$S: X \longrightarrow \mathbb{R}$
\uparrow space of feeds

$$
\theta\left(d C_{n i t}(S)\right)
$$

action functional

Algebraic structure on Obs $=\underbrace{\left(\Gamma\left(x, \wedge^{0}(T \times[1])\right),-L_{d S}\right)}_{\text {BV -complex of poly vector fields }}$

- Aga (differential graded algebra) w,r,t, multiplication. given by the wedge product of poly vector fields
- Lie algebra structure $\left\{1,3: O b s \times 0 \mathrm{Ob}^{\mathrm{de}} \rightarrow \mathrm{Obs}\right.$ graded
τ schouten bracket
$u, v, w \in \Gamma(x, \tau X[1])$
$\{u, v\}:=[u, v]=L_{u} V \quad$ vector fields \quad note $:\{u,-\}$
so $\{$ has degree 0 . sod, \} hag degree +1

$$
\begin{aligned}
& \{u, f\}=L_{u} f=d f(u)=u f \\
& f \in c^{\infty}(x)
\end{aligned}
$$

extend $\left\{u_{1}-3\right.$ to polyvectur Gields $V_{1} \cap \ldots n V_{k}$ by requiving $\left.2 u_{1} \sim\right\}$ to be a graded densaton, é.g.

$$
\left\{u, v_{1} \wedge v_{2}\right\}=\left\{u_{1} v_{1}\right\} \wedge v_{2}+\frac{(-1) \mid\left\{u_{1}-3\left|v_{1}\right|\right.}{+1} v_{1} \wedge\left\{u_{1}, v_{2}\right\}
$$

extend to $\left\{u_{1} n \ldots, u_{n}, v\right\}$ by ${ }^{+1}$ considening $\left\{v, u_{1} n \ldots u_{n}\right\}$ extend to poly verter kelds in the
fiost slot by deñuation property.
properties: (a) $\{, 3$ is a graded lie brackat
of degree +1
(in parkicular, $\mid\{x,-3|=|x|+1$)
i.e. 'O (graded Skew-gunnetmy).

$$
\{x, y\}=-(-1)^{(l x+1)(1 y+1)}\{y, x\}
$$

(c) (graded) Jacobi relation:
$\{x,-3$ is a graded derivation w.r.t. $\{, 3$
i.e. $\{x,\{y, z\}\}=\{\{x, y\}, z\}+(-1)^{(\mid x+1)(1 y y+1)}\{y,\{x, z\}\}$.
(b) $\left\{x_{1}-3\right.$ is a graded derivation w.rt. . i.e.

$$
\{x, y \cdot z\}=\{x, y\} \cdot z+(-1)^{(x+1) y} y \cdot\{x, z\}
$$

(c) comparbibly of $\{, 3$ and differantial Q :

$$
Q\{x, y\}=\{Q x, y\}+(-1)^{|x|}\left\{x, Q_{y}\right\}
$$

Dete A dga A with a map $\{\}:, A \otimes A \rightarrow A$ is a Poisson algibra with bractul of deqree +1 if it satisfies properties (a), (b), (c).

Q: What kind object is d Crt (s)?
we know: $\theta(\underbrace{d \operatorname{Cr}(S)}_{\text {derived critical }})=\Gamma\left(X, \Lambda^{2}(T \times[T])\right)$

$$
\begin{aligned}
& \text { Craven } \\
& \text { pts }
\end{aligned}
$$

Recall: $V \rightarrow X$ vector bundle $O(V)=\Gamma\left(X, S^{\circ}\left(V^{v}\right)\right)$
Def. $A \mathbb{Z}$-graded manifold is a rfd X equipped with a z-graded vector boll. $V=\bigoplus_{k \in z} V_{k}$

$$
O(V):=\Gamma\left(x, \operatorname{Sym}^{0}\left(V^{v}\right)\right)
$$

where V^{v} and $\operatorname{Sym}^{\prime \prime}\left(V^{v}\right)$ are the vector boll operations that in each fiber are what we dad before.

$$
\begin{aligned}
& \Gamma\left(X, \Lambda^{0}(T x[\cap])\right)=\Gamma\left(X, \operatorname{Sym}^{m^{\prime}}(\tau \times[1])\right)=\Gamma\left(X, S_{y m}{ }^{\circ}\left(\left(T^{x} x\right]^{v}[1]\right)\right) \\
& =\Gamma\left(x, \operatorname{Sym}^{-1}\left(\left(T^{*} x[-\pi)^{v}\right)\right.\right.
\end{aligned}
$$

Upshot: $d E_{n} t(S)$ is the \mathbb{Z}-graded mid $\left.T^{*} \times[-1] T^{\prime \prime} \times[-1]\right) \begin{gathered}\text { shifted } \\ \text { cofemgith } \\ \text { bell }\end{gathered}$
Recall:

$$
\begin{aligned}
\operatorname{Sym}^{\prime}(V)=\operatorname{Sym}_{m}^{\prime}\left(V^{e v} \oplus V^{\text {odd }}\right) & =\operatorname{Sym}_{m^{\circ}}\left(V^{e v}\right) \otimes \operatorname{Sym}_{m}\left(V^{\text {odd }}\right) \\
& =S^{\circ}\left(V^{e v}\right) \otimes \Lambda^{*}\left(V^{\text {odd }}\right)
\end{aligned}
$$

Shill missing: The differential $Q=-l_{d s}$
algebraically: $Q: O\left(T^{*} \times[-1]\right) \circlearrowleft$ derivation of geometrically: vectorfeld of degree +1
Q: Is this a Hamittomian vectorfeld, ie? $Q=X_{H}=\{H,-\} \quad$ for some funckon $H \in O\left(T^{*} x_{1-1}\right)$
A: Yes, in fact $Q=\{S,-\}$, recall: $Q:=-L_{d s}$
sustices to check
$\operatorname{drg}+1$
$\{5, u\}$ for $u \in O\left(T^{*} \times[-1]\right)$
2 vector held

$$
\{S, u\}=-\{u, S\}=-L_{u} S=-d S(u)=Q(u)
$$

Quanturn ohservablez
classical porsadigm: only helds "in nature" are $\phi \in(\tilde{n})(S)$ quantom paractigm (Fepman): any helol is possisble, but $\oint \notin C_{n}$ 't (s) is less lokaly. Cartoon of a ployicics experioned.

When quartern effects are There, the same experiment leads to different results $f(\phi)$. What physicists ore interested in are expectation values $\langle f\rangle=\underset{\text { average of } f(\phi)}{\text { over many }}$ over mary experiments.

