X is a lift of
this path with given starting point fy € X. So this special case expresses the path-lifting
property of covering maps (Lemma [3.18]).
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Proof. We first prove the homotopy lifting property in the special case Y = pt, i.e., the path
lifting property. So let f: I — X be a path, and let fo € p~ L(f(0)) C X. Our goal is show
that there is a unique path f I — X which is a lift of f (i.e, po f f) with prescribed
starting point f ( ) = fo

It is easy to find such a lift if f([0, 1]) is contained in an evenly covered subset U C X:
the preimage pil(U ) is the union of disjoint open subsets U, C W a € A, and the required
startmg point fg belongs to one of these sets U,. Since pyy, : U, — U is a homeomorphism,
a lift f I— X is simply given by the composition

-1
f

I s U s U, C X.

So the idea is to chop the path f into short segments so that each segment is contained
in an evenly covered subset of X. Then the construction above is used on each segment,
constructing a lifted path f step by step, one segment at a time.

Claim. There is a partition 0 =ty < ty < --- < t; = 1 such that for each i = 1,... k the
image f([t;_1,;]) is contained in an evenly covered open set U C X.

To prove the claim, we note that for each s € I, the point f(s) € X is contained in some
evenly covered open neighborhood U, C X. Then f~1(U,) is an open neighborhood of s,
and hence there is some interval (as, b) such that s € (as,bs) NI C f~1(U) (since these form
a basis for the subspace topology of I C R). The open subsets (as,bs) NI, s € I, form an
open cover of I, and hence by compactness of I, there is a finite set S = {s1,...,s,} such
that the intervals (as,bs) NI for s € S still cover 1.

Among the open intervals (as,bs), s € S, there is one interval that contains 0, without
loss of generality the interval (as,,bs, ). If bs, < 1, then there is another such interval that
contains the point by, , without loss of generality the interval (as,,bs,), and so on. Hence we
can assume that the intervals (as,, b,,) for e = 1,... kfor k < ¢ cover I and b,, € (as,,,,bs,,,)
as shown in the picture below. In particular, (as,,bs,) N (as,,,,bs,,,) = (as,,,,bs,) intersect
nontrivially, and we can choose a point ¢; in that intersection.

0 5] lo T ti—1 1

- 0 — 0 — - > —F—FF—F 00— —F—— - O— O — X X XXX —O0—

[a’sl ? bsl] [a527 bs2] [(Zsé’ bsé]

We note that the interval [t;_1, ;] is contained in the interval (as,, bs,) which is contained in
the preimage f~!(U,,). Hence f([t;_1,t]) is contained in the evenly covered subset U,, C X
which proves the Clalm.

Construction of a lift f: I — X with f(O) = fo. The construction is inductive. Assume
that we have already constructed a lift f: [0,¢;,_1] — X of the path f: [0,¢;_;] — X with



5 COVERING SPACES 76

starting point f(O) = fy € X. Then the path f: [ti-1,t;] — X is contained in an evenly
covered subset of X and hence has a lift f [ti—1,t;] — X with any prescribed starting
point in f( _) € p~Y(f(ti_1)) as described at the beginning of the proof. In particular, we
can choose a lift with starting point whose starting point is the endpoint of the previously
constructed lift f: [0,2i1] = X. This guarantees that these two lifts fit together to form

a lift (lifts are required to be continuous!) f: [0,#;] — X with f(0) = fo. This proves the
existence of a lift.

Uniqueness of the lift f: I — X with f(O) = ﬁ). Assume that }i f’ are two lifts
of f:[0,1 — X with the same starting point fo € X. Assume f(t) # f/(t) for some
t € I. Using the partition of I given by the Claim above, let i be the smallest number
such that f(t;_1) = f'(t;i-1), but f(t) # f'(t) for some t € (t;_1,t;]. By construction,
f([ti—1,t;]) is contained in an evenly covered subset U C X, and hence f [ti_1,ti] — X and
f’: [tio1,ti] — X are paths in

=Ju.

a€A

Assume that the common starting point f(t;_1) = f'(t;_1) belongs to U,,. Since f(t) # f/(t)
for some t € (t;_1,t;], one of these two points can not be a point ¢ of the sheet U,,, say
Ft) # Uq- This is not possible, since otherwise {s € [t;—1,t] | f(s) € Uy} and {s €
[tio1,t:] | f(s) ¢ U} would be two disjoint, non-emtpy, open subspaces of [t;_y,#;] whose
union is this interval. This contradict the fact that intervals are connected.

Uniqueness of the lift f Y xI—X extending f(] Y x {0} — X. For each y €Y the
map [ 3 s — f(y, s) € X is a lift with starting point fo( ) of the path s — f(y,s) € X.
Hence the uniqueness of f is an immediate consequence of the uniqueness of pathlifting with
given starting point.

Construction of a lift f: NxI— X for a neighborhood N of a point y, € Y.

We fix a point yy € Y. Our strategy for constructing the lift f: N x I — X is a
modification of the method we used for the construction of the lifted path in the case Y = pt:
we find a partition 0 = t5 < t; < -+ < t_1 < tp = 1 of the interval I and an open
neighborhood N of y € Y such that f(N X [t;_1,t;]) is contained in some evenly covered
subset of X foreachi = 1,..., k. Then we use induction over i to construct a lift on N x [0, ¢;]
fori=1,...,k.

To construct the partition 0 = ty < t; < --- < t_1 < tx = 1 we choose for every
point s € [ an evenly covered open neighborhood U; C X of the point f(yo,s) € X.
Then f~'(U,) C Y x I is an open neighborhood of (yo,s) € Y x I. Hence there are open
neighborhoods

Yo € Ny CY and s € (agbs)NIT C 1

such that the product Ny x (as,bs) N I is contained in f~'(U,). The collection {(as,bs) N
I | s € I} is an open cover of I, and hence by compactness of I there is a finite subset
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S = {s1,...,s¢} C I such that the intervals (as,bs) N I for s € S cover I. Then as before,
there is a partition 0 = tg < t; < +-- <ty <ty = 1 of I such that [t;_1,t;] C (as,,bs,) N 1.
It follows that for each z =1,...,k

FIN X [tic1,t:]) € f(N X (as,,b,)NI) C U, for N:=[]N.. (5.3)

seSs

Now we can construct a lift ]?: N x [0,t;] of f: N x [0,¢;] by induction over i. Suppose
we have already constructed a lift fv: N % [0,t;_1] that restricts to ﬁ) on N x {0}. By
the image f(N x [t;_1,%;]) is contained in the evenly covered subset U := Uy, C X. Hence
the image of the already constructed lift ﬁNxtH N Xty — X is contained in

p ' (U) = | Ve

a€A

the union of the disjoint open subsets U, C X. Replacing N by the connected component
of N that contains yy, we may assume that N is connected. Hence the image of finy,_, is
contained is contained in U, for some a € A.

Then it is easy to define the lift f on N X [t;_1,t;] as before by

f(y,s) ::pl_Ula(f(y,s)) for y € N, s € [t;_1,t:].

This map agrees with the previously constructed lift f: N x [0,¢;_1] — X on N x {t;_1},
and hence they fit together to define a lift f: N x [0,¢;] as claimed.

Construction of the lift ]7: Y x I — X. In our construction above, we fixed the point g
and then found a lift f on N x I where N is some open neighborhood of 3. This can be done
for any point yo, but we should write N,, instead of N and f,, instead of f to indicate that
these data depend on the point yo. Now take two points yo,y1 € Y, assume N,y N N, # 0,
and let us compare

};/o (y,s) and J;::;l (y,s) fory € Ny, N N,, and s € I.

We observe that for fixed y € Ny, N Ny, these are paths in X which are lifts of the path
s — f(y,s) in X, both starting at the point ﬁ)(y) € X. Hence these paths agree by the
uniqueness of pathlifting. This shows that the lifts fyo, ]?yl agree on their common domain
(Ny, NNy, ) x I. Hence they fit together to give a lift on (N, U N, ) x I. Since this can be

done for any point yo € Y, we can construct a lift f: Y x I — X which restricts to the given
map fo: Y x {0} = X. O
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5.2 Applications of the homotopy lifting property

First we will apply the homotopy lifting property for covering maps in the case of homotopies
between paths in X. In other words, the homotopy is a map f: I x I — X, which gives a
homotopy from the path fy to the path f;. Here f;: I — X for any ¢ € I is the path defined
by fi(s) := H(s,t).

In this case we are in particular interested in path homotopies or homotopies relative 01,
which means that the paths f;: I — X for ¢ € I all have the same starting point zy and the
same endpoint z1. In other words, the map f: I x I — X maps the left vertical edge of the
square I X I to zg and the right vertical edge to z;. The restriction of f to the lower (resp.
upper) edge gives the path fy (resp. f1). We express this in a picture by labeling the edges
of I x I appropriately as follows:

i

4

Zo X1

fo
FiIxI—X

Lemma 5.4. Let p: X > X bea covering map and let f: I x I — X be a path homotopy.
Let Ty € p~ (o), where xg € X is the common starting point of the paths f;. Let fo: I — X
be the unique lift of fo with fo(0) = To, and let f: I x I — X be the unique lift of f such

that f(s,0) = fo(s). Then f is a path homotopy.

Proof. We need to check that 7 f: [ x I — X restricts on the vertical edges to constant
maps. The homotopy f: I x I — X is by assumption a path homotopy, i.e., it maps the left
(resp. right) vertical edge points xg € X (resp. 1 € X). Hence t — f(0,%) is a lift of the
constant path ¢,,: I — X. But any lift 5 of a constant path must be constant, (the constant
path ¢z, starting at any point Ty € p~'(z) clearly is lift, and hence by the uniqueness of
path lifting, ¢z, is the only lift with that starting point). This shows that fis in fact a path
homotopy. O]

Corollary 5.5. Let p: ()?,EO) — (X, z0) be a covering map. Then the induced homomor-
phism _

pe: (X, Zo) — w1 (X, 20)
18 1njective.
Proof. Let J9,71 be based loops in (X, %) and assume that p,([7]) = p.([31]) € m1(X, o).
In other words, there is a path homotopy f: I x I — X with fo = po~y and f; = po ;.
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By the homotopy lifting property there is a unique lift f: I x I — X with ]70 = 7. By the
lemma, f is again a path homotopy from fo o to f1

_ Both paths, f; and 7, are lifts of the path f; = do7; with the same starting point, since
f1(0) = fo(0) (since f is a path homotopy), and f,(0) = 70(0) = Ty = 71(0). Hence by the
uniqueness of path lifting, this implies fl = 71, and so fis a indeed a path homotopy from
o to 1, proving that [3o] = [31] € 1 (X, To). O

Corollary 5.6. Let v, 71 be two paths in X with starting point vy € X and endpoint
vy € X. Let Ty € p~Y(x0) and let Yo, 71: I — X be lifts of vo resp. v1 with starting point
To€ X. If v and 71 are path homotopic, then 7o(1) = 41(1), i.e., the endpoints of the lifts
Yo and Y1 agree.

In the special case of the covering map p: R — S!, we proved this statement to show
that the winding number of a based loop ~: (I,0I) — S* (which is defined as the endpoint
Y(1) € Z of a lift 5 to v with starting point 7(0) = 0) depends only the homotopy class

[v] € mi (S, 1).

Proof. Let f: I x 1 — X be path homotopy from 7, to v;, and let f: I x I — X be the
unique lift of f with fy = 79. By the lemma f is then a path homotopy. In particular,
f1(0) = fo(0) = 70(0) = g, and hence f1 is a lift of 7 with starting point Zo. Since 71 is
also a lift of v; with 7;(0) = Zg, uniqueness of path lifting implies fi = 1. Tt follows that f
is path homotopy from 7, to 71 and hence in particular, Yy(1) = 71 (1). ]

Corollary 5.7. Let v be a based loop in (X, xg), and let v: I — X be the lift of v with
starting point ¥(0) = To. Then 7 is a based loop in (X, To) if and only if [y] belongs to the
subgroup p,m1 (X, To) of m (Xo, xo).

Proof. If 5 is a based loop in (X,Z), then [y] = [po 3] = p.[7] belongs to p.m (X, %)
Conversely, if [y] is an element of p,m; ()N( ,Tp), then v is path homotopic to p o5’ for some
based loop 7 in ()N( ,Zg). The paths ¥ and 7’ have the same starting point, and hence by
the previous corollary, the path homotopy between 7 = p o5 and p o 7’ implies that the
endpoints of ¥ and 7' agree, and hence 7(1) =7'(1) = . O

We recall that the winding number of a based loop 7 in (S*,1) is defined by W (y) :=
(1) € Z where 7: I — R is a path starting at the base point 0 € R which is the unique lift
of «y for the covering map p: R — S! defined by p(s) = *™. We note that p~1(1), the fiber
over the basepoint 1 € S*, is equal to Z. B

This construction generalizes to covering maps p: (X, Zo) — (X, zo): if 7y is a based loop
in (X, ), we define

W (y) :=A7(1) € p~'(x0),
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for the unique lift 7: I — X with ¥(0) = Zy. A crucial property of the winding number
W(v) is that it depends only on the homotopy class [y] € 71(S*,1). It turns out that in

the case of a general covering map, a stronger statement holds: W (v) depends only on the
right coset H[y] € H\G := {Hg | g € G}, where G = m(X,20) and H C G is the subgroup
H = p.m (X, ).

Proposition 5.8. Let X be path-connected and let p: ()Z, To) — (X, o) be a covering map.
Then the map

U H\G — p(z0) given by W(H[y]) := W(y) as defined above

1s a well-defined bijection. In particular, the number of sheets of)? — X (the cardinality of
the fiber p~'(x0)) is equal to the index |G : H| of the subgroup H C G (the cardinality of
H\G).

Proof. To show that ¥ is well-defined, let g € G = m;(X, x) be represented by a based loop
v in (X, o) and let h € H = p*m()? Zo) be represented by a based loop ¢ in (X, xo) We
let 7, §: 1 — X be the unique lifts of 7 resp. ¢ startlng at Zo. Since [0] is in p,m (X Tg) its
lift 0 is a based loop in (X Zo) by Corollary 5.7, It follows the endpoint of 5 is the starting
point of 7 and hence the concatenation 5 * v is deﬁned Moreover,

o (0%7) = (pod)* (po7) =dx,
and hence 4 * 7~ is the unique lift of § * v with starting point z,. This implies that

U(hg) = U([0][7]) = ([0 %)) = W (6 +7) = (0+7)(1) =F(1) = W(y) = ¥([7]) = ¥(g)
and hence W is well-defined.

It is clear that WV is surjective, since due to the assumption that X is path-connected for
any T € p~'(xg) there is a path 7: I — X from 7y to x. Then 7 := po7 is a loop in (X, o),
and hence U([y]) = W(y) =7(1) = 7.

To see that U is injective, let g1, g2 € m1 (X, zo) be elements with ¥(g;) = ¥(g2). Let 7; be
a based loop in (X, o) representing ¢; and let 7;: [ — X be its unique lift with 7;(0) = Z.
Then ¥(g;) = 7;(1), and hence our assumption ¥(g;) = ¥(g2) implies that the paths 7, 7;
have the same endpoints. In particular, the concatenation 7, * 7, is defined and is a based
loop in (X, o). It follows that

PeT % V) = [po (1 % 9a)] = [n #%2] = ]l ™ = 195,

showing that g,g, ' € H and hence the left cosets Hg; and Hg, agree. O]
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Let K be a finite group that acts freely on a space Y. Then the projection p: ¥ — Y/K
onto the orbit space Y/K is a covering space (this is a homework problem). To use the
proposition above, let us set X =Y and X = Y/K ,and let us assume that X is simply
connected, i.e., X is path-connected and wl()? , To) vanishes (since X is path connected, up

to isomorphism the fundamental group of X is independent of the basepoint we use). Then
the proposition yields a bijection

U: G — p o)

We note that the fiber p~!(z0) is the orbit K%y = {kZo | k € K} of the basepoint ) € X.
The assumption that K acts freely implies that the map K — p~*(zg), k — kTj is a bijection.

Lemma 5.9. The composition of the bijections
U: G — p () and  p Hxg) = K, kIg— k
18 a group isomorphism.

Proof. Let 7, and 7y, be based loops in (X, x¢) and let 7;: I — X be the lift of v; starting at
To. Let k; € K be the image of [y;] € G under the bijection above, i.e., 3;(1) = k;To € p~* (o).
To determine G([11][72]) = G([711 * 72]), we need to find the unique lift 41 * 75 of 1 * 7,.

A first guess might be 77 % 72 = 3 * 35, but that concatenation does not make sense in
general, since 71(1) = k1Zo, while 72(0) = Zo. However, this suggests to use the action of
k1 € K to obtain the path kyvys: I — )?, defined by (k172)(s) = k172(s). It has starting

point k17y2(0) = k1Zo, and hence can be concatenated with ;. Hence

—_—

Y1k Y2 = % * k’ﬁm

with endpoint M(l) = k17Y2(1) = k1koxo. This shows that the image of [y; * 5] under
the composite bijection is kiky, and hence this composition is a group isomorphism. O

Example: calculation of the fundamental group of RP" and the lens space L*" ' (Z/k)

Give a covering space p: X=X , it will be important for us to lift not just homotopies,
but more general maps f: Y — X. In other words, we are looking for a base point preserving
map f making the diagram

. (557 50)
T lp (5.10)

commutative.
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There is an obvious necessary condition for the existence of a lift f such a lift induces
a commutative diagram of fundamental groups

N 7-‘-1()’27%0)
o T l o (5.11)

m (Y, yo) —— m (X, ap)

and hence f,m (Y, yo) is contained in p,mi (X, %o). We will show that this is also a sufficient
condition for the existence of a lift f, provided the topological space Y isn’t too crazy.

Definition 5.12. A topological space Y is locally path-connected if for any point y € Y and
any neighborhood U of y there is an open neighborhood V' C U which is path-connected.
More generally, if P is any property of a topological space (e.g., compact, connected,... ),
then Y is locally P if for any point y € Y and any neighborhood U of y there is an open
neighborhood V' C U such that V has property P.

Example 5.13. (Path-connected versus locally path-connected). There are many
examples of spaces which are locally path-connected, but non path-connected, for example
the disjoint union of path-connected spaces is locally path-connected. An example of a space
which is not locally path-connected is provided by the topologist’s sine curve (?7), consisting
of the union of the graph of the function (0,00) — R, z ~ sin(1/x) and the vertical line
segment {0} x [—1,+1]. As discussed then, the topologist’s sine curve is connected, but not
path-connected. The same argument shows in fact that any open neighborhood V' of a point
y on the vertical line segment is not path-connected (since it always contains points on the
graph of sin(1/z); those cannot be reached by paths starting at y).

Even more interesting is that there are spaces which is path-connected, but not locally
path-connected, for example, the Warsaw circle. This is a variant of the topologist’s sine
curve obtained by restricting the graph of sin(1/x) to some finite interval (0, a) and connect-
ing the point (a,sin(1/a)) on the graph with the point (0,0) via an arc in R? which intersects
the topologist’s sine curve only in those two points as shown in the figure below.

/WJ{\LN
N

Figure 1: The Warsaw circle

The Warsaw circle is path-connected, since any point on the vertical line can be connected
via a path running along the added arc to any point of graph. Adding that arc does not
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change the fact that any open neighborhood of a point on the vertical line segment is not
path-connected, provided it is small enough that it doesn’t contain the arc. In particular,
the Warsaw circle is not locally path-connected.

Proposition 5.14. (General Lifting Criterion).Let p: (X, %) — (X, z0) be a covering
map and let f: (Y,y0) — (X, x0) be a basepoint preserving map whose domain Y is path-
connected and locally path-connected. Then a lift ]7 in the diagram exists if and only
if fom(Yoyo) C pumy(X,To). There is at most one such, lift.

Remark 5.15. The hypothesis that Y is locally path-connected cannot be dropped. This
follows by showing that the statement above does not hold if Y is the Warsaw circle W,
which is proved by showing

(a) The fundamental group of W vanishes, but

(b) the map f: W - S! which wraps the Warsaw circle once around the circle S* does
not have a lift f: W — R.

Proof. We have argued above that f.m(Y,yo) C m (55 ,To) is a necessary condition for the
existence of a lift f It is also easy to see that there is at most one such lift: if f, fi are
two lifts of f and y € Y, let v: I — Y be a path in Y from y, to y. Then f o~y and f' o~y
are two paths in X which are both lifts of the path f o+ in X with starting point ,. The
uniqueness of lifted paths then implies f(y) = fo~(1) = f oy(1) = f'(y).

The idea for constructing the lift fv: Y — X is to use the existence of lifts of paths,
similar to the way we used uniqueness of path-lifting to prove the uniqueness of f: we define
the map

F:Y —X by fly):=(FonQ)

where v: I — Y is path from g, to y, and

foy: I — X is a lift of f o~v: I — X with starting point z.

The following figure illustrates the various paths involved and their endpoints.
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L ’

To show that fis well-defined, we need to verify that f(y) is independent of the choice
of the path v from the basepoint yo to y. So suppose that v': I — Y is another path
from yy to y. The concatenation v x4’ is then a based loop in (Y, o) and hence the loop
fo(y*x%) = (fory)*(fo?)is a based loop in (X, xy) which represents an element in
the image of f.: m (Y, yo) — m(X,z9). By assumption, this element is then in the image
of po: m (X, 7o) = m (X, o), which by Corollary [5.5 implies that the loop (f o~)* (f o%')
lifts to a based loop 5: 1 — X in (X To). By uniqueness of lifted paths, the first half of

§ is fovy and the second half is f o traversed backwards, with the common midpoint
fory(1) = f 0~/(1). This shows that f is well-defined.

To prove that J?is continuous, it suffices to show that the restriction of fto a suitable
open neighborhood of y; € Y is continuous. A convenient choice in this context is to choose
f~YU) where U is an evenly covered neighborhood of f(y;) € X. Using the assumption
that X is locally path-connected we can pass to a smaller open neighborhood V' C f~(U)
of y1, which is path-connected.

Our goal is to show that f|V is continuous. To calculate f ( ) for y € V, we choose a
path ~; from yy to y;, and we choose a path «, from y; to y which is contained in the
pathconnected neighborhood V' of y;. Then v; * o, is a path from y, to y, which we can use

to calculate f(y) as the endpoint of a lift of the path

fomx*ay)=(fom)*(foa). (5.16)
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So let m: I — X be the unique lift with starting point zy of the path fo~: I — X .

Then by construction f(y;) = fo(1). Let foay,: I — X be the unique lift of fo o, with

starting point f(y;). Then the concatenation f o~ * f o o is the unique lift with starting
point Z of the path (5.16]). Again by construction f(y) is the endpoint of this concatenated
path and hence

F(w) = T o ay(1).

At first glance, it seems difficult to argue that f(y) depends continuously on y, since the
y-dependence of the right hand side comes from the y-dependence of the path «,, which
seems hard to control since it involves the choice of a path.

To the rescue comes the fact that the path foaq,, is contained in the evenly covered subset

U C X. Hence the lift foay: I — X is contained in p~Y(U) which is the union of disjoint
open subsets U,, a € A since U is evenly covered. Since [ is connected, its image under the

map f o a,, must be contained in U, for some a € A. Since the restriction py,: U, — U is a
homeomorphism, it follows that

fOOéyzprlaOfOOéy-

Hence,

e~

f(y):foocy(l):p‘_(]iofoay(l):p@of(y) fory € V.
This shows that ﬁv = p|’U1a o f is the composition of continuous maps and hence continuous.

Since f is continuous in some open neighborhood of every point of Y, this implies that fis
continuous. O

5.3 Classification of covering spaces

The goal of this section is to classify covering spaces. More precisely, we consider the covering
spaces p: X — X of a fixed topological space X as objects of a category Cov(X), and aim
to understand this category by

e determining the isomorphism classes of objects of Cov(X), and

e determining the set of morphisms between two covering spaces of X.

To illustrate what we have in mind, we consider the category Vect%n of finite dimensional
vector spaces over K and linear maps. Then

(i) Mapping a finite dimensional vector space V to its dimension dimg V' € Ny (the natural
numbers including 0) gives a bijection

ob(Vecti?) /isom — N,

between the isomorphism classes of objects of Vecti;i(n and Nj.
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(ii) For vector spaces V', W of dimension m resp. n, there is a bijection
mor(V, W) =, M,y (K)
between the morphisms from V' to W and the set of n x m-matrices with coefficients
in K.

A covering space over X restricts to a covering space over each path-connected component
of X, and so it suffices to analyze covering spaces over path-connected spaces. Similarly,
if p: X — X is a covering space over a path-connected space X, then Pz X, — Xisa

covering space for each path-connected component of X, of X. Hence it suffices to classifying
covering spaces p: X — X assuming that X and X are path-connected.

Definition 5.17. Let X be a path-connected topological space. Let Cov(X) be the category
of path-connected covering spaces of the space X defined as follows:

e The objects of Cov(X) are covering spaces p: X — X of X with path-connected total
space X.

e The morphisms of Cov(X) from a covering space p: X > X toa covering space
P X' — X are maps f: X — X' which make the diagram

X ¢ s X!
X

commutative.

e the composition of morphisms in Cov(X) is given by composing the maps f: X > X'
and f': X’ — X" the identity morphism of X — X is the identity map of X.

There is a variant of this category, namely the category Cov,(X, z¢) of pointed path-
connected covering spaces of the pointed space (X, xy), where the objects are based cov-
ering spaces p: ()? , o) — (X, zo) with X path-connected, and the morphisms are maps
f: ()?, To) — ()}’, Ty) that are compatible with the projection maps to X.

While the definition of the category of coverings of a topological space X does not require
assumptions on X, we need assumptions in order to use the tools at our disposal to analyze
that category:

e the General Lifting Criterion [5.14]assumes that the domain of the lift is path-connected
and locally path-connected;
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e the existence of the universal covering space X of a space X requires X to be semi-
locally simply-connected, i.e., every point x € X has an open neighborhood U such
that the induced homomorphism 7 (U, z) — 71 (X, x) is the trivial map.

So typically we will make the following requirement.

Definition 5.18. We will call a space X nice if X is path-connected, locally path-connected
and semi-locally simply connected.

Theorem 5.19. (Classification of path-connected pointed covering spaces). Let X
be a nice space with basepoint x.

(i) Mapping a pointed covering space p: ()Z',ffo) — (X, xg) to the subgroup p*wl()?,'fo) <
G :=m (X, x0) gives a bijection

ob(Cov, (X)) — {subgroups H < G}. (5.20)

(ii) Let p: ()?,Eo) — (X, o) and p: ()?’,%) — (X, o) be pointed covering spaces of X,
and let H = p,m (X, %), H' = p.m (X', 7)) be the corresponding subgroups of G.
Then

mor(X, 7o), (X', 7)) = { GH<H

0 otherwise

Here x denotes the set with one element.

Proof. Let ¢ be a morphism

¢ S~
) > (X7, 75)
X‘ %
X
in the category Cov,(X). Then ¢ can be viewed as a [lift of the map p. According to our

General Lifting Criterion [5.14}, there is at most one lift ¢, and a lift ¢ exists if and only if
P« (X, Zp) is contained in p,mi (X', 7). This proves part (ii).

()2:7%0

To show that the map in part (i) is injective, assume that p: (X, %) — (X, z) and
P (X', 7)) — (X, z0) are covering spaces such that p.m (X, 7o) = p.mi (X', 7). Then by
part (ii), there exist morphisms

¢ (X,7) = (X', 7)) and  ¢: (X, 7)) = (X, %)

Then the compositions ¥ o ¢ and ¢ o ¢ must be the identity morphisms of ()? ,To) Tesp.
(X', ), since there is at most one morphism between any pair of objects.
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The tedious part of the proof is to \Lerify surjectivity of the map , i.e., the construc-
tion of a pointed covering space p: (X,Zy) — (X, x) such that p.(X,Zg) is a prescribed
subgroup H of G. This is first done for H = {1}, i.e., X is a simply connected covering
space of X, also called the universal covering space of X, which we will denote by X, O

Missing: outline of the construction of the universal covering and of coverings corre-
sponding to subgroups H of G; classification of (unpointed) coverings.

Remark 5.21. The theorem above can be used to prove a statement in group theory, namely
that any subgroup H of a free group is again a free group. The proof of this needs in addition
to Theorem [5.19i) the following two facts which are quite intuitive:

(a) We can consider any graph X as a topological space (edges from a vertex v to the same
vertex v are allowed). Then for any connected graph X, its fundamental group is a
free group (since every connected graph is homotopy equivalent to a wedge of copies of

Sh.

(b) Any covering space p: X > Xofa graph X is again a graph (the set of vertices of X
consists of the preimages of vertices of X, the interiors of edges of X are the preimage
of open edges in X).

A free group F is the fundamental group of some graph X (e.g., the graph with one vertex and
an edge for any generator of F'). Then by Theorem [5.19(1), for any subgroup H < F = m(X),
there is a covering space p: X — X with p,m(X) = H. Since p,: m(X) — m(X) is
injective, H is then isomorphic to m; ()? ). By fact (b), X is a graph, and hence by fact (a)
its fundamental group is a free group.

5.4 The Seifert van Kampen Theorem via K-coverings

The goal of this section is twofold:

e To define K-coverings over a space X (see Definition [5.22)) and to classify them up
to isomorphism for spaces X which are nice in the sense of Definition [5.18] i.e., X is
path-connected, locally path-connected and semi-locally simply connected.

e To use this classification result to prove the Seifert van Kampen Theorem for spaces
X which are locally path-connected, and semi-locally simply connected.

Definition 5.22. Let K be a group, and let X be a topological space. A K-covering over
X or principal K-bundle over X is a covering space p: X — equipped with a continuous
K-action K x X — X on the total space X. We require that
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(i) The K-action on X preserves the fibers of p, i.e., p(k-%) = p(Z) for k € K and 7 € X.
In particular, the K-action on X restricts to a K-action on any fiber p~!(x) C X.

(i) The K-action on any fiber p~!(z) is free and transitive. Equivalently, for any ¥ € p~!(z)
the map
K —p () given by k—k-x (5.23)

is a bijection (the transitivity of the action is equivalent to the surjectivity of this map,
while the freeness of the action is equivalent to the injectivity of this map).

Example 5.24. (Examples of K-covering spaces)

(a) Let p: R — S be our old friend of a covering space, given by p(t) = €?™. Let the group
Z act on R by translations, i.e., the action map Z x R — R is given by (n,t) — n +t.
It is easy to check that this Z-action is free and transitive on the fibers of p.

(b) Let p: X" — X be the universal covering of a nice space X. Let K = m1(X, o) be the
fundamental group of X which acts on X* = {[y] | 7 is a path with starting point x,}

via the map _ _
m (X, zo) x X* — X" ([a], [7]) = [a*~].

It is clear that the K-action preserves the fibers of p, and Proposition 5.8 implies that
the action of K is free and transitive on the fibers. Specializing to X = S!, we obtain
back our first example.

(¢) An example of a K-covering of X which is not the universal cover of X is the following.
Let K be the cyclic group of three elements and let p: S' — S! be the covering given
by z — 2%. To describe the action, it will be convenient to think of K not as Z/3, but
as the group of third roots of unity, i.e., as K = {¢ € S' € C | 3 = 1}. Let K act on
St via the map

G xSt — 5! ((,2) — Cz.

This is an action map since for ¢, € G and z € S! we have (({'z) = (¢¢')z. It has
the required properties:

(i) p(C2) = (¢2)° = ¢?2° = 2° = p(2).

(ii) G acts transitively on the fibers p~'(x) for any z € S, since if 2,2’ € p~!(z),
then 23 = p(2) = p(2’) = (/)3 and hence 1 = 273(2/)? = (2712/)3. In other words,
¢ := 2712 is a third root of unity and hence (z = 2’ shows that 2’ is in the G-orbit
of z.

(iii) If ¢ € G fixes some point 2z € S, then (z = z, and hence ( = 227! = 1. In other
words, G acts freely.
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(d) A slight variation of this example is given by the covering p: C* — C*, z +— 2% (here
C* =C\ {0}). As above, let G be the group of third roots of unity and let G act on
the total space C* by (¢, z) — (z. The same arguments as above show that this is
a G-covering. In fact, restricting this G-covering of C* to the subspace S* C C*, we
obtain the first G-covering.

To understand the structure of a K-covering p: (X, Zo) — (X, o) we use the idea we have
already utilized a couple of times: we take a based loop v: (I,01) — (X, () and consider
its unique lift 5: I — X with starting point ~¥(0) = Zy. Then the endpoint 7(1) belongs to
the fiber p~' (). The bijection shows that there is a unique element k € K such that
(1) = k - Ty, called the holonomy of X along the loop ~. Here is the formal definition:

Definition 5.25. Let p: ()?,50) — (X, 29) be a K-covering, and let v be a based loop

in (X,zo). The holonomy of X along the loop v is the element Hol*(y) € K uniquely
determined by the equation

(1) = Hol™ (7) - (5.26)
where 7 is the unique lift of v with 5(0) = .

In the special case (a) of the standard covering R — S! where K = Z acts on R by
translation, the holonomy Hol®(v) € Z of a loop « in (S',1) is exactly the winding number
W (v) € Z as defined in Definition [3.19

We recall that the endpoint of the lift 7(1) depends only on the homotopy class [y] €

m1(X,20). Hence the holonomy Hol*(y) € K depends only on [7], and we obtain a well-
defined holonomy map

Hol¥: m; (X, 29) — K given by [v] — Holi(fy). (5.27)
Lemma 5.28. The holonomy map (5.27) is a group homomorphism.

Proof. Let 7, B be two based loops in (X, zg) and let 7, E: I — X be lifts of ~ resp. 3 with
starting poing zo. Then by the definition of holonomy, we have

(1) =Hol(y)-F  and  B(1) = Hol(B) - Zo.

To evaluate the holonomy of the concatenated loop 7 * 3, we need to construct a lift 7*/\/5 of
7 * 3. We note that in general we cannot form the concatenation 7 * 3, since the endpoint of
v is Hol(7y) - Tp, while the starting point of 8 is z,. However, for any k& € K, we can create
a lift of § with starting point & - zy by letting k£ € K to the path Bv to create a new path

k-B:1—X  defined by  (k-fB)(s):=k-B(s).
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In particular for k = Hol(7), the path Hol(7) - 3 has starting point Hol(v)Zo, and hence the
concatenation

7 * (Hol(v) - B) is a lift of v * 3
with starting point z. By definition of holonomy, its endpoint is Hol(~y * ) - 7o. Hence

Hol( * B) - T =(7 * (Hol(v) - 5))(1) = (Hol(v) - £)(1)
= Hol() - (Hol(f) - Zo) = (Hol(y) - Hol(3)) - Zo

It follows that Hol(y * 8) = Hol(v) - Hol(/3), which proves that the holonomy map is a group
homomorphism. O

The K-coverings of a fixed topological space X are the objects of a category K-Cov(X),
whose morphisms are maps between the total spaces of K-coverings compatible with the
K-action and the projection maps to X. For the proof of the Seifert van Kampen Theorem
we are interested in the pointed version of this category defined as follows.

Definition 5.29. Let (X, xy) be a pointed topological space and K a group. The cate-
gory K-Cov, (X, xg) of pointed K -coverings of (X, xo) is defined as follows. The objects are
K-coverings p: (X, Zo) — (X, zo). A morphism ¢ from p: (X, 7o) — (X, 2z0) top": (X', 7)) —

(X, o) is amap ¢: (X,To) — (X', z}) with the following two properties:

(i) the diagram

(X, %) > (X', %)
K N /

is commutative, and
(ii) the map ¢: X — X' is K-equivariant, i.e., o(kx) = ko(z) for all k € K, T € X.
The composition in K-Cov, (X, z¢) is given by composing these K-equivariant covering maps.
Theorem 5.30. Let X be a nice space with basepoint x.

(i) There is a bijection
ob(K-Cov, (X, z))/isom — Hom(m (X, ), K)

given by sending a pointed K -covering space p: ()Z', To) — (X, ) to the holonomy map
Hol™: 71 (X, 20) — K.
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(ii) There is at most one morphism ¢ from a pointed K -covering (X, %) to another pointed
K -covering (X', x},). Such a morphism exists if and only if

Hol® = Hol¥' € Hom(m (X, z9), K).

Proof missing
With these tools in our toolbox, we are ready to prove the Seifert van Kampen Theorem
(Theorem |4.38)). We recall the statement.

Theorem 5.31. Let U,V be open subsets of topological space X such that U UV = X and
UNV is path connected. Then the commutative diagram of fundamental groups (with respect
to a basepoint xto € UNV)

7T1<Uﬂ V, ZL'()) L) 7T1(U, 1’0)

v e

7'('1(‘/71’0) z—V> 771<X,$0)

1s a pushout diagram in the category of groups.

Proof. We need to show that the commutative diagram of groups

U
7T1(Uﬂ‘/,l‘0) ]—*> 7T1(U,[L'0)
jyl lz‘if (5.32)

’/Tl(‘/, Z’Q) z—V> 7T1(X, xg)

is a pushout diagram. Let U’ C U be the path component of U containing the basepoint
xo, which consists of all points z € U for which there is a path starting in xy and ending in
2. This subspace of U is a path-connected space and the inclusion map i: U’ — U induces
an isomorphism i, : m (U’, x¢) = m1(U, ), since every based loop in (U, z() and homotopy
between based loops is necessarily contained in U’.

To verify that diagram is a pushout square, we need to check whether it has the
universal property expressed by the following diagram of groups and group homomorphisms

U
Wl(UmV,l'o) j—*> 7Tl<U,$0)

jyl
A%

m(V, 513'0) Z—*> 7T1(X7 33'0)

~

(5.33)

f2
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This diagram contains many group homomorphisms from fundamental groups of U, V., UNV
and X to the group G. Via Theorem these homomorphisms can be interpreted geomet-
rically as G-coverings over these topological spaces (up to isomorphism). In particular, the
homomorphism f, € Hom(m (U, o), G) corresponds to some G-covering

o (U, 7)) — (U, z).

This G-covering restricts to a G-covering (U wnv,Z1) — (UNV, xg), which by the Addendum
corresponds to the composition

U
Wl(Uﬁ‘/,ZL'()) ]—*> 7T1(U7.To) L G.

Similarly, fo: m(V,20) — G corresponds to a G-covering py: (V, ) — (V,xo). Its re-
striction to U NV is a G-covering (‘ZUQV,JN@) — (U N V,x9) which corresponds to the
composition fo 03V m (U NV,x9) — G. By the commutativity of the outer square of the
diagram (?7?), f10jY = fy03Y. By the Classification Theorem for G-coverings, this implies
that there is an isomorphism between the corresponding based covering spaces over U NV,
i.e., there is a G-equivariant map basepoint preserving map ¢ making the following diagram
commutative: O

Proof incomplete

6 Smooth manifolds

The goal of this second part of the semester is to do Calculus on manifolds. This can
be motivated by physics. According to Newton’s law, F' = ma, where F' is the force acting
on a point particle of mass m and acceleration a. More explicitly, writing x(t) € R? for the
position of the point particle at time ¢, this equation is the second order differential equation

In particular, the trajectory x(t) of the particle can be determined by solving this differential
equation if the position z(ty) and the velocity @(ty) are know at some initial time t.

If the particle is somehow restricted to moving on the sphere S? C R3, then the same
general discussion applies, but leads to a second order differential equation on the 2-sphere.
The same is typically true when describing the position of extended objects, say rod, which
can be done by giving the position v of the center of mass, and a unit vector u pointing in
the direction of the rod. Then the set of such pairs (v,u) forms a manifold of dimension 5,
and determining the trajectory (v(t), u(t)) amounts to solving a differential equation on that
manifold.
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6.1 Smooth structures

Let U be an open subset of R, and let f: U — R be a real valued function. The two main
constructions of Calculus are

e Differentiation, which associates to f its (total) derivative

_of of
df = aLL’l d£C1 + + al’n

dx,, (6.1)

e Integration, which associates to f the integral
/ f(z)dzy ... dx,. (6.2)
U

Needless to say, some conditions on the function f are needed to ensure that df exists (f
should be differentiable) or that the integral over U exists (f should be integrable). For our
geometric purposes here, we will assume that the functions we consider are smooth, i.e., can
be differentiated as often as desired, which will ensure that all derivatives or integrals we will
consider below exist. This is a condition much stronger than needed, but it will be pretty
clear how the theory of smooth manifolds can be modified to get away with less amount of
differentiability.

Definition 6.3. Let U be an open subset of R". A function f: U — R is smooth if for all
n-tupels (kq, ..., k,), ki € N, the corresponding partial derivative

m—f( )
Dkt . Ogkn

exist for all points € U; here k = > k;. Amap f = (fi,...,[fm): U -V C R™is
smooth if all its component functions f; are smooth. This map f is a diffeomorphism if f
is a bijection and its inverse map f~': V — U is smooth as well (it turns out that this can
only happen if m = n).

Goals of this section.
(i) Define what a “smooth function” f: M — R on a manifold M is.
(ii) Define the total derivative df of a smooth function. What kind of object is a df?

(ili) Define suitable objects on an n-manifold M that can be integrated over M (if M is an
open subset of R", these are just of the form f(z)dzy...dx,).
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Before addressing (i) in the section, we remark that df is a smooth section of the cotangent
bundle of M, while the object sought in (iii) will turn out to be a smooth section of a
vectorbundle built from the cotangent bundle. This explains our interest in vector bundles
and their sections which will be discussed in the following sections.

Definition 6.4. Let M be a topological manifold of dimension n. A chart for M is an open
subset U C M and a homeomorphism

M > U2 ¢U) c R

open open

A collection of charts {(Uy, ¢a)}aca is an atlas for M if {U, }aeca is an open cover of M, i.e.,
it M = U,y Us.

Example 6.5. (Examples of charts and atlases).

1. Let M = S™ be the sphere of dimension n. For i =0,...,n let U} := {(z0,...,7,) €
S* | z; > 0} and U; := {(w0,...,7,) € S™ | 7, < 0}. Let ¢i-: US — B} be the
homeomorphism given by

¢fii<x07 . 7xn) - ('rly R 7xi7175€\i7xi+17 . 7xn)-

Then (U;", ¢F) and (U, ¢; ) are 2(n+ 1) charts for the manifold S™. Since every point
of S™ belongs to some hemisphere Uii, this collection of charts form an atlas for S™.

2. A smaller atlas of S™ consisting of just two charts is obtained by using the homeomor-
phisms
ot U* = 5"\ {(0,...,£1)} = R"

given by stereographic projections.

3. Let M be the projective space RP", considered as the quotient space R™\ {0}/xz ~ Az
for x € R*\ {0} and A € R\ {0}. Let U; C RP" be the open subset given by
Ui == {([zo,...,x,] € RP" | 2; # 0}. Then the map

& n Zo Tl T; Tit1 Tn
Uy, —— R [0, ..., xn]) = (—, ..., s —, ey —)
is a homeomorphism with inverse given by ¢; *(vy,...,v,) = [v1,...,vi_1, 1,0, ..., 0]

In particular, the collection of charts {(U;, ¢;) }izo....n is an atlas for RP™.

,,,,,

Smoothness of a function R” D U — R is a local property in the sense that if U is
the union of open subsets U, C U with |J,.4 Us = U, then f is smooth if and only if the
restriction fy, is smooth for all & € A. Let M be an n-manifold with an atlas (Uy, ¢a)aca),
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and let f: M — R be a map. The observation above suggests to define that f, : Uy — R
is smooth if the composition

-1
d)i N f\Ua
[4

U, > R

R™ D ¢ (Uy)

is smooth (unlike U, C M, the image ¢,(U,) is an open subset of R”, and hence we already
know by Definition [6.3] what a smooth function with domain ¢,(U,) is). Then we define f
to be smooth if its restriction fy, : Uy, — R to each U, C M is smooth.

The problem with the proposed definition. Suppose there are two charts (U, ¢), (V, )
belonging to the atlas {(Uy, ¢a) taca with UNV # (. Then according to the above definition,
there would be two ways to determine whether the restriction fjyny is smooth: we could use
the chart (U, ¢) and check whether the composition

RS o(UNV) -2 unV Lo R

is smooth. Alternatively, we could use the chart (V1) and check for smoothness of the
composition

RS p(UNV) 2o unv —L5 R

The problem is that these two ways to test for smoothness of the function f on U NV might
not yield the same answer. We note that the second map f o' can be expressed as the
composition

LUNV) 25 sunv) L5 R

foyp~t

We also note that ¢ o ~! is a map between open subsets of R, and hence we can check by
Definition [6.3] whether it is smooth. This map is a homeomorphism, but in general, there
is no reason that this map should be smooth. It follows that if f o $~! is smooth, the map
f o~ in general won’t be smooth. In other words, the smoothness test for f restricted to
U NV using the chart (U, ¢) in general won’t give the same answer as the smoothness test
using the chart (V).

Let M be a topological manifold. How can we define whether a map f: M — R is
smooth?
First try. We call a f smooth at a point z if
Still missing: transition map, smooth compatible, smooth atlas, smooth structure, smooth
manifold, smooth function on a manifold, smooth maps between manifolds
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6.2 Tangent space

We begin by reviewing the differential of a smooth map between open subsets of Euclidean
spaces. Our goal is to extend this definition to smooth maps between manifolds.

Definition 6.6. Let R™ 5 U — V  R" be a smooth map. For a point p € U, the
differential of F' at p is the linear map

dF(p): R™ — R" (6.7)

which corresponds to the Jacobi matrix

S - 5 ()
afp) ... ZE(p)

via the usual mechanism, i.e., the i-th column vector of the Jacobi matrix is equal dF'(p)
applied to e; € R™, where {e;}i=1.._., is the standard basis of R™.

-----

Theorem 6.8. (Chain Rule). Let U C R™, V C R™ and W C R? be open subsets, and let

v,y _ S,y

be smooth maps. Then for p € U the differential d(G o F')(p) is the composition

dF(p) dG(F(p))

R™ > R™ > RP,

Our goal is to generalize the construction of the differential to smooth maps F: M — N
between manifolds; i.e., for p € M we want to construct the differential dF(p) which should
be a linear map. One might suspect that the domain of dF'(p) is R™, where m = dim M,
and its codomain is R", n = dim N. It turns out to be more involved, namely dF(p) is a

linear map
dF(p): T,M — Tp) N, (6.9)

where T}, M is an m-dimensional vector space associated to M and p € M, called the tangent
space of M at the point p.

So our next goal is to define the tangent space T, M; in fact, we will provide two defi-
nitions, the “geometric” definition, denoted T5°°M and the “algebraic” definition, denoted
T ]flgM . The reason for dealing with both, rather than settling on one of these is that both
have their pros and cons, and hence it’s good to know both of them.
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6.2.1 The geometric tangent space

The strategy for for how to construct either T5*°M or T, ;lgM is basically the same: if M
is an open subset of R", the to be constructed tangent space T M resp. T;lgM should be
isomorphic to R"™. So in both cases, we first observe that there is a very peculiar, roundabout
way to think about a vector v € R™. The only redeeming quality of this is that this very
peculiar, roundabout way still makes sense when we are no longer looking at a point p of
some open subset of R”, but for p a point in a smooth manifold M.

Observation. Let M C R” be an open subset, and let p be a point of M. We define an
equivalence relation ~ on smooth paths v: (—¢,¢) — M with v(0) = p as follows

(—ere) =5 M) ~ ((—ez,&2) = M) ifandonly if  7{(0) = (0)
It is evident that the map
{v: (—€,€) = M | v is smooth}/ ~ — R" given by [v] — ~'(0)

is a bijection. In other words, these equivalence classes of smooth paths is just a very
complicated way to think about vectors in R™. The only redeeming quality of doing this is
that this construction works in the more general case where M is a smooth manifold rather
than an open subset of R™ and motivates the following definition.

Definition 6.10. (The geometric tangent space). Let M be a smooth n manifold and
p € M. We define the geometric tangent space of M at p to be

TpgeoM = {7 (—6,6) —- M | ¥ is smooth and ’Y(O) - p}/ ~,

where two such paths v1: (—€1,61) — M and 7y: (—€2,€9) — M are declared equivalent
if for some smooth chart (U, ¢) with p € U the tangent vectors of the paths ¢ o v; and
¢ o7y in R™ have the same tangent vector at ¢ = 0 (we might restrict the domain to 7; to a
smaller interval around 0 such that the compositions ¢ o~; are defined. We observe that the
seemingly stronger requirement that (¢ o ~1)'(0) = (¢ o 72)'(0) for all smooth charts (U, ¢)
with p € U is actually equivalent to the condition above.

We note that if the manifold M is an open subset of R", we can use the smooth chart
(M,i) provided by the inclusion map i: M — R™. So in this case, the geometric tangent
space T8°°M is equal to the quotient space discussed above and the map

TEM S5 R [y] — /(0) (6.11)

is a bijection. So in this case, the geometric tangent space can be identified with R™ via this
bijection, which we will often do without further comment.
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Example 6.12. The idea of extracting the more concrete object 7/(0) from the “abstract
beast” [y] € T#°M works in more general situations, for example for M = S* C R™*" (or
more generally for submanifolds M C R™™ a concept we will define a little later). It is easy
to show that if v is a smooth path in S, then its composition ¢ o v with the inclusion map
i: S™ — R™ is a smooth path in R™*!| and hence it has a tangent vector (io~)'(0) € R
It is not hard to show that

T};geosn N RnJrl given by [f‘)/] — (2 o ’y)/(O)

is a well-defined injective map. From the geometric picture it is clear that the tangent vector
(i 07)'(0) of the path ¢ oy should be perpendicular to the vector p € R™™!. This can also
be verified by the following calculation. Let f: R"™" — R be the function f(xg,...,z,) =
23 + -+ + 22, which can be used to describe S™ as S™ = f~!(1) € R™". Hence if 7 is
a smooth path in S™, then f o~ is constant and so its derivative vanishes. On the other
hand, we can calculate the derivative (f o)(0) via the chain rule and obtain the following
equation:
0= (f07)'(0) = {(grad f)(7(0)),~(0))-

For v(0) = p = (xo, ..., x,) we have gradf = (g—af;, ce %) = (2zq,...,2x,) = 2p. It follows
that 0 = (p,~/(0)), i.e., the tangent vector 4/(0) is perpendicular to p. Again, it is not
difficult to show that every vector v € R"*! perpendicular to p is the tangent vector of some
path v in S™. Summarizing, we obtain a bijection

eoqn = n+1 : : :
18°8™ — {v € R""" | v is perpendicular to p} given by (7] — ~'(0)

Definition 6.13. (The geometric differential). Let M, N be smooth manifolds, and let
F: M — N be a smooth map. Then for p € M the induced map of geometric tangent spaces
or the differential of F' at p is the map

Ye) F*geo €0 :
TgeeM —— TN given by (V] = [F o7]
We might also write F| if it is clear that we are using the geometric version of the tangent

space.

Of course, we should justify the notation dF'(p) by showing that the map F#*° agrees with
the differential as defined via the Jacobian matrix if M, N are open subsets of Euclidean
space. This is the content of the next Lemma.

Lemma 6.14. Let U C R™, V C R"™ be open subsets, let F': U — V' be a smooth map, and
let p € U. Then the diagram

Fgeo
geo * geo
T80 —— s TEOV

F(p)

b,k

R™ dF(p) ., R"
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Here the vertical maps are the bijections (6.11)), and the bottom horizontal map is the usual
differential of F' at p (see (6.7))) corresponding to the Jacobian matriz.

Proof. Let v: (—¢,¢) — U be a smooth path. Then the left vertical map sends [y] € T5°U
to 7/(0) € R™, which via dF(p) maps to (dF(p))(7'(0)) € R™.

Going the other way, F.geo([y]) = [F' o ~], which via the right vertical map is send to
(F o~)'(0). Using the chain rule,

(F'07)(0) = (dF(v(0))('(0)) = (dF (p))(+'(0)),
which proves that the diagram is commutative. O]

skip this here, and do that for the algebraic tangent space, followed by the functor point
of view.

Lemma 6.15. (Chain rule for the induced map of geometric tangent spaces). Let
M, N, P be smooth manifolds and let F': M — N, G: N — P be smooth maps. Then for
p € M the following diagram is commutative:

(GoF)§*°

T

'e0 geo geo
M — o Tr)V — = Toren?

Proof.
GE(FE () = GE([Fon]) = [Go(Fon)] =[(Go F)on] = (Go F)F*(1]).
[]

Corollary 6.16. If F' is a diffeomorphisms with inverse G, then F2° is a bijection with
mnverse G,

In particular, if M is a smooth manifold with a smooth chart M D> U V= o(U) C
R™, then ¢ is a diffeomorphism, and hence for p € U we have bijections

geo

TeoM = TE°U o TV —— R" (6.17)

Here the last map is the bijection (6.11)), and the equality T5*°M = T5°U follows from
immediately from the definition of the geometric tangent space.
This motivates the algebraic tangent space; so it should be discussed in that section.
The above construction of the geometric tangent space T5°°M and the differential

FE°0: TE°M — TSN
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is pretty straightforward, geometrically intuitive and it agrees with what we want if the
manifolds involved are open subsets of Euclidean space. So, what’s not to like about the
geometric tangent space?

The biggest drawback is that the geometric tangent space T5°°M is not a vector space in
an obvious way. We can use the bijection to define a vector space structure on T3 M
(which turns out to be independent of the choice of the chart (U, ¢)), but this vector space
structure does not have a direct geometric description.

6.2.2 The algebraic tangent space

The definition of the algebraic tangent space T;lgM at a point p of a smooth manifold M
is more involved and less intuitive than that of the geometric tangent space T5*°M. Its big
advantage is that unlike the geometric tangent space, the algebraic tangent space has an
evident vector space structure.

To motivate the definition of the algebraic tangent space, we consider the directional
derivative of a smooth function f € C*(M) defined as follows.

Definition 6.18. (Directional derivative). Let M be a smooth manifold, f € C*(M) a
smooth function, and v: (—e,€) — M a smooth curve with «(0) = p. Then the directional
deriwative of f in the direction of 7y is

DD,f = (f04)(0) = lim

t—0

FO0) = F0)
t

The directional derivative can also be expressed in terms of the differential f, of f: M —
R as following result shows.

Lemma 6.19. Let f: M — R be a smooth map, and v: (—e,e) — M a smooth curve
with v(0) = p. Then the directional derivative DD, f is the image of the tangent vector
[v] € Tg°M under the composition

Teeopy L TEoR = LR
P f(p)
where the first map s the differential of f, and the second map is the isomorphism (6.11]).
In particular, DD, f depends only on [y] € T$*°M.

Proof. This is an immediate consequence of the definitions of the maps involved. The dif-

ferential f. maps [y] € T5°M to [f 07] € T )R and the isomorphism T} )R =5 R maps

[f on] € TF R to (f o7)'(0) € R. O

Lemma 6.20. Let M be a smooth manifold, let [y] € T¢°M be a tangent vector at p € M,
and let DD.,: C*(M) — R be the associated directional derivative. Then DD., has the
following properties:
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(i) DD, is a linear map.

(ii) DD, has the following product rule property:
DD,(f-g) = DD,(f)-g(p) + f(p) - DD(g) ~ for f,g € C*(M). (6.21)
Proof. To prove part (i), let f,g € C*°(M). Then

DD, (f+g) = ((f+9)07)'(0) = (foy+g07)'(0) = (f07)'(0)+(g07)'(0) = DD;(f)+DD,(g).
The proof that DD, (cf) = ¢DD.(f) for ¢ € R is a similarly straightforward calculation.
To prove part (ii), let f,g € C*°(M). Then

DD,(f-g)=((f-9)07)(0)=((for) (g07))(0)
=(f07)(0)-(gov)(0 )+(f07)(0)~(907)’(0)
=DD,f-g(p)+ f(p)- DD,(g).

]

Another obvious, but rather useful property of DD.(f) = (f o~)'(0) is that it does only
depend on the restriction of f to an arbitrary small open neighborhood U C M of p. More
succinctly, this property can be expressed using the terminology of germs.

Definition 6.22. (Germs of smooth functions). Let M be a smooth manifold and
p € M. We consider smooth functions f: U — R defined in an open neighborhood U of p,
and define an equivalence relation on such functions by declaring f: U — M equivalent to
f'+ U" — R if there is some open neighborhood U” C U N U’ such that fjy» = f"U,,. Such
an equivalence class is called a germ of a smooth function at p. We will write C;°(M) for
the set of germs of smooth functions at p, and [f], € C;°(M) for the germ represented by
smooth function f defined in some open neighborhood of p.

Using this terminology, we can say that [y] € T5°°M determines a map
DD,: C*(M) — R. (6.23)

We note that the usual addition/multiplication of smooth functions is compatible with the
germ equivalence relation defined above, and hence with can add and multiply elements of
C°(M). This shows that C3°(M) is an algebra. Lemma implies that the map (6.23)) is
linear and satisfies the product rule (6.21) (with f, g € C7°(M) instead of f, g € C(M)).
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Definition 6.24. (Derivation). A map D: C*(M) — R which is linear and has the
product rule property

D(fg) = D(f)g(p) + f(p)D(g)  for f,g € C;*(M)

is a derivation. We write Der(C;°(M),R) for the set of all derivations C;°(M) — R. We
note that the sum D + D’ of derivations D, D’ is again a derivation, and so is ¢D for ¢ € R.
In particular, Der(Cp°(M),R) is a vector space.

Hence there is a well-defined map
DDY: T#°M — Der(C°(M),R)  givenby  [y] — DD, (6.25)

We will show that the map DD is a bijection, first in the case that M is an open subset of
Euclidean space (Lemma , then for a general manifold M (Lemma . This motivates
the following definition.

Definition 6.26. (The algebraic tangent space). Let M be a smooth manifold. Then
the algebraic tangent space at a point p € M is the vector space T28M := Der(C°(M),R).

Remark 6.27. The map C*(M) — C;°(M) which sends a smooth function f to its germ
[f], is an algebra homomorphism, and hence induces a homomorphism

Der(C2°(M), R) —» Der(C*(M), R).

This map is an isomorphism (this is a homework problem), and hence some authors, for
example Lee in his book on smooth manifolds, prefer to work with smooth functions on M
rather their germs at p. However, working with germs has technical advantages as will be
pointed out later in this section.

The next goal is to define for a smooth map F': M — N with F(p) = ¢ the differential
of F' as a map from T;lg]\/[ to TqalgN . We note that the smooth map F': M — N induces an
algebra homomorphism F*: C*°(N) — C*°(M) given by F*(g) := g o F. It also induces an
algebra homomorphism

Fy: O (M) — C°(N)

by mapping a germ [N DV -5 R] € C(N) to [M D F~H(V) G R] € C3°(M). These

maps are compatible in the sense that the diagram
C>(N) - C>(M)

.

C=(N) —2 C(M)

is commutative. Here the vertical maps send a smooth function on N (resp. M) to its germ
at g (resp. p).
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Definition 6.28. (The algebraic differential) Let F': M — N be a smooth map with
F(p) = q. Then the (algebraic) differential

alg . al _ o) al. _ 00
F28: T8 M = Der(C*(M),R) — T8N = Der(C*(N),R)
is defined by F'8(D) := Do F.

Of course, for this definition to make sense, we need to check that the composition
C=(N) —2 co(M) —25 R
q ( ) B P ( ) -

is in fact a derivation. This is left as a homework problem.

Lemma 6.29. (Chain rule for the differential). Let M, N, P be smooth manifolds and
let F: M — N, G: N — P be smooth maps. Then for p € M the following diagram is

commutative:
(GoF)}'®

T

al alg alg
M —— Te) N ——a = Tatron P

The proof of this statement is also left as a homework problem. We note that if F': M —
N is a diffeomorphism and G: N — M is the inverse of F', then the chain rule implies that
G¥8 o F¥l8 and F28 o G228 are the identity maps on T;lgM resp. T' ;153 )N . In particular, this
implies the following result.

Corollary 6.30. If F': M — N is a diffeomorphism, then the differential F: T;lgM —
al
Tr G
Remark 6.31. There is a categorical way to think about the chain rule. Let Man, be the the
following category. The objects of Man, are smooth manifolds M equipped with a basepoint
p € M. A morphism from (M,p) to (N,q) is a smooth map F: M — N with F(p) = q.
Then our constructions in this section can be interpreted as a functor from the category
Man, to the category Vectg of real vector spaces, which sends an object (M,p) € Man,
to the tangent space T;lgM € Vectg and a morphism F': (M,p) — (N,q) in Man, to the
differential F'¢: T#6M — T#2N. The chain rule is then the statement that this in fact
gives a functor, namely that this construction is compatible with compositions (it is clear
that this construction maps the identity map of (M, p) to the identity map of T;lgM ).
From this point of view the corollary above follows from the observation that a functor
maps isomorphisms in Man, (i.e., diffeomorphisms) to isomorphism in Vectg.

N s a vector space isomorphism.
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Remark 6.32. Now we want to comment on the technical advantage to work with germs.
Let M be a smooth manifold and U C M be an open neighborhood of p, then by definition
of germs of functions Cp°(U) = C7°(M). Hence

T80 = Der(C(U). R) = Dex(C3 (M), R) = TEM.

In particular, we do not need a smooth map F': M — N to obtain a differential F&&: T ];ﬂg M —
T;l(i)N; it suffices to have a smooth map FF M C U LN

TalgM TalgU alg N

For example, if M D U %y V ¢ R™ is a smooth chart, then ¢ is a diffeomorphism and
hence we obtain a vector space isomorphism

dlg

THEM = T2 —=—— T35V = R™.

The fact that a smooth chart (U, ¢) with p € U determines an isomorphism T;lgM =
R™ is extremely useful for calculations, since it provides us with an explicit basis for the
tangent space T;lgM given by the images of the standard basis elements e; € R™ under this
isomorphism.

After introducing the two flavors of tangent spaces (the geometric and the algebraic), it
is now time to show that these two approaches are equivalent.

Lemma 6.33. Let U be an open subset of R™ and p € U. Then the directional derivative
map
. €o al, _ 00
DD: T¢°U — T8U = Der(C,°(U), R)

s a bijection.

Proof. We recall that there there is a bijection R™ — T&“U given by sending a vector
v € R™ to the element [vy,] € T5°U represented by the straight line path 7, (t) = p + tv.
Hence the statement of the lemma follows once we prove the following stronger statement
that the composition

o: R —— TgeOU—> Der(Cy°(U),R)

is an isomorphism of vector spaces.
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We begin by providing an explicit formula for (®(v))(f) € R, where v = (vy,...,v,) € R",
f e C>®(M),and (®(v))(f) is the derivation ®(v) € Der(C>*(M),R) applied to the functlon

f.
(®(0))(f) =D5, f = (f ©7)'(0) = (gradf), - 7,(0) = (gradf), - v

of
927 \P v
= ’ :( ) . :1 8f< )U
: : 8:(:1
p)) \vn

This shows that ® is a linear map.

To show that ® is injective, it suffices to show the that kernel ® is trivial. So assume
that v = (vy,...,v,) € ker ®, i.e., for every smooth function f the derivation ®(v) applied
to v gives zero. Let 2': R — R be the i*® coordinate function defined by z¢(z1, ..., 1,) = x;
(so z; is the i component of z = (z1,...,x,) € R", while 2% is a smooth function). Then
(grad x%), = e; € R", where ¢; is the i vector of the standard basis of R™, which has 1 in
the i*" component and 0 in all other components. It follows that

(®(v)) = (grad %), - v =1¢; - v = ;.

Hence the kernel of @ is trivial.

To prove that ® is surjective, we need to show that for any derivation D € Der(C*(U), R)
there is a vector v = (vy,...,v,) such that for any f € C*°(M) we have

of

D) =3 5

(p)vi (6.34)

To prove this, we use the Taylor expansion of f around the point p. For simplicity, and
without loss of generality, we assume p = 0. Then

S 0 £ 3" Rt
O) + %(O)JI + Ri,jl‘ JIJ,
i=1 4,5

where R;; are smooth functions. Applying the derivation D to this equation, using the
linearity of D, we obtain

D(f) = D(f(0)) + Z 5,7 D) + D D(Risa'a!).

The second term on the right hand side has the desired form (6.34]), with v; = D(z*). So it
suffices to show that first and third term are zero.
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To show that D applied to any constant function ¢ € C*°(R™) vanishes (e.g., the constant
function f(0)), we first show D(1) = 0 for the constant function 1 € C*(R"):

D(1)=D(1-1)=D(1)-1+1-D(1) = 2D(1),

and hence D(c) = D(c-1) = ¢D(1) = 0 (by linearity of D).
To show that D(Rz'z?) = 0 for any R € C*°(R"), we calculate:

D(Rz'2’) = D((Rz")2?) = D(Ra")2?(0) + (Rx")(0)D(2?) = 0,
since both functions, Rz® and 2/ vanish at 0 € R™. O
Lemma 6.35. (i) Let F: M — N be a smooth map with F(p) = q. Then the diagram

geo
TeoM Sy TEON

o) oo

Fale
T;j‘lg M —— T;lg N

18 a commutative diagram.
(ii) For any smooth manifold M, the map DD: T8*°M — T;lgM s a bijection.

This proof of this lemma is a homework problem. Hint for part (ii): Use a smooth chart
(U, ¢) with p € U to show that Lemma implies the desired statement.

6.3 Smooth submanifolds

In this section we define what it means for a subset M C N of a smooth manifold N to be a
submanifold. Tf M is of the form M = F~!(q) for a smooth map F: N — @ and q € Q, we
give a sufficient condition on F' and g for M to be a submanifold. Before giving the formal
definition of a submanifold, here is a picture of a 2-manifold N and a submanifold M of

dimension 1. The map N D U %4 R? shown in a picture is an example of a submanifold
chart for M C N (as defined below).

N R

s s R
¢(U)

~
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Definition 6.36. Let N be a smooth manifold of dimension n = m + k. A subset M C N
is a smooth submanifold of N of dimension m if the inclusion M — N locally is isomorphic
to the inclusion R™ — R™** i.e., if for every p € M there is a smooth chart

N 5 U-4 R =R™ x RF

open

with p € U such that

(M NU) =o(U) N (R™ x{0}).
A chart (U, ¢) with this property will be called a submanifold chart for M C N. The integer
k is referred to as the codimension of the submanifold M of N.

Remark 6.37. The restriction of ¢ to M NU gives a chart ¢;: M NU — R™ for M. In
particular, M is a topological manifold of dimension m. We claim that if (U, ¢), (V) are two
smooth charts of the special form described in the definition above, then the corresponding
charts ¢, ¢, for M are smoothly compatible. To check this, we need to show that the
transition map

o1
R™" S ¢(MNUNV) —— MAUNV —2 o(MAUNV) C R™

is smooth. Note that this map is given by restricting the transition map
-1
R 5 ¢(UNV) -2 UNV —2s (U NV) C RmH

to R™ C R™*. Since the charts (U, ¢), (V,v) are smoothly compatible, the transition
function 9o ¢~! is smooth, and hence also its restriction to R™. This shows that (M NU, ¢))
and (M N V,4)) are smoothly compatible. Hence the atlas for M obtained from these
submanifold charts for N is in fact smooth, and hence determines a smooth structure on the
topological manifold M. Summarizing: a submanifold M of a smooth manifold N is in fact
a smooth manifold.

Example 6.38. We will show that the sphere S® C R"*! is a submanifold of codimension
1. It is easy to see that any hyperplane in R"*! is a submanifold of codimension 1. The
intersection of S™ and a (linear) hyperplane in R™*! is a sphere of dimension n — 1, and
hence it has codimension 2 in R"*!,

Definition 6.39. Let F': N* — Q" be a smooth map between manifolds of dimension n
resp. k. For p € N and ¢ := F(p) € Q, let

F.: T,N — T,Q

be the linear map given by the differential of F'. A point p € N is a reqular point of F if the
differential Fy: T,N — T,Q is surjective; p is called a critical point of F' otherwise. A point
q € Q is called a regular value of F if every point p € F~!(q) is a regular point; ¢ is called a
critical value of F otherwise. We note that F~'(q) = () implies that ¢ is a regular value.
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Example 6.40. Let R" 5 U - R be a smooth function, p € U, and ¢ = F(p) € R. Then
there is a commutative diagram

T,U -~ TR

gl lg :

R™ dF(p) R

where dF'(p): R™ — R is the usual Jacobian of F' at the point p. More explicitly, this sends
a vector v € R" to the matrix product of the Jacobian matrix at the point p and the vector
v. In the case at hand, the Jacobian matrix is just the gradient vector (gradF')(p), and
(df (p))(v) = (gradF')(p) - v € R, the dot product of the gradient vector and v. In particular,
p is a regular point of F' if and only if (gradF)(p) # 0 (argument: if (gradF')(p) # 0, then
some component of (gradF)(p), say the i®® component of (gradF)(p) is non-zero. Then the
dot product (gradF)(p) - e; is non-zero, which implies that dF(p) is surjective).

In particular, the critical points of F' are the points p € U C R” for which the gradient
(grad F)(p) vanishes, a statement that might be familiar from calculus. Those points are the
only points in U where F' might have a relative minimum or maximum.

Theorem 6.41. Let F: N™ — QF be a smooth map of smooth manifolds N, Q of dimension
n resp. k. If q is a regular value of F, then M = F~1(q) is a manifold of codimension k. In
particular, dim M = dim N — k.

Example 6.42. (Submanifolds of the form M = F~!(q) for a regular value ¢).

(a) S™ = {z € R"™ | ||z||* = 1}; in other words, S" = F~!(1) where F': R"*' — R is the
smooth map given by F(z) = ||z||>. We claim that 1 € R is a regular value of F' and
hence S™ C R™™! is a submanifold of codimension 1.

To prove the claim, we need to show that every z € F~1(1) = ™ C R""! is a regular
point of F, i.e., the gradient gradF'(z) is non-zero for z € S™. For the calculation of
gradF(z), we write x = (zo,...,7,) € R"! and

Pl@) = llall* = a3 + a3 + -+ + a2,

n

Hence gradF'(z) = (2xo, ..., 2x,) = 2z # 0 for z € S™.

(b) Let SLy(R) = {A € M,«,(R) | det(A) = 1} the special linear group. This description
shows that SLy(R) = F~1(1), where F': M,x,(R) — R is defined by F(A) := det(A).
Hence to show that SL, (R) is a codimension 1 submanifold of M, ., (R), it suffices to
show that 1 € R is a regular value of F, i.e., that every A € SL,(R) = F~1(1) is a
regular point of F'.

This requires a calculation of the differential Fi: Ty M, xn(R) = TpayR. This could be
done as in the previous example by identifying the vector space M, ., (R) with R™ and
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calculating the gradient vector of the function F'. We prefer to avoid this identification,
using instead the geometric tangent space and the bijection

T5° Myn(R) — Mysn(R)  given by [4] = ~/(0).

We have used this bijection before for R™, but this works equally well for any finite
dimensional vector space, e.g., the vector space M, ., (R). The inverse of this bijection
is simply given by mapping V € M, ,,(R) to the element [yy] € T5° M, «n(R) repre-
sented by the straight line path vy : (—¢,¢) = M, x,(R) defined by vy (t) := A+ tV.
Slightly abusing language, we write dF'(A): M, x,(R) — R for the linear map making
the following diagram commutative:

T4 Myn(R) ———— TEQ R

:l |=

Miyn(R) D LR

We calculate (dF(A))(V) by chasing V' € M,y (R) around the diagram:

[A+tV] —— [F(A+tV)]

I I

v F(A+tV)

dt|t 0

and hence (dF(A))(V) = 4 =0 F(A+tV). To calculate this derivative explicitly for our

function F'(A) = det(A), it will be useful to think of det(A) as a multilinear function
det(ay,as,...,a,) of the column vectors ay,...,a, of A. Similarly, writing v; for the
th column of the matrix V, we calculate:

F(A+tV) =det(ay +tvy,...,a, + tu,).

The product rule then implies

d n
%F(A +tV) = Zdet(al +tvg, . a1 F i, v Gy F U, G F Ty).
i=1

Hence

(dF(A))(V):%“O (A+tV) = Zdetal,..., iy ).
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To show that the linear map dF(A): M,x, — R is surjective, it suffices to find some
V € My, (R) such that (dF(A))(V) # 0. We note that for V= A we obtain

(AF(A))(V) = ([dF(A)(A) = Y det(a,...az......a,) = ndet(A) = n

for A € SL,(R). This shows that every A € SL,(R) = F~!(1) is a regular point of F,
and hence 1 € R is a regular value of F'. It follows from Theorem that SL,(R) is a
submanifold of M,,x,(R) of codimension 1. In particular, SL,(R) is a smooth manifold
of dimension dim M,,,,(R) — 1 =n? —1.

(c) We recall that the Stiefel manifold Vi (R™) of orthonormal k-frames in R" is defined by
Vi(R") = {(ay,...,ax) | a; € R", ||a;||* = 1, a; L a; for i # j}.

Thinking of the vectors a; as the column vectors of a matrix A € M,,.x(R), we recognize
Vi(R™) as a subset of M,,«x(R). We would like to express the conditions on the vectors
a; in terms of the matrix A. We consider the matrix product A*A € My (R), where
At € Mjy,(R) is the transpose matrix, whose row vectors are the vectors a;. We
observe that (A'A);; (the ij-component of the k x k matrix A*A) is given by

(A'A)ij = ai - a,

the dot product of the vectors a; and a;. In particular, the requirement a; L a; is
equivalent to the vanishing of the off-diagonal entries of A’A, and the requirement
||a;||> = 1 for all 7 is equivalent to the diagonal entries of A’A being 1. If follows that

Ve(R™) = {A € M (R) | A'A = I}, € My (R)},
where [} is the identity k x k& matrix.

The proof of Theorem [6.41]is based on the Inverse Function Theorem. Before stating it,
we would like to put it into context. Let U,V C R"™ be open subsets and let F': U — V be
a diffeomorphism. Then for any p € U the differential F: T,U — Tr(,V is an isomorphism.
It is natural to ask whether the converse of this statement holds as well. The answer is “no”
as the following example shows.

Example 6.43. Let F': C — C* be the smooth map given by F(z) := ¢*"*. This map is
not a diffeomorphism, since F'(z+1) = F(z) and hence F' is not injective. However, it is easy
to see that the differential F,: T,C — Tp)C* is an isomorphism for every z € C. There
are a number of ways to do this. For people familiar with holomorphic functions and their
derivatives, this is obvious by calculating %—5 Alternatively, one regard F' as a smooth map
F: R? - R?\ {0} and show that it Jacobian matrix is invertible at every point (z,y) € R2.
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We would like to illustrate that this calculation is easy to do using the geometric tangent
spaces.

Domain and codomain of F' are open subsets of C (viewed as real vector space), and
hence we have a commutative diagram

TE°C — T C

l dF(z) l

C——
Here the vertical bijections are given by mapping a tangent vector [y] represented by a
smooth path v to +/(0), and its inverse is given by mapping a vector w € C to the tangent
vector [z + tw] € T8*°C represented by the straight line path ¢ + z 4 tw. Hence we can
calculate the Jacobian dF'(z) by chasing the vector w € C around the diagram:

[z + tw] ——— [F(z + tw)]

[ !

w %hﬁ:OF(Z + tw)
Hence (dF(z2))(w) = %\t:oF(Z + tw) = %‘tzoe%i(z*t“’) = (eX™CEH2riw) g = 2mie’™w.

This shows that the Jacobian dF(z): C — C is given by multiplication by the complex
number 27ie*™. This number is non-zero for every z € C, and hence dF(z) is invertible for
every z € C.

We observe that the map F: C — C* is a covering map whose restriction to R C C
is our first example of a covering map R — S', ¢ s 2™, This shows that F is locally a
diffeomorphism (namely by restricting it to a path component of the preimage F~!(U) of an
evenly covered subspace U C C*.

According to the Inverse Function Theorem, this is true in great generality.

Theorem 6.44. (The Inverse Function Theorem). Let U,V C R" be open subsets,

let F: U — V be a smooth map, and assume that the differential T, M LN TrpyN 1s an
isomorphism. Then F is a local diffeomorphism at p, i.e., there is an open meighborhood
U, C U of x such that the restriction of F' to U, is a diffeomorphism onto is image.

Proof of Theorem |6.41. To prove the theorem, we need to construct a submanifold chart at

every point p € M. The idea is to modify a smooth chart N D U 2 Re by post-composing
it with a suitable diffeomorphism x of open subsets of R™ to obtain as submanifold chart

X © .
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Let N O U -2 R” be a smooth chart with pelU,and Q CV % R¥ be a smooth chart
with ¢ € V. Without loss of generality we can assume ¢(p) = 0, ¥(q) = 0 (by post-composing
with a translation) and F(U) C V (by restricting the diffeomorphism ¢ to a smaller open
neighborhood of p). Let G: ¢(U) — ¢(V) be the smooth map defined by G := o F o ¢ L.

The situation is depicted in the following figure.

N

M = F~'(q)
o (0
RS () —C s (V) CRE
W= ker G,
o(p)
o(U N M) k
Y R
ooy,
x(@(U N M))




6 SMOOTH MANIFOLDS 114

In this picture the level set M = F~!(q) and ¢(U N M) are drawn in red. To construct a
submanifold chart of M C N at p € M it suffices to find a submanifold chart for ¢(UNM) C
d(U) at 0 € ¢(U) C R™*. In other words, we need to find a smooth map

x: ¢(U) — R™ x R*
satisfying the following properties:
(a) x(p(UNM)) Cc R™=R™ x {0} C R™ x R*, and
(b) the restriction of x to a neighborhood of 0 is a diffeomorphism onto its image.
Let x': ¢(U) = R™, x*: ¢(U) — R* be the component maps of y, i.e.,
() = (M (), x*(z)) e R™ x RF  for all 2 € ¢(U).

Then the condition (a) can be satisfied by defining x? to be the smooth function G, which
by construction has the property G(x) = 0 if and only if z € ¢(UNM). For the construction
of x1 we note that by the Inverse Function Theorem , condition (b) holds provided the
differential of y at 0 is an isomorphism.

To construct x!, let W be the kernel of the differential G,: Typ(U) — Top(V). To
determine the dimension of W we use the commutative diagram of differentials

T.U — T,V

b= =y
(

Tod(U) —Z Tyip(V).

Here the vertical maps isomorphisms since they are the differentials of the diffeomorphisms
¢ resp. ¥. The differential F, is surjective by the assumption that ¢ is a regular value for
F, and hence p € F~1(q) is a regular point of F. Consequently, the differential G, is also
surjective, and G, induces an isomorphism Tyo(U)/ ker G, = Toyp(V). Hence

k=dim Ty (V) = dim Typ(U) — dimker G, = n —dimW = m + k — dim W,

which implies dim W = m. Let x; be the composition

R™ 5 ¢(U) —— W

IR{=

>y R™,

where 7 is the orthogonal projection from R™** onto its subspace W, and h: W — R™ is
any linear isomorphism.

It only remains to show that the differential x..: Top(U) — T{g,0)(R™ x R") is an isomor-
phism, since then the Inverse Function Theorem [6.44] implies that then the restriction of y
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to an open neighborhood of 0 € ¢(U) is a diffeomorphism onto its image. To prove this,
let 7': R™ x R¥ — R™ and 7%: R™ x R¥ — R¥ be the projection maps and consider the
composition

1 2
Ty XY

T0¢<U) L T((M))(Rm X Rk) —_— T()]Rm X T()]Rk

By a homework problem the second map is an isomorphism, and hence

ker y, = ker(m! o x,) Nker(7? o x,) = ker x. N ker x2
=ker y' Nker G, = ker(XﬂW) = ker(h) = 0.

We comment that the differential y! is equal to x! since x! is a linear map. This shows that
Xx is @ monomorphism, and hence an isomorphism since domain and codomain of y, are
vector spaces of the same dimension. O

Let N be smooth manifold of dimension n, and let M C N be a submanifold of dimension
m. We note that the inclusion map i: M — N is smooth; to check smoothness at a point

p € M, we can use a smooth chart N D U N R™ which is a submanifold chart in the sense
of Definition [6.36] This in particular implies that the restriction

¢|UQMZ UNM—R"™CR"

i s a smooth chart for the submanifold M. Then the composition

-1
|[UNnM

Rmﬂ¢(U)¢—>UﬂM LU 25 (U)

is the inclusion map R™ N ¢(U) — ¢(U) C R* = R™ x R* and hence smooth.

Lemma 6.45. Let N be a smooth manifold, M C N submanifold and i: M — N the
inclusion map. Then for p € M the differential

T,M —=— T,N

18 a monomorphism.

This shows that we can use ¢, to identify 7,M with a subspace of T,N, given by the
image of i,.

Proof. Let [v],[7] € T5*°M be two tangent vectors represented by smooth paths v: (—¢, €) —
M with v(0) = p resp. 7': (=€, ¢') = M with 7/(0) = p. We note that i.[7],i.[y] € TE°N
are represented by the same paths i o v resp. i 0 4’. Using the submanifold chart (U, ¢), we
note that

poioy = Punm oY and poioy =dunmor.
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In particular,

i) =[] <= (poion)(0)=(poior)(0)
= (dnm ©7)(0) = (Gunm o) (0) <= [1] =[]
0

Proposition 6.46. Let F': N — Q be a smooth map, and let M := F~'(q) C N be the
submanifold given by a reqular value ¢ € QQ of F'. Then

LM =ker (T,N - 7,Q).

Proof. Let us first check that the subspaces T, M and ker F, of T, N have the same dimension.
Let m = dim M, n = dim N, and £ = dim (). Since M is a submanifold of codimension &
in N, we have m + k = n. The assumption that ¢ € @) is a regular value of F' in particular
implies that p € F~'(q) is a regular point of F, i.e., that the differential 7, N LN T,Q is
surjective. Hence T;(Q), the image of F\ is isomorphic to its domain modulo its kernel, i.e.,
T,N/ker F,, and so

k= dimT,Q = dim(T,N/ ker F,) = dim T, N — dim ker F, = n — dim ker F.

It follows that dimker F, = n — k = m, which matches with dim 7, M = dim M = m.

So the two subspaces T,M and ker F, of T,,N have the same dimension, and hence it
suffices to show that one of these subspaces is contained in the other.

To show that T),M is contained in ker F}, it suffices to show that the composition

T,M — T,N — T,Q

is the zero map. Using the geometric description of the tangent spaces, let v: (—e, €) = M
be a smooth path with v(0) = p representing an element [y] € T,M. Then F.(i.[y]) =
[Foiony| € T,Q is the trivial element, since the composition F' oo+ is the constant path
with value ¢ in Q. m

The proposition above enables us to calculate the tangent spaces of submanifolds given
as preimages of regular values, e.g., in all the examples

Example 6.47. Let R"*! > U:fR be a smooth map with regular value ¢ € R. Then
M := f~!(q) is a codimension 1 submanifold of R"*'. The tangent space T,M at a point
p € M is by Proposition [6.46] equal to the kernel of f.: ToU — ToR. The differential f. can
be identified with the Jacobian of f at the point p, or equivalently with the map

R"™ — R given byv > (gradf), - v.

In particular, T,M = ker f, = {v € R"™ | (gradf), -v =0} = {v € R"™ | v L (gradf),},
the subspace of R™"! consisting of all vectors v perpendicular to the gradient vector of f at
the point p.
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7 Smooth vector bundles

The goal of this section is to define the notion of smooth section of a vector bundle E over a
smooth manifold M. We will begin with examples motivating the need for this notion, follow
it up with a preliminary definition which captures some but not all the required features and
end up with the technical Definition 77 of smooth vector bundles and their sections.

Example 7.1. Let M be a smooth manifold and let v: R x M — M be a smooth action
of the group R. For p € M let v,: R — M be the smooth path given by 7,(t) := (¢, p).
The path v, represents an element [v,] € T5°°M in the tangent space of M at p, using the
geometric description of the tangent space. The assignment

M>p — [y eT,M
is an example of a vector field on M in the sense of the following definition.

Definition 7.2. (Preliminary!) A vector field on a smooth manifold M is an assignment
X that assigns to any point p € M a tangent vector X (p) € T,M.

Example 7.3. Let f: M — R be a smooth function on a smooth manifold M. For p € M,
let
dfp = f.: TpM — Tf(p)R =R

be the differential of f at the point p (as usual we identify here the tangent space T,R" at
g € R"™ with the vector space R™). We recall that for a vector space V' the space Hom(V, R)
is called the dual vector spaceand is denoted by V*. In particular, df, is an element of
Hom(T,M,R) = (1,M)*, which is called the cotangent space of M at p and is denoted by
Ty M. The assignment df given by

M>p — dfpeT;M,
is called the differential of f. It is an example of a 1-form, defined as follows.
Definition 7.4. (Preliminary!) A 1-form « on a smooth manifold M is an assignment
M>p = a,eT M.

Extracting the commonality of these examples, we make the following (preliminary!)
definition.

Definition 7.5. (Preliminary!) A vector bundle E of rank k over a smooth manifold M
is a family { £, },enm of vector space E, of dimension k parametrized by points p in M. The
vector space ), is called the fiber over p. A section s of E is an assignment

M>p — s(p) € E,.
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Example 7.6. Let V' be a vector space of dimension k. Then the vector bundle E given by
E, =V for all p € M is called the trivial vector bundle over M with fiber V. We note that
a section of this bundle is simply a map M — V with values in the vector space M. So a
section s of a general vector bundle E should be viewed as generalization of vector-valued
function on M, whose value s(p) at a point p € M is a vector s(p) in a vector space E,,
which for a general vector bundle depends on the point p.

Question. What is missing in the above definitions of vector field, 1-form and section?

To see what is missing, we revisit the examples [7.1] and [7.3] in the special case where the
smooth manifold M is an open subset of R".

e R"DM3>p  ~,(0) € T,M=R"is an R"-valued function. This is a smooth map,
as can be seen by rewriting ,(0) in the form

0
/7;)(0> = 8_3(07]?17 s 7pn)

e Similarly, df, € T;M = Hom(T,M,R) = Hom(R",R) = (R")* = R" using our
standard identification T,M = R" for open subsets M C R" and the isomorphism
(R™)* = R", under which the standard basis vector e; € R™ corresponds to the i-th
vector ¢ € (R™)* of the dual basis {e'};=1__, of the dual space (R")*. It is easy
to check that via this isomorphism, the cotangent vector df, € T;M corresponds to
(gradf), € R™, which is a smooth function of p.

These examples hopefully show that the answer to the above question is that for a section
M>pw—s(p) € E,

of a vector bundle {E,},cn we should require that s(p) depends “smoothly” on the point
p € M. The problem is that it is not clear what this should mean: the domain of s is a
smooth manifold, but:

1. What is the codomain of s?

2. How can we ensure that the codomain is a manifold? (which would allow us to require
that s is a smooth map)

The first question can be addressed as follows. Let E be the set given by the disjoint
union of the vector spaces E,. More explicitly, this disjoint union is the set of pairs (p,v)
with p € M and v € E):

E::HEp:{(p,vaeMandveEp}.

peEM
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Then a section s of E determines a map f: M — E given by p — (p, s(p)). We note this
construction gives a bijection

{sections s of {E,},em} ¢— {f: M = E| 7o f=idu},

where 7m: E' — M is the projection map (p,v) — p. The right hand side is a very convenient
way to think about sections, and hence from now on, a section will be a map s: M — FE
with 7 o s = idy;. In particular, this answers the first question above: the codomain of a
section s is the set F.

With regards to the second question, the simplest solution is to require that E is a smooth
manifold as part of the definition of a smooth vector bundle.

Definition 7.7. Let M be a smooth manifold. A smooth vector bundle of rank k over M
consists of the following data:

1. A smooth manifold F, called the total space and a smooth map n: F — M.

2. For each p € M the set E, := 7 '(p), called the fiber over p, has the structure of a
k-dimensional vector space.

It is required that E is locally trivial in the sense that for each point p € M, there is an open
neighborhood U and a diffeomorphism ® making the diagram

Ey :=7'(U) 2 » U x RF

A

M

commutative, such that the map E, — {p} x R¥ = R* given by restriction of ® is a vector
space isomorphism for each p € U. The map ® is called a local trivialization of E. We note
that this implies in particular that dim £ = dim(U x R¥) = dim U + dim R* = dim M + k.

A sectionis a map s: M — E with mo s = idyy; in other words, s(p) belongs to the fiber
E, for every p € M. A section s is smooth if s: M — E is a smooth map. The vector space
of smooth sections of E will be denoted I'(M, E).

Remark 7.8. The above definition is a particular variant, the “smooth” variant, of a general
definition. Other variants are:

The “continuous” variant. Here M, E is a just topological spaces (instead of smooth
manifolds), 7: £ — M is a continuous map (instead of smooth), and ® is a home-
omorphism (instead of a diffeomorphism). A continuous section is a continuous map
s: M — E such that m o s =idy,.
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The “holomorphic” variant. Here M, E are complex manifolds, 7: £ — M is a holo-
morphic map, and P is a holomorphic map with a holomorphic inverse. A holomorphic
section is a holomorphic map s: M — E with 7o s = id,.

Since complex manifold are in particular smooth manifolds, and holomorphic maps are
smooth maps, we can “forget” the holomorphic structure on a holomorphic vector bundle
E — M and just regard it as a smooth vector bundle. Similarly, if s: M — FE is a holomor-
phic section, it is in particular a smooth section of the underlying smooth vector bundle.

Analogously, a smooth vector bundle £ — M can in particular be considered as a vector
bundle over the topological space M, and a smooth section s: M — FE is a continuous
section.

Example 7.9. (Examples of smooth vector bundles).

1. Let M be a smooth manifold and let V' be a finite dimensional vector space. Then
E = M x V equipped with the projection map n: F — M is a smooth vector bundle
over M called the trivial vector bundle with fiber V. 1t is clear that the product
E = M x V is a smooth manifold, and that the projection map 7 is smooth. Each
fiber E, = 7 '(p) = {p} x V = V also has an obvious vector space structure. To
show that E is locally trivial, we choose U = M, pick a vector space isomorphism

h: V — R* (which always exists for k = dim V) and define
P Ey=MxV —MxR"  (p,v)— (p,h(v))
This map satisfies all requirements of a locally trivialization.

2. Let Uy, Uy be the open subsets of S defined by Uy := S\ {—1} and U, := S*\ {1}.
Let E be the quotient of the disjoint union

U1 xR 1 UQ x R (710)

modulo the equivalence relation ~ defined by

1 fori
(1,2z,2) ~ (2,2, ¢(2)x) for € UyNU; and  €(z) := {il fZi 12%3 Z 8

Here (1,z,2) € Uy x R and (2, z,x) € Uy x R, i.e., the number in the first component
just indicates whether (z, ) is to be considered as an element of the first or the second
summand in the disjoint union ((7.10). Moreover, im(z) is the imaginary part of z €
UnU,cS'"CC. The map m: E — S! given by [1,2,2] — 2 and [2,z,2] — 2z is
a well-defined continuous map (by the continuity property of maps out of quotients;
the pre-composition of 7 with the projection map from (U; x R) II (U, x R) to the
quotient F is clearly continuous).
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We construct bundle charts (U, ®1) and (U, ®3) for E as follows:
Q;: By, — U; xR given by  ®;[i, 2, 2] = (2, ) (7.11)

Obviously, the restriction of ®; to each fiber E, for z € Uj is a vector space isomorphism,
and it is not hard to check that the maps ®; and their inverses are continuous, and
so ®; is a homeomorphism. The only thing not clear is why ® is a diffeomorphism; in
fact, it is not even clear what that would mean, since we haven’t constructed a smooth
structure on E!

So our goal is to construct a smooth atlas for £ in such a way that the maps ®;
are diffeomorphisms. We observe that the homeomorphisms ®;: Ejy, = U; x R can
essentially be thought of as charts for E. This is not literally true, since U; is an open
subset of S! rather than an open subset of R. However, U; C S! is diffeomorphic to an
open subset of R, e.g. the map (—1,1) — Uy, t — €™ is a diffeomorphism; similarly for
U,. Secretly composing with these diffeomorphisms, we will allow ourselves to think
of &y, ®, as charts for F. To show that {(Ey,, ®1), (Ey,, P2)} is a smooth atlas, we
need to check that the transition maps are smooth. For example, ®, o ®' is given
explicitly as follows:

(U, NU) xR — s By, ——2—— (U N 0) x R

(z,z) ——— [1,z,2] = [2, 2z, ¢(2)x] —— (2,€(2)2)

We note that this map is locally constant; in particular, it is smooth. It is equal to its

own inverse inverse, and hence it is a diffeomorphism, which proves that {(Ey,, ®1), (Ey,, ®2)}
is a smooth atlas. As we have argued before, each chart of a smooth atlas is a diffeo-
morphisms between an open subset of the manifold and its image, which is an open
subset of Euclidean space. In particular, the maps ®; of are diffeomorphisms.

Lemma 7.12. (Vector Bundle Construction Lemma). Let M be a smooth manifold of
dimension n, and let {E,} be a collection of vector spaces parametrized by p € M. Let E be
the set given by the disjoint union of all these vector spaces, which we write as

E:= ][] E ={(pv)|peM veE)}

peEM

and let m: E — M be the projection map defined by m(p,v) = p. Let {Uy}aca be an open
cover of M, and let for each o € A, let ®,: 771 (U,) — Uy x R¥ be maps with the following
properties
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(i) The diagram

Eyp, =n"YU,) y U, x RE

is commutative, where m is the projection onto the first factor.

(ii) For each p € U, the restriction of ®, to E, = 7~ (p) is a vector space isomorphism
between E, and {p} x R* =R* (which implies that ®,, is a bijection).

(iii) For a,, B € A, the composition

—1

(Us N Us) x RE 25 22 (U, N Us) —2 (Ua N Us) x RE
18 smooth.

Then the total space E can be equipped with the structure of a smooth manifold of dimension
n+k such that w: E — M 1is a smooth vector bundle of rank k with local trivializations ®,,.

Remark 7.13. We will apply this lemma to construct various smooth vector bundles over a
smooth manifold M, in particular, the tangent bundle T'M and the cotangent bundle 7™M
(whose fiber over p € M is a dual of the tangent bundle). Later, we will be interested in
other bundles, and bundles In some situations, e.g., when we use this lemma to construct
the cotangent bundle of a smooth manifold M For the proof we will be using the Vector
Bundle Construction Lemma [7.12] according to which it suffices to construct an atlas of
bundle charts (aka local trivializations)

Pa s U, x RF
Ua

that are smoothly compatible in the sense that all transition maps are smooth. Sometimes,
for example for the proof of the lemma above, it will be convenient to replace the vector
space R* by some vector space V of dimension k, e.g., the dual space (R¥)*. Of course, any
such vector space is isomorphic to R*, and we can just compose all local trivializations by the
chosen isomorphism, but it is akward to carry that isomorphism through the calculations.

E,
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7.1 The tangent bundle of a smooth manifold
7.2 The cotangent bundle as the dual of the tangent bundle

Let M be a smooth manifold. We recall that the cotangent space of M at a point p € M
is the vector space Ty M dual to the tangent space T,M, i.e., T;M = Hom(T,M,R), the
vector space of linear maps from 7,M to R. The goal of this section is to show that the
collection of cotangent spaces {7, » M }penr assemble to a smooth vector bundle over M, called
the cotangent bundle. More generally, we will show that if £ — M is a smooth vector bundle,
then the collection {£>},cns of the vectorspaces dual to the fibers E, of £ assemble into a
smooth vector bundle E* — M.

Digression on dual vector spaces. Let V, W be vector spaces, and let V* := Hom(V,R),
W* = Hom(W, R) be their dual vector spaces. Then a linear map F': V' — W induces a dual
map

F*:W*—V*  givenby W 3 (W -5R)— (V-5 W - R) eV

in other words, F*(g) = go F. If G: W — X is a linear map, then the following diagram

" 7k F ITr* G *
X Y

\/

(GoF)*
ie., (GoF)" = F*oG*"

We remark that this statement has a categorical interpretation: the assignment

Vis V' and (V-5 W) e (VFE W

i1s a contravariant function *: Vect — Vect.
There is an evaluation map

ev: V*xV — R  given by (VL R,v) = g(v).

..........

the dual vector space V* characterized by the property

. 1 i=j
bz b = 52 =

() = {0 oy
Let F': V' — W be a linear map, and assume that {b;},—1__, is a basis for V', and {¢;};=1,.
is a basis for W. Then the linear map F' corresponds to a matrix Mp € M,,«,»(R). Using
the dual bases {b'} for V* and {c¢;} for W*, the dual map F*: W* — V* corresponds to a
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matrix Mps € M,,»n(R). An easy calculation shows Mg« = M}, the transpose of the matrix
Mp. We note that for composable matrices A, B we have (AB)" = B' A", which reflects the
property (F o G)* = G* o F'* for linear maps.

Lemma 7.14. Let E — M be a smooth vector bundle. Then there is a smooth vector bundle
E* — M whose fiber (E*), over p is the dual of the fiber E,,.

The vector bundle E* — M is called the vector bundle dual to E — M.

Remark 7.15. For the proof we will be using the Vector Bundle Construction Lemma [7.12]
according to which it suffices to construct an atlas of bundle charts (aka local trivializations)

B, y U, x RF

Nt

Ua

that are smoothly compatible in the sense that all transition maps are smooth. Sometimes,
for example for the proof of the lemma above, it will be convenient to replace the vector
space R* by some vector space V of dimension k, e.g., the dual space (R¥)*. Of course, any
such vector space is isomorphic to R¥, and we can just compose all local trivializations by the
chosen isomorphism, but it is akward to carry that isomorphism through the calculations.

Proof. Let E* be the set defined by

E =[] E;={(p.g)|peM, g€ E}},

peEM

equipped with the obvious projection map mg- to M. Let (U,, ®y)aca be a smooth bundle
atlas for F, i.e.,
®,: By, — Uy x R

is a diffeomorphism compatible with the projection map to U, which restricts to a linear
isomorphism ®,,,,: £, — R* on each fiber. m

We will use the Vector Bundle Construction Lemma [7.12] to

7.3 Expressing vector fields and 1-forms in local coordinates

For calculations with vector spaces it is often convenient to choose a basis {b; };—1._, for the
vector space in question and to express vectors v € V as linear combinations v = )", v'b;
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with v* € R. The goal of this section is to show that similarly a vector field A or 1-form w
on a smooth n-manifold M can locally be expressed as linear combinations

Ap=> A a(?ﬁ w=Y wdy'
=1

i=1

Here
(a) U C M is an open subset which is the domain of a smooth chart ¢: U — R"™ of M,

(b) y* = ¢*x* € C®(U) are the smooth functions obtained by pulling back the smooth
functions z': R® — R given by (z1,...,2,) —

(c) dy* € T(U,T*M) = QU) is the 1-form given by the differential of the function
y'e (),

(d) 8‘; € I'(U,TM) is the collection of vector fields on U which are dual to the 1-forms

dy' (explained below), and
(e) A" and w' are smooth functions on U.

We begin our discussion with introducing the usual notation for the standard basis of
the tangent resp. cotangent space at a point ¢ of an open subset V' C R".
The standard basis for 7,V

The standard basis for T;V.

7.4 Measurements in manifolds

Let U be an open subset of R" and let v: [a,b] — U be a smooth path. Then the length of
the path ~ is given by

b
length(y) = / ()], (7.16)

where ||7/(t)|| is the norm of the tangent vector +/(¢) of the path at the point y(t) € U. If
v is a smooth path in a manifold M, we would like to calculate the length of v in a similar
way. For each ¢ € [a, b] the tangent vector 7/(t) belongs to the tangent space T )M, and so
the question is how to make sense of the norm ||7/(¢)||. We recall that the usual devise to
make sense of the norm ||v|| € [0, 00) of a vector v of a vector space V' is the following.

Definition 7.17. An inner product on a vector space V is amap g: V x V — R with the
following properties:

(i) multilinear: g is a linear function in each of its two slots;
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(ii) symmetric: g(v,w) = g(w,v) for v,w € V;

(iii) positive definite: g(v,v) > 0 for all v € V and g(v,v) = 0 if and only if v = 0.

A map g: V x V — R satisfying (i) and (ii) is called a symmetric bilinear form on V. The
set of all symmetric bilinear forms is a vector space which is denoted Sym*(V;R).

The usual scalar product on R™ given by g(v,w) = vjwy + -+ + v,w, for v,w € R",
v = (v1,...,0,), w = (wy,...,w,), is an inner product on R". The scalar product on R"
allows us to calculate the length ||v|| of a vector v € R™ or the angle a(v,w) € [0, 7] between
vectors v, w € R". Similarly, an inner product g on a vector space V allows us to do the
same for vectors v,w € V by defining:

_ _ g9(v,w)

l|v]] : g(v,v) cos a(v, w) : ol

So an inner product on a vector space V' should be thought of as a “yard stick” making it
possible to do measurements of lengths and angles in V. In particular in order to talk about
the norm of tangent vectors of a smooth manifold M, we need an inner product g, on the
tangent space T,M for all points p € M. What we want to express is the desideratum that
the inner product g, € Sym*(T, »M;R) “depends smoothly on p”. This is entirely analogous
to asking how to make precise the statement that for a smooth function f € C*°(M) the
differential df, € TyM = Hom(T,M,R) “depends smoothly on p”.

Lemma 7.18. Let E be a smooth vector bundle over a smooth manifold M. Then there is
a smooth vector bundle Sym*(E;R) whose fiber over p € M is the vector space Sym*(E,; R)
of symmetric bilinear forms on the fiber E,.

The construction of the vector bundle Sym?(E; R) is entirely analogous to the construction
of the dual vector bundle E*: from the local trivializations Ejy, = U, X R* of E we build
maps

[T sym* (B R) — Us x Sym*(R¥;R) 2 U, x R, ¢ = dim Sym*(R¥;R).

peUy
which commute with the projection maps to U, and are fiberwise isomorphisms of vec-
tor spaces. Then the Vector Bundle Construction Lemma can be used to show that
Sym*(E;R) = {(p,v) | p € M, v € Sym*(E,;R)} has the structure of a smooth vector
bundle.

Definition 7.19. Let M be a smooth manifold. A Riemannian metric on M is a smooth
section g: M — Sym?(T'M;R) of the vector bundle Sym?(T'M;R) such that for each p € M
the symmetric bilinear form g, € Sym*(T,M;R) is positive definite (in particular, g, is an
inner product on the tangent space T,M for every p € M).

If M is a Riemannian manifold and ~: [a,b] — M is a smooth path in M, then the length
of 7 is defined by the formula (7.16), where the norm ||7/(¢)|| € [0, 00) of the tangent vector
v (t) € T,M, p =~(t) is evaluated using the inner product g, on 7,M.
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7.4.1 Measuring volumes

Our eventual goal is to integrate over manifolds. When defining the Riemann integral of
a function f over an open subset U C R"™ we divide U into a bunch of small boxes and
approximate the integral over f by the integral over a function which is constant on each
small box, thus reducing the calculation of an integral to the calculation of the volume of
rectangles. To define integration over manifolds we will use charts to reduce the calculation to
open subsets of Euclidean space. However, it turns out to to be useful to not restrict ourselves
to rectangles in R™, since the image of a rectangle in R? under a linear map 7: R? — R?
is typically no box, but a parallelogram. More generally, the image of the standard n-cube
{(x1,...,2,) € R" | 0 < z; < 1} C R™ under a linear map 7" with T'(e;) = v; € R™ is the
parallelepiped

P(vy,...,0,) = {szvz |0<ax; <1} CR"™

i=1
For n = 2, a parallelepiped P(vy,v9) is simply the parallelogram spanned by the vectors vy,
vg (which is a “degenerate” if vy, vy are linearly dependent). Here is a picture of P(vy,v9):

U1
Lemma 7.20. The volume of the (possibly degenerate) parallelepiped P(vy,...,v,) spanned
by vi,...,v, € R" is given by the formula

vol(P(vy,...,v,)) = |det(vy,...,v,)]|

Here det is interpreted as a map det: R™ x --- x R" — R that sends an n-tupel (vq,...,v,)
of vectors v; € R™ to the determinant of the n X n matriz with column vectors vy, ..., v,.

We will prove this statement since the techniques going into that proof will be useful for
us. Before doing so, we recall properties of the determinant function det: R” x - - - xR® — R.

1. The determinant is a multilinear map, i.e., it is linear in each slot; explicitly,

det(vy,...,av; +bvl, ... v,) = adet(vy, ..., vy ..., 0,) +bdet(ve, ... 0, ... )

79

for vy,...,v,, v, € R" a,b € R.
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2. The determinant is alternating, i.e., for any permutation o € Sy
det(vy1), - - s Vo(ny) = sign(o) det(vy, ..., vy),

where sign(o) € {1} is the sign of the permutation o. We recall that sign(c) = 1 if
o is the composition of an even number of transpositions; otherwise sign(o) = —1.

Definition 7.21. Let V' be a vector space. A map
w: V.- xV—~R
k

is called

1. multilinear if w is linear in each slot;
2. alternating if w(v,(1), ..., Vo)) = sign(o)w(vi, ..., v;) for all vy, ... v, and o0 € Sj.

Let Alt*(V;R) denote the set of multilinear alternating maps w: V x --- x V — R. This
is a vector space, since the sum of two multilinear alternating maps is again a multilinear
alternating map; multiplying such a map by a constant ¢ € R again such a map.

To calculate the dimension of Alt"(V;R), we want to construct a basis for this vector
space. Let {e;};—1. » be a basis for V, and let {€'},—; _, be the dual basis for V*. Given a
multi-index I = (i1, ...,4) with i; € {1,...,n}, it is evident that the map

Vx-..xV—R given by (v1, ..., v8) = € (v1)e”(vy) - - - €™ (vg)
k

is multilinear. However, in general it is not alternating, since the value of this function on a
k-tupel (vi,...,v;) is unrelated to the value on the permuted k-tupel (vya),. .., Vo)) For
example, if k =n, I = (1,...,n) and v; = ¢;, then

et(vy)...e"v,) =1 but e (Vo(1)) - - € (Vo)) =0 for o # id.

However, out of this non-alternating multilinear map we can can manufacture an alternating
map e! by a signed sum over permutations of the v;:

e’ (vr,...,v) == Z sign(0)e™ (Vo)) € (Vo (2)) - - - €™ (Vo(r))

€Sk
for I = (i1,...,0), v1,...,vx € V. It is not hard to check that the multilinear map
el Vx...xV—=R

is in fact alternating and so e/ € Alt"(V;R). It is also straightforward to show that if
J = (io(1), - - -+ o(k)) 1S & permutation of the multi-index I = (i1,...,14), then e/ = sign(o)e’.
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Lemma 7.22. The collection {e' | I = (iy,...,ix) with iy <ig < --+ <1y} is a basis for
AltF(V;R).

A proof of this fact can be found in Lee’s book. It follows that the dimension of the
vector space Alt*(V;R) is equal to the number of multi-indices I = (i1,..., ;) which are
strictly increasing in the sense that ¢; < --- < 7. Mapping a strictly increasing multi-
index I = (iy,...,1) to the subset {iy,...,i} C {1,...,n} yields a bijection between the
set of strictly increasing multi-indices and the set of cardinality k& subsets of {1,...,n}. In

particular, we conclude:
Corollary 7.23. IfV is a vector space of dimension n, then dim Alt"(V;R) = (Z)

Proof of Lemma[7.20. Our strategy to prove vol(P(vy,...,v,)) = |det(vy,...,v,)| is to use
the fact that det is an alternating multilinear map, i.e., an element of Alt"(R™; R), and that
the dimension of Alt"(R™R) is (") = 1. The idea is that while vol(P(vy,...,v,)) is not an
alternating multilinear map (e.g., its values are non-negative), it is the absolute value of an
alternating multilinear map

svol: R" x .-+ xR" — R

called the signed volume, defined by svol(vy, ..., v,) = €(v1,...,v,) vol(P(vy,...,v,)), where

+1 det(vy,...,v,) >0
€(vy,...,vn) = ¢ —1 det(vy,...,v,) <0
0 det(vy,...,v,) =0

It is clear from the definition that |svol(vy,...,v,)| = vol(P(v,...,v,)), and we claim that
svol is an element of Alt"(R™;R). Permuting the vectors vq,...,v, does not change the
associated parallelepiped, but

det(vo1), - - - Vo(n)) = sign(o) det(vy, ..., vy)

and hence
€(Vo(1)s - - -+ Vo)) = sign(o)e(vi, ..., vp).

It follows that svol is alternating. To show that svol is linear in each slot, let us first argue
that

svol(vy, ..., cv4, ..., v,) = csvol(vy, ..., U4, 0p) (7.24)
for ¢ € R. If ¢ is a positive integer, this is clear geometrically; for ¢ = —1, again it is clear
geometrically that the volume of the associated parallelepipeds P(vq, ..., —v;,...,v,) and
P(vy,...,v5...,v,) is the same, but €(vy,...,—v;,...,0,) = —€(vy,...,0;...,v,). This

implies equation ([7.24)) for ¢ € Z and hence for ¢ € Q. Approximating a real number
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¢ € R by rational numbers ¢, and taking the limit of the equation svol(vy, ..., cov;, ..., v,) =
¢ svol(vy, ..., v, ..., v,) as for £ — oo yields equation for a general ¢ € R. The additivity
property

svol(vy, ..., v + U, .. v,) = svol(vg, ..., U5, .o, U,) F SVOL(UL, . UL Uy

follows from a geometric argument which is illustrated by the following picture for n = 2:
the area of the parallelogram P(v; + v}, vs is equal to the sum of the areas of P(vq,vy) and

P(vy,v9). >

V2

U1

v1 + V]

This shows that the signed volume svol is an alternating multilinear map, i.e., an element
of Alt"(R™;R). Since this vector space has dimension 1, the element svol must be a scalar
multiple of the non-zero element det € Alt"(R";R), i.e., svol = cdet for some ¢ € R. To

determine ¢, we evaluate both sides on the n-tupel (ey,...,e,), where {e;};=1 ., is the
standard basis of R". The determinant det(ey,...,e,) is the determinant of the identity
matrix and hence 1. The parallelepiped P(eq,...,e,) is the standard cube which has volume
1 and hence svol(ey, ..., e,) = vol(ey,...,e,) = 1. It follows that ¢ = 1, and hence for every
n-tupel (v, ..., v,) of vectors vy, ..., v, € R" we have

svol(vy, ..., u,) = det(vy, ..., v,).
Taking the absolute value of both sides we conclude the statement of Lemma [7.20] m

I think of an element w € Alt"(V;R) as a little machine that takes an input of vectors
v1,...,v € V and produces as output the number w(vy,...,v;) € R; this output depends
linearly on each v;, and permuting the input vectors changes the output by a factor of +1,
given by the sign of the permutation o € Si. This suggests that we can multiply a machine
w with k£ inputs and n with ¢ inputs to obtain a machine typically denoted w ® n with k + ¢
inputs by defining:

(w & 7’/)(1}1, e ,Uk_,_g) = w(vl, Ce ,Uk>7’](1)k+1, Ce ,?J]H_g).
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It is clear that w ® n is linear in each of its k + ¢ input slots, and changes by a factor of
sign(o) € {£1} when using a permutation o € Sy, to permute the k& + ¢ input vectors,
provided o belongs to the subgroup Sp x Sy C Sk If we interchange one of the vectors
vy, ..., U, with one of the vectors vgiq,...,vkss, there is no reason that the output just is
multiplied by —1. To produce an alternating multilinear map, we use the same method we
applied before by using a signed sum over all permutations.

Definition 7.25. For w € Alt"(V;R) and n € Alt*(V;R) their wedge product is the alter-
nating multilinear form w A 7 € Alt"™(V;R) defined by

1 .
(w A 77)<U1> s 7Uk+f) = W Z 81gn(0)w(vg(1), oo 7U0(k))77(vﬂ(k+1)7 <o 7/00("34‘2))'

O’ESkJr[

We note that for o € S x Sy C Ski¢ the summand

Sign(U)w(Ua(n, o ava(k)>77(va(k+1)a e 7va(k+€))
is equal to w(vy, ..., vE)N(Vks1, - - -, Vgse). In particular, summing over this subgroup of order
k0! we simply obtain k!llw(vy, ..., v)n(Vkt1, - .-, Vkre). This motivates the factor ﬁ in the

definition of the wedge product.

Lemma 7.26. (Properties of the wedge product).
1. Bilinearity:

Associativity: w A (N AE) = (wAN)AE

Graded Commutativity: wAn = (—1)*nAw forw € Alt*(V;R) and n € Alt*(V;R).

For any multi-index I = (iy,... i), ¢! = e A--- Net € AltF(V;R). In particular,
an element w € AltF(V;R) can uniquely be written as a sum

W= E Qi€ AN N et i, 4, € R.

Lemma 7.27. Let M be a smooth manifold and E — M a smooth vector bundle over M.
Then there is a smooth vector bundle Altk(E; R) — M whose fiber at a point p € M 1is
AltF(E;R).

We note that Alt'(E,;R) is the dual space E}, and Alt'(E;R) — M is the dual vector
bundle Ex — M. Like the construction of the dual vector bundle, the proof of the above
statement uses the Vector Bundle Construction Lemma [7.12

We recall that a 1-form on a smooth manifold M is a section of the cotangent bundle 7" M.
Noting that 7% M is equal to the vector bundle Alt'(TM;R), this suggests the following
generalization of 1-forms.
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Definition 7.28. Let M be a smooth manifold. A k-form or differential form of degree k on
M is a smooth section of the vector bundle Alt*(TM;R). The usual notation for the vector
space of k-forms on M is

QF (M) == T(M; Alt*(TM; R)).

How do we do explicit calculations with differential forms? To do calculations with linear
maps between vector spaces, it is often useful to choose a basis for the vector spaces involved.
Thinking of a vector bundle as a collection of vector spaces parametrized by points p € M, it
is natural to ask how to generalize the notion of “basis” from vector spaces to vector bundles.

Definition 7.29. Let £ — M be a smooth vector bundle of rank k. If U C M is an open
subset, a local frame for E over U is a collection {b'},—; . ; of smooth sections of E\y such
that {b),...,0F} is a basis of E, for each p € U.

-----

.....

smooth section of ;. Then for any p € U, the element s(p) € E, can be expanded in terms
of the basis {b'(p)} to obtain

s(p) = 'Z si(p)bi(p)  with s;(p) € R.

It is not hard to see that s;(p) is a smooth function of p, since s and b’ are smooth sections
of E/. Hence we can write the section s as a linear combination

of the sections b" whose coefficients s; are smooth functions U — R.

Example 7.30. Let M be a smooth manifold of dimension n, and let M D U 2 R?
be a smooth chart (i.e., (U, ¢) belongs to the maximal smooth atlas defining the smooth
structure on M). Let z',... 2" € C°°(U) be the component functions of ¢, i.e., ¢(p) =
(z'(p),...,2"(p)). Then the differentials dx,, ..., dz}} € T*M form a basis

7.5 Algebraic structures on differential forms

The goal of this section is to discuss the various algebraic structures on differential forms
and their compatibility.

Definition 7.31. (Pullback). Let M, N be smooth manifolds and F': M — N a smooth
map. Given a differential form w € QF(N), its pullback F*w € QF(M) is defined by

(F*w)p(v, ..y vg) 1= wyp(Fivy, ..., Foug) forpe M, vy,...,up € T,M.
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In more detail: the k-form F*w is a section of the vector bundle Alt*(T'M;R), and hence it
can be evaluated at p € M to obtain an element (F*w), in the fiber of that vector bundle
over p, which is Alt"(T,M;R). In other words, (F*w), is an alternating multilinear map

(F*w)p: T,M x -+ x T,M — R,

k

and hence it can be evaluated on the k tangent vectors vi,...,v, € T,M to obtain a
real number (F*w),(vi,...,v;). On the right hand side to the equation defining F*w,
the map F.: T,M — Tg@)N is the differential of F'. Hence the alternating multilinear

map We(p) € Altk(TF(p)N; R) can be evaluated on Fivy,..., F,u; to obtain the real number
wp(Fyvr, ..., Fuoy).

For k = 1, w € Q°(N) = C*(N) is a smooth function, and its pullback F*w is the
previously defined pullback of functions, simply given by (F*w)(p) = w(F(p)) for p € M.
We also previously defined the pullback of a 1-form w € Q'(N), and we showed that the
differentials are compatible with pullbacks in the sense that

d(F*f) = F*(df)  for f € C®(N).

Definition 7.32. (Wedge products of differential forms. For w € QF(M) and n €
QY (M), their wedge product w An € QFFE(M) is defined by

(WAN), = wy A € ALFTH(T,M; R) for p € M.
Lemma 7.33. The wedge product of differential forms has the following properties.
(i) Bilinearity:
(ii) Associativity:
wWAMAE =(wAn) ANz for differential forms w, n, & on a smooth manifold M.

(iii) Graded Commutativity:
wAn=(-D*nAw for w € QF(M) and n € Q°(M).

(iv) Compatibility with pullbacks: If F': M — N is a smooth map and w, n differential

forms on N, then
Fr(wAn) = (Frw) A (F'n).
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Proof. The wedge product of differential form is defined pointwise, i.e., the wedge product
of differential forms w € QF(M), n € QY(M) is defined by declaring for any point p € M
the element (w A n), € AltkM(TpM; R) to be the wedge product w, A 7, of the alternating
multilinear maps w, € Alt"(T,M;R) and 7, € Alt"(T,M;R). Tt follows that bilinearity,
associativity and graded commutativity of the wedge product for alternating multlinear
maps stated in Lemma ??7 immediately imply these properties for the wedge product of
differential forms.
To prove compatibility with pullbacks, let p € M and vy, ..., v4 € T,M. Then

(F™(w Am))p(ve, - - Vkepe)
:(w A T])F(p)(F*(Ul), ey F*(UkJrg))

:(WF(p) A ﬁF(p))(F*(U1)> sy F*(Uk-i-f))
1

:W Z <wF(P)(F*(UU(1))7 s 7F*('UU(Z)))(nF(m(F*(UJ(k—l—l))’ ceey F*(Ua(k+é)))
o 0ESk4e
1 * *

=T > (F (Vo) o) (F o (Vo(is1); - - - Vohis)
o 0ESk4e

(F"w)p A (F*n)p) (01, - -, Vkpr)
(F*w A F™'n)p(vi, ..., Vktr)

]

Definition 7.34. (Proposition/Definition). Let M be a smooth manifold. Then there
is a unique map d: QF(M) — Q¥ (M) called the de Rham differential with the following
properties:

(i) d is linear;

(ii) for f € Q°(M) = C>(M), the de Rham differential df € Q'(M) is the usual differential
of f;

(iii) d is a graded derivation, i.e., it satisfies the following “product rule with signs”:

dwAn) =dwAn+ (=1 w A dn. (7.35)

(iv) d* = 0.

Remark 7.36. The signs appearing in the graded commutativity of the wedge product as
well in the product rule for the de Rham differential are examples of the meta principle
known as Koszul sign rule, according to which a good way to deal with objects with an
integer degree (like differential forms) and signs, is to set up definitions such that permuting
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objects of degree k and { results in a sign of (—1)*:. This is satisfied for the wedge product
(for alternating multilinear maps or for differential forms). This is also the case for the
graded derivation rule (ii) above. We recall that a derivation of an algebra A is a linear map
D: A — A satisfying the product rule

D(a-b)=D(a)-b+a-D(b) for a,b € A.

We note that on the left hand side of this equation, as well in the first term on the right
hand side the symbols occur in the order D, a, b. By contrast, in the second summand
the objects a and D switch occur in the opposite order, which according to the Koszul
sign paradigm should involve the sign (—1)d8(P)dee(@) in a context where these objects have
“degrees” deg(D),deg(a) € Z. For example, in equation (7.35), the differential forms w, 7
have degrees deg(w) = k, deg(n) = ¢, and it is reasonable to declare the de Rham differential
d to have degree +1, since applying it to a differential form of degree k results in a form of
degree k + 1. This shows that the “graded derivation property” (ii) conforms to the Koszul
sign paradigm.

Lemma 7.37. (Additional Properties of the de Rham Differential).

1. (Compatibility with pullbacks). If ': M — N is a smooth map, and w € QF(N),
then d(F*w) = F*(dw).

2. (Local Formula for d). Let (U, ¢) be a smooth chart for an n-manifold M, and let
xl . a™ € C(U) be the local coordinate functions (the components of ¢: U — R™).
Then

d(fdz A~ Ada™) = df Ada A Adat =) :gdxi/\dx“/\---/\dxik
IZ
i=1

for fe C®U), iy,...,ix € {1,...,n}.

We remark that the collection of sections {dz™* A -+ A dz'*}; <., is a local frame for
the vector bundle Alt"(TM;R) restricted to U C M. Hence every k-form w € Q¥(U) =
I'(U; Alt*(TM;R)) can be written uniquely as linear combination

11 <<t

for functions f;, ;€ C*(U). In particular, the local formula for the de Rham differential
above allows us to calculate dw for any k-form w on U C M.

Lemma 7.38. Let F': R® — R™ be a smooth map and f dz* A --- Adz™ € Q"(R™). Then

F*(f dz' A -+ Ada™) = F*(f) det(dF) dx* A -+ A dx”
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Here det(dF): R" — R is the smooth function whose value at x € R™ is the determinant of
the differential dF,: R" — R™ of F' at the point x € R™; put differently, it is the determinant
of the Jacobian matrix of F' at x € R™.

Proof: homework.

7.6 Integration on manifolds

A smooth n-manifold is locally diffeomorphic to open subsets V' of R™, and we know to
integrate a smooth function f € C*°(U). More precisely, if we assume that

supp(f) := closure of {zx € U | f(x) # 0},

the support of f, is compact, the integral can be defined by

/Uf = lime(pi) vol(R;),

where U is divided into suitable small regions R; (e.g., small n-cubes) whose union covers
U, p; is some point chosen in R;, and vol(R;) denotes the volume of R;. The limit is taken
over increasingly fine subdivisions of U into regions R;. To make sense of integration over
manifolds, we need to understand how integration behaves under diffeomorphisms, namely
those coming from transition maps between charts. What we need is the statement of the
Change of Variables Theorem.

We won’t be proving this theorem, but before stating it, we would like to make its
statement plausible. We first consider the effect of a linear map F': R” — R"™ on the volumes
of parallelepipeds. Let vol(P(vy,...,v,)) be the volume of the parallelepiped spanned by
the vectors vy,...,v, € R". We recall that

vol(P(vy,...,v,)) = |det(vy,...,v,)]|

The image of P(vy, ..., v,) under the linear map F is the parallelepiped P(F'(v1), ..., F(v,)),
and hence

Vvol(F(P(vy,...,v,))) = |det(F(vy), ..., F(v,))].

We note that the matrix with column vectors (F(v1),..., F(v,)) is F'---V, where V is the
matrix with column vectors (vy, ..., v,). It follows that

det(F(vy),..., F(v,)) =det(F---V) = det(F)det(vy,...,v,),

and hence
vol(F(P(vy,...,v,))) = | det(F)| vol(P(vy, ..., v,)). (7.39)
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Now suppose that R" D> U LV cR s a diffeomorphism. Let p € U, and let
P(p;v1,...,v,) be the affine parallelepiped spanned by the vectors vy, . .., v, viewed as start-
ing at the point p; in other words,

P(p;vla"'yvn) :{p+zszZ|O§zz S 1}

=1

Then the image of P(p;vy,...,v,) under F' is no longer a parallelepiped, since F' is no longer
linear. However, near the point p the map F' is well-approximated by the linear map given
by its differential dF,: R® — R". Hence for small vy,...,v,, the image of P(p;vy,...,vy,)
under F' is close to the parallelepiped P(F(p);dF,(v1),...,dF,(v,)) and hence

vol(F(P(p;vi,...,u,))) =VOl(P(F(p); dEy(v1), ..., dFy(vy)))
=vol(dF,(v1),...,dEy(v,)))
=|det(dF},)|vol(P(vy,...,v,))
Let f: V — R be a smooth function with compact support. Let C;, ¢ € I be a collection
of small cubes covering U C R"”, and let p; € C; be the “lower left corner in C;”. Then the

images F'(C;) cover V and hence we can use this decomposition of V' to approximate the
integral of f over V as follows:

[ 1~ 1F @) vol(r ()

~Zf (pi))| det(dE},)| vol(C;)

/f )| det(dE,)]

Taking the limit as the size of the cubes approaches zero, these approximations are
become better and hence we conclude:

Theorem 7.40. (Change of Variables Theorem). Let R" D U LV CR bea
diffeomorphism and let f: V — R be a function with compact support. Then

/ f = / /)l det(dF).

We notice the similarly of the integrand of the integral over U with the pullback of
fdz* A~ ANdx™ € QY(V) via a map F: U — V which according to Lemma is given by
the formula.

F*(f do* A+ Ada™) = F*(f) det(dF) dz' A--- A da"

This suggests:
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Definition 7.41. Let U C R" be an open subset, and let f: U — R be a smooth function.
Let supp(f), the support of f, be compact (supp(f) is by definition the closure of the subset
{reU| f(x) #0}). This assumption guarantees that the usual integral [, fdz;...dz, is
finite. Then the integral of f dz* A--- Adx™ € Q"(U) over U is defined to be

Fdz" Ao Ada" fday .. (7.42)
/ /

More generally, any w € 2"(U) can be written uniquely in the form f dz' A --- A da™ for
f € C®(U). The support of f is equal to the support of w defined to be the closure of the
set {z € U | w, # 0}. Hence by the above equation defines the integral

/ weEeR for any w € Q"(U) with compact support.
U

It should be emphasized that despite the notional similarities of the integrand on both
sides of equation , the flavor of the objects on each side is quite different: on the right
hand side we are integrating over a function f, and the symbols dz; ...dx, are not strictly
speaking necessary — they are just a reminder which variables we are integrating over. By
contrast, on the left hand side, the integrand is an n-form on U. Note that permuting say
dr! and dx? on the left hand side, the n-form w = f da' A --- A dz™ is replaced by —w.
By contrast, permuting dz; and dxy on the right hand side doesn’t change the value of that
integral. It might seem that this is a problem, rendering the above definition of [;;w for
w € Q*(U) not well-defined. This in not the case: in order to evaluate [, w, you first have
to write w in the form f dz' A---Ada™ for f € C*(U), and then apply the definition above.

Corollary 7.43. (Corollary of the Change of Variables Theorem.) Let F: U — V be
a diffeomorphism between connected open subsets of R™, and let w € Q™(V') be a differential
form with compact support. Then

. 1 if det(dFy) > 0 for allx € U
Fro=er [ w, where €p = ‘
U 1% —1 ifdet(dF,) <0 forallx € U

We note that the assumption that F' is a diffeomorphism implies that det(dF},) # 0 for all
x € U. Since det(dF,) depends continuously on x € U, the assumption that U is connected
implies that either det(dF,) > 0 for all x € U, or det(dF,) < 0 for all z € U.

Proof. Writing w in the form w = f dx' A --- A dz™ we calculate:
/F*w:/F*(f dxl/\--~/\dx"):/F*(f)det(dF)dxl/\-n/\dx”
U U U
:/F*(f)det(dF)dxl...dxn:e/ F*(f)|det(dF)|dzy .. .dx,
U U

:GF/fdl‘l---dxn:eF/fd:tl/\-~~Ad:c":ep/w
v v v
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]

Definition 7.44. Let F': U — V be a diffeomorphism between open subsets of R”. Then
F is called orientation preserving if det(dF,) > 0 for all x € U, and orientation reversing if
det(dF,) <0 forallz € U.

In particular, Corollary implies that if F': U — V is an orientation preserving
diffeomorphism between open subsets of R™ (not necessary connected), then |, g B = fV w for
a compactly supported n-form w € Q™(V). If F is orientation reversing, then fU F*=— fv w.
We note that if U is not connected, then the restriction of F' to each connected component
of U is either orientation preserving or reversing. However, if F' is orientation preserving
on some component of U, and reversing on another, then F': U — V is neither orientation
preserving nor orientation reversing.

Let M be a smooth n-manifold, (U,, ¢,) a smooth chart, and w € Q" (M) whose support
supp(w) is compact and contained in U,. Then w can be pulled back via the diffeomorphism

R™ S ¢o(Ua) 25 Uy ¢ M

to obtain the n-form (¢,)*w € Q"(¢o(U,)). This n-form has compact support and hence
can be integrated:

/ (67)w € R. (7.45)
b (Ua)

Does this integral depend on the choice of the chart (Uy, ¢o)? Let (Ug, ¢5) be another smooth
chart of M such that supp(w) C Ug, and let F' be the transition map between these charts,
given by the composition

Sa(Ua NUs) —2s Uy N U5 —2 5(Un N Us).

Then ¢! = ¢gl o F, and hence (¢,")*w = (¢go0 F)w = F*(@;l)*w. This implies

/ (67w = / F* (65w
$a(UanUg) $a(UanUg)

i) o5 (U nUﬁ)(gbgl)*w F' is orientation preserving
B _f¢B(U mUﬁ)(qﬁgl)*w F is orientation reversing

(7.46)

These considerations show that the integral ((7.45)) depends on the choice of the chart used
up to sign.

Definition 7.47. (Orientations on smooth manifolds). Let Aj; be a smooth atlas (not
necessarily maximal) for a for smooth manifold M of dimension n > 0. An orientation for
Ajpr is a map

e: Ay — {£1}



7 SMOOTH VECTOR BUNDLES 140

such that the transition map ¢z o ¢!

- ' is orientation preserving if €(¢,) = €(¢p), and ori-
entation reversing otherwise. If e is an orientation for A;;, then —e is also an orientation
for Ay, called the opposite of €. An oriented smooth atlas is an atlas equipped with an
orientation. An oriented smooth n-manifold is a topological n-manifold M, n > 0 equipped
with a maximal smooth oriented atlas Ajy;. Not every smooth manifold M has an oriented
smooth atlas; if it does, then M is called orientable.

If M is a manifold of dimension 0, i.e., a discrete countable set, then an orientation for

M is a map e: M — {£1}.

Now we are ready to define the integral |’ yw € R of a compactly supported n-form
w € Q"(M) over a smooth manifold M of dimension n > 0 equipped with an orientation
given by a maximal oriented smooth atlas A,;. First we assume that supp(w), the support

of w is contained in the domain of a chart ¢: U —» ¢(U) C R” belonging to Ay;. In that

case we define
/ W= e(6) / (6~ w. (7.48)
M ()

We observe that this is independent of the choice of the chart (U, ¢). To see this, let (V,v) €
Ans be another chart with supp(w) C V. Let F' := 1) o ¢! be the transition map, and let
e(F) =1 (resp. e(F) = —1) if F is orientation preserving (resp. orientation reversing). Then
by definition of an oriented smooth atlas, the sign e(F") of the transition map F' is equal to
the product €(¢)e(e)) of the signs of the two charts involved. Hence

W [ e g o [ e e=dn [ @

In general, the assumption that supp(w) is compact guarantees that there are smooth
charts (U, ¢1), ..., (U, ¢r) belonging to the maximal oriented smooth atlas Aj; such that
supp(w) C Uy U - -+ U Uy.

Lemma 7.49. (Smooth partition of unity). Let K be a compact subset of a smooth
manifold M, and let K C Uy U---UUy, where Uy, ..., Uy are open subsets of M. Then there
exist functions \; € C°(M) such that

1. supp(\;) C U;, and

2. Zle Xi(p) =1 forpe K.

Applying the lemma to K = supp(w), allows us to write w € Q"(M) as a sum

k
w= E AW
i=1
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We remark that w, = Zle Ai(p)w, for p € K by construction of the functions \;; for p ¢ K

it holds since w, = 0 in that case. This allows us to define

k

/Mw ::Z/Ui Aiw, (7.50)

=1

where the integrals fUi A;w are defined using equation . It is straightforward to show
that the integral is independent of the choices made in definition, i.e., the choice of the charts
(U;, ¢;) and of the partition of unity {\;}.

If M is a manifold of dimension 0, equipped with an orientation e: M — {£1}, and
w € QY'(M) = C>(M) is a compactly supported function w: M — R, we define

/Mw = e(pw(p).

peEM

We note that this is a finite sum, due to the assumption that w is compactly supported,
which means that w(p) = 0 for all but finitely many p € M.

Our next goal is to extend the integration of forms from manifolds to manifolds with
boundary.

Definition 7.51. A topological n-manifold with boundary is a second countable Hausdorff
space M with a subspace OM C M, such that the pair (M, 0M) is locally homeomorphic to
the pair (H", 0H"), where H" C R™ is the halfspace

H" :={(x1,...,2,) € R" | 27 <0},

and OH" = {(0,zg,...,z,)} C H". In more detail, this means that there is a collection of
open subsets U, C M, a € A, covering M, and homeomorphisms

M > Uy —% 5V, C B suchthat  ¢o(Us NOM) =V, N (OH"). (7.52)

open open

Such a pair (Uy, ¢) is called a chart for (M,0M), and the collection the charts {(Us, ¢a)}
is called an atlas for (M,0M).

The requirement ¢, (U, NOM) = V, N (OH") for a chart (U,, ¢,) guarantees that ¢2, the
restriction of ¢, gives a homeomorphism

o
OM > U? — %, yo c gH" = R,

open open

In particular, OM is a topological manifold of dimension n — 1 with atlas {(U2, ¢2)}aea.
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Definition 7.53. (Smooth manifold with boundary.) Let (M,0M) be a topological
manifold with boundary. An atlas {(Ua, ¢a)aca for (M,0M) (in the sense of Definition [7.51])

is smooth if for any «, f € A the transition map

H* 5 ¢o(UsNUs) 2 UsNUs —2 ¢5(UaNUs) C H

open open

is smooth. This means that this map is the restriction of a smooth map defined on an open
subset of R"™ (unlike the transition maps for charts for manifolds without boundary, the
domain ¢, (U, NUpg) of the transition map above might not be an open subset of R"; it is an
open subset of H").

A smooth n-manifold with boundaryis a topological manifold with boundary 0 M equipped
with a maximal smooth atlas.

Definition 7.54. (The boundary of a smooth manifold). Let M be a smooth n-manifold
with boundary M, and with the smooth structure given by a smooth atlas Ay, = {(Ua, o) baca-
Then the homeomorphism ¢, : U, — V,, restricts to a homeomorphism
(5}
OM > U? — %, yo c gH" =R,

open open

where U2 := U, NOM and V2 := V, N OH". It is clear that {U},c4 is an open cover of
OM , and hence Agys := {(U2, ¢?)}aca is an atlas for OM, showing that M is a topological
manifold (0M is Hausdorff and second countable as a subspace of M which is Hausdorff and
second countable). This atlas is in fact smooth, since the transition map

¢G50 (¢2) 7" 2UINUY) — ¢5(UI N UY)

is the restriction of the smooth transition map ¢go¢," to ¢o (U, NUs) NOH™ = ¢2(UINUY)
and hence smooth. This equips the topological space M with the structure of a smooth
manifold.

An orientation on a smooth n-manifold M with boundary OM is defined exactly as in
Definition [7.47, namely as a maximal oriented smooth atlas for (M, dM). The only difference
is that now the atlas consists of charts (U,, ¢,) appropriate for manifolds with boundary as
spelled out in (|7.52)).

Let M be an oriented smooth manifold of dimension n > 1 with boundary dM and
let €: Apy — {£1} be the maximal oriented smooth atlas for (M,0M). Let Asp be the
associated smooth atlas for OM described in Definition [7.54, We recall that for every chart
(Ua, b)) € A, there is a chart (U2, ¢2), where U2 = U, N OM, and ¢? is the restriction of
¢o to U, NOM.
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Lemma 7.55. Let U, V be open subsets of H", and let F: U — V be a diffeomorphism
which restricts to a diffeomorphism F?: UNOH" — OH". Then det(dF,) and det(dF?) have
the same sign for any point p € U N OH.

Proof. Let p € UNOH". For i = 2,...,n, the tangent vector % € T,H" belongs to the
subspace T,0H" and hence F.(3%) = F2(:%) € T,0H". The tangent vector 52 € T,H" is
represented by a path v: (—e, ¢) — R™ D H" with y(¢) € H" for t < 0 and ~(t) ¢ H" for
t > 0; hence the same is true for the image F(y(t)) (this makes sense for 0 < t < € for a
sufficiently small € > 0, since F is the restriction of a map defined on an open neighborhood
of p). This implies that the first component of the tangent vector F*(%) is positive.

The vector F,(z%) is the i*" column vector of the Jacobian matrix dF, at the point p.

Hence the Jacobian matrix dF, has the following block matrix form:

>0 0
dF’P:<* dFB)7
p

where dF? is the Jacobian (n — 1) x (n — 1) matrix of F? at the point p. In particular,
det(F,) is a positive multiple of det(F?) which proves the lemma. O

Definition 7.56. (Induced orientation on the boundary.) Let M be an oriented
smooth manifold of dimension n > 1 with boundary OM and let e: Ay, — {1} be the
maximal oriented smooth atlas for (M,0M). Let Agy = {(U2,¢2)}aca be the associated
smooth atlas for M. Let €?: Agy — {£1} be the map defined by €?(¢2) := €(¢,). The
Lemma above shows that this is indeed an orientation for the smooth atlas Aga;.

Theorem 7.57. (Stokes’ Theorem). Let M be a smooth oriented manifold of dimension
n with boundary OM and let w € Q""*(M) be a differential form with compact support. Then

/dw:/ WM -
M oM

Proof. Let e: Ayy — {£1} be the maximal oriented smooth atlas for (M,0M). Using
partitions of unity it suffices to prove Stokes” Theorem in the case where the support of w
is contained in the domain U C M of a chart (U, ¢) belonging to the atlas A,;. Using the
chart (U, ¢) to compute the integral, we obtain

[ dw=cto) [ @ yav=eo) [ aw e =cto) [ an

where 7 := (¢™!)*w. Similarly, to calculate the integral [, w we use the chart (U?, %) to

obtain
| = [ (") o
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This can be simplified observing that ((¢7)™)*wjon = ((¢')*w)ye = nyve and hence

| w=cd) [ neo

Using that €(¢?) = €(¢) by the definition of the induced orientation on the boundary M of
the oriented manifold M, we conclude that it suffices to show the equality

/V iy = /V e (7.58)

The assumption that w has compact support implies that 1 has compact support, and hence
by Heine-Borel the support supp(n) is bounded, and consequently contained in the box

shaped subset
B:=[-R,0] X [-R,R] x --- x [-R,R] Cc H"

~
n—1

for sufficiently large R. From now on, we will be thinking of 7 as an (n — 1) form defined in
this box (extending it by zero outside its original domain V' C H"). Like any (n — 1)-form
on V C H" C R” the form 7 can be written as a linear combination

n:Zfidxl/\...d/x\i---/\dx",
i=1

where the coefficients f; are smooth functions on V| and as usual the hat over da’ indicates
that this term should be skipped. Restricting  to V¢ C 9H" yields zero for all but the
first summand of 7, since the restriction of dz! to JH" is trivial (since the restriction of the
coordinate function z' to OH" is trivial). Hence nyo = (fidzy A--- A dz™)e. Then

R R
/ Nyo = / (frdoy A -2 Nda™) o = / da? - / dx" f1(0,x, ..., z,). (7.59)
Vo |[ve —-R -R

To calculate the left hand side of (7.58)), we first compute dn using the graded derivation
property of the de Rham differential:

dn:dei/\dzcl/\...c@---/\dx”

i—1
8373

_Zaf’d Nz AL dat e A da"

(7.60)

=> (- 1)“8% A Ada"

T
— ox
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The third equality holds since the terms with ¢ # j vanish due to the multiple occurrence of
the factor dz’ in the wedge product. The last equality holds due to the graded commutativity
of the wedge product: the factor da’ is moved past the i — 1 factors dz', ..., dz""!; moving
the 1-form dx® past each one of these factors results in a minus sign.

Integrating the summand af tdxt A--- Adx™ of the decomposition of dn we obtain

3x A dx —/Baxidx A A dx
dfi
a B ax’

0 R R aFf
:/ d:cl/ da:2~~-/ dxn—fz..
"R "R g Ox
In the last line the symbols dx; are not 1-forms, but rather the usual calculus notation used to
indicate the integration intervals of the variables involved (e.g., LRR dx? indicates to integrate

the variable x5 from —R to R). The order in which we integrate over the variables zy, ..., =,
doesn’t matter, so let us evaluate first the integral over z;, i # 1. For x = (x1,...,x,) € B
we obtain
R
/ af _fz( ) xl_—
-R
:fi(xl, ey L1, R, Lit1y- - - ,.Tn) — fi(ZEl, ey Li1, —R, Lit1y-- - 71'”)

We note that the points (zy,..., 2,1, =R, Z;41, ..., x,) both belong to the boundary of the
box B. Since the support of 7 is in the interior of the box, the support of the coefficient
functions f; of n is also in the interior of the box. Hence the above integral vanishes for all
1=2,...,n

For 1 = 1, we have

0 afl . x1=0 _
/ 81:1 = fi@) 3 Zlgr = f1(0, 20, ..., 20) — fi(—R,22,...,2,) = f1(0,22,...,7,)

Putting these calculations together, we obtain

R R
/dn:/ de/ dx" f1(0, o, ..., x,)
v -R -k

which agrees the expression ([7.59) for the right hand side of ([7.58)). This completes the proof
of Stokes” Theorem. O
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