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EQUIVARIANT FACTORIZATION ALGEBRAS:

AN ∞-OPERADIC APPROACH

Abstract

by

Laura Josephine Wells Murray

Factorization algebras are a mathematical tool for modeling the observables of

field theories. In this dissertation, we consider two particular types of factorization

algebras: G-equivariant factorization algebras on a model space M , where G is a

group acting on M ; and factorization algebras on a site of manifolds which locally

look like M and with geometric structure encoded by the G-action. Our main result is

that the (∞, 1)-categories of these factorization algebras are equivalent. To show this,

we formulate an alternative, categorical description of the locality (or descent) con-

dition that factorization algebras satisfy, and show that this agrees with the original,

more geometric descent condition. We then generalize the definition of factorization

algebras to the ∞-operadic setting, and utilize higher algebraic techniques to prove

the comparison result. One of the motivations for this new∞-operadic perspective is

the ability to use these general results in future work involving parameterized families

of factorization algebras.
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CHAPTER 1

INTRODUCTION

1.1 Historical background

Quantum field theories, introduced in the 1920’s, are used to great predictive

success by physicists, but a precise mathematical description of them remains elu-

sive. One mathematical approach to their description was proposed by Segal in the

1980’s. Inspired by the path integral approach of physicists (which, however, has

measure-theoretic issues which make it mathematically ill-defined), Segal abstracted

important properties that the path integral satisfies and formulated these as a set

of mathematical axioms that would define a field theory. In this approach, called

the functorial field theory approach, a field theory is defined to be a functor from a

bordism category (whose objects model the possible spacetimes on which the theory

can be formulated) to a category of algebraic data (whose objects model the Hilbert

spaces of observables of the field theory on the respective spacetimes). This functorial

assignment must satisfy certain multiplicative and gluing conditions, which capture

the locality of the field theory.

In the years since Segal formulated this axiomatic framework, these functorial

field theories have sparked independent mathematical interest, and have been stud-

ied and developed in various directions: they are the object of study in the cobordism

hypothesis, and there are various classification results relating them to classical topo-

logical objects and structures (for instance, the categories of topological field theories

and En-algebras are equivalent).[9, 15]
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If one wants these functorial field theories to encode the information of field

theories relevant in physics, one would want to be able to incorporate geometric

structure into this framework. In physics spacetime is usually taken not to be simply

a topological space or even a smooth manifold; usually one is interested in a spacetime

that includes more geometric structure, such as a metric or a conformal structure.

Not only is incorporating geometric structure interesting in terms of physical mo-

tivation; there are also interesting classification questions involving these geometric

field theories. One particular classification of interest for this project comes from

the Stolz-Teichner program. They consider what are called twisted-super-symmetric

Euclidean functorial field theories; this involves equipping the objects and morphisms

in the bordism category with a supersymmetric Euclidean structure, and further gen-

eralizing to what they call twisted field theories (see the survey paper [16] for more

details). They have the following classification of these objects:

Theorem 1.1. [16], [8] For X a smooth manifold, considering concondance classes

of degree n-twisted supersymmetric (of dimension 0|1 and 1|1, respectively) Euclidean

field theories, one has the natural group isomorphisms:

0|1-EFTn[X] ∼=


Hev
dR(X), n even

Hodd
dR (X), n odd

1|1-EFTn[X] ∼= KOn(X)

Inspired by this, they conjecture:

Conjecture 1.2. [16] There is an isomorphism 2|1-EFTn[X] ∼=TMFn(X), compati-

ble with the multiplicative structure.

Introducing geometric structure into the functorial field theory framework is a

subtle and nuanced matter. On the bordism side, issues arise with regard to the

2



gluing data necessary for the composition of bordisms to respect the geometric struc-

ture. In the non-topological case, there are also issues involving the identity for this

composition: there is no cylinder of length zero. Stolz-Teichner address these prob-

lems by equipping the objects and bordisms with collars, where the collars also carry

the geometric structure in question, and gluing then involves matching up the geo-

metric structure on the respective germs of collars in a compatible way–this involves

carrying around a great deal of extra data.[16] On the algebraic side, there are also

difficulties when one moves to non-topological functorial field theories: it is not clear

what the appropriate choice of target category is in this case. The upshot is that it

is difficult to construct physically meaningful, geometric (non-topological) examples

in the twisted-functorial field theory perspective: even if one knew what axioms one

wants such a field theory to satisfy, describing the categories involved and defining

explicit functors and natural transformations is difficult. These difficulties make re-

solving the above conjecture especially challenging. One step towards further work in

that direction would involve constructing some test case examples of 2|1-EFT; given

the above difficulties, however, this has proved a challenging task.[16]

Switching perspectives, another approach to mathematically modeling field theo-

ries is that of factorization algebras. These were were first introduced by Beilinson-

Drinfeld in 2004 (under the name of chiral algebras, in the setting of algebraic

curves).[2] They were further developed by Costello-Gwilliam in 2016 for the case of

manifolds; it is this framework that we will use.[3, 4] Factorization algebras are also

functors from a geometric category (subsets of space time) to an algebraic category

(encoding the observables of the field theory living on that subset). This approach

has the advantage of being more closely related to physical examples: for exam-

ple, Costello-Gwilliam have showed how to construct explicit factorization algebras

modeling perturbative quantum field theories.[3]

The factorization algebra perspective is related to the functorial field theory per-
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spective: for instance, Scheimbauer has shown how to construct a fully extended

topological field theory from a locally constant factorization algebra.[15] Additionally,

and of special interest for the geometric, non-topological case, Dwyer-Stolz-Teichner

have developed a construction that takes a factorization algebra (with a suitable ge-

ometric structure, G, to be described in detail later) and creates from it a twisted (of

the same geometric structure, G) functorial field theory.

The current project is motivated by this relationship outlined by Dwyer-Stolz-

Teichner. Given that G-twisted field theories can be obtained from G-factorization

algebras, we would like to study the latter as a tool that can be used to help gener-

ate examples of physical interest of the former. Further, we will show that there is

an alternative perspective on the G-factorization algebras that only depends on the

‘local’ data of how the symmetry group acts on subsets of the spacetime manifold.

Putting to use the fact that factorization algebras have a ‘local-to-global’ structure

(coming from what is called the descent axiom), it suffices to describe this local model

of the factorization algebra to obtain interesting ‘global’ examples of geometric fac-

torization algebras. More precisely, we consider G-structured manifolds which are

obtained by gluing open subsets of a model manifold M together via the action of

a group G on M . In such a case, one expects that the local-to-global axiom for a

factorization algebra should allow one to construct a G-factorization algebra from a

G-equivariant factorization algebra on M . The goal of this work is to put this intu-

ition on rigorous footing. Examples coming from equivariant factorization algebras

(in the sense of Costello-Gwilliam) could then be transported into the functorial field

theory framework (via the work of Dwyer-Stolz-Teichner) to obtain examples to test

the classification conjectures of the Stolz-Teichner program.
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1.2 Summary of contents

In chapter 2 we first review the usual notion of an equivariant factorization alge-

bra on a manifold M , based on the framework of Costello-Gwilliam.[3, 4] We then

introduce a generalized, geometric version of the category of factorization algebras,

whose objects live on a site of manifolds equipped with a rigid geometric structure

given by a group action on a model space. In chapter 3 we develop a categorical

description of the descent axiom for factorization algebras, and show this is equiv-

alent to the original, more geometrically motivated descent axiom in [3, 4]. Using

this more categorical version of the descent axiom, in chapter 4, we translate the

previous versions of factorization algebras into the∞-operad or symmetric monoidal

∞-category framework developed by Lurie.[10] We review general background for

the∞-operad perspective in Appendix A. In our case, we obtain (∞, 1)-categories of

G-equivariant factorization algebras and generalized G-factorization algebras. Higher

algebra techniques relate these two (∞, 1)-categories; we review the background for

these techniques in Appendix B, Appendix C and Appendix D. In chapter 5 we show

how imposing the descent condition gives an equivalence of the (∞, 1)-categories:

Theorem 1.3. There is an equivalence of (∞, 1)-categories between the category of

G-equivariant factorization algebras on M , FacGM , and the category of G-factorization

algebras, GFac.

In future work, we will generalize these results to the smooth setting, where

we will consider smoothly G-equivarant factorization algebras on M , and smooth

families of G-factorization algebras. Doing this will utilize the flexibility of the ∞-

operad framework as it will involve adapting the ∞-operad structure to one that

incorporates the parameterizing category. Having formulatated the previous result

in this suitably general framework, the hope is to naturally obtain a smooth version

of the comparison result:
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Conjecture 1.4. The (∞, 1) categories GFacfam and FacG,famM are weakly equiva-

lent.
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CHAPTER 2

BACKGROUND DEFINITIONS

In section 2.1, we recall the definition of factorization algebras as developed by

Costello-Gwilliam [3, 4]. We then develop a generalized, geometric version of factor-

ization algebras in section 2.2, which are of interest to us as relating to the twisted

field theories of Dwyer-Stolz-Teichner, see [16].

2.1 G-equivariant factorization algebras on M

2.1.1 Factorization algebras on M

We start by reviewing the basic notion of a factorization algebra over a fixed

manifold M , as presented in [3, 4]. This encodes the data of the observables of a

given field theory over the manifold M .

In what follows, let M be a smooth n-manifold.

Definition 2.1. The multicategory Open(M) consists of the following data:

� objects: open subsets U ⊂M

� multi-morphisms: for open subsets U1, ..., Un, V ⊂M

Open(M)(U1, ..., Un;V ) :=


i, inclusion map, if U1, ..., Un ⊂ V are disjoint

∅, else

We view the symmetric monoidal category of cochain complexes, Ch, as a mul-

ticategory in the standard way, using the monoidal structure: for C1, ...Cn, D ∈ Ch

define the multimorphism set to be Ch(C1, ..., Cn;D) := Hom(C1 ⊗ · · · ⊗ Cn;D).
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Definition 2.2 ([3], Ch. 3, Defn 1.2.2). Let M be an n-manifold. A (homotopy

multiplicative) pre-factorization algebra on M is a multicategory functor

F : Open(M)→ Ch.

Note that the multicategory structure gives what are called the structure maps of

the factorization algebra:

F(U1)⊗ · · · ⊗ F(Un)→ F(V )

for disjoint U1, ..., Un ⊆ V . These are associative with respect to inclusions; i.e. for

disjoint Ui1, ..., Uij ⊂ Vi and disjoint V1, ..., Vk ⊂ W , the following diagram commutes:

(F(U11)⊗ · · · ⊗ F(U1j))⊗ · · · ⊗ F(Ukl)

F(V1)⊗ · · · ⊗ F(Vk) F(W )

This comes from forgetting the intermediate inclusions, as pictorially represented

below:
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WV1

V2

U11

U12

U21

F7−−−−→
(F(U11)⊗F(U12))⊗F(U21)

F(V1)⊗F(V2) F(W )

Figure 2.1. Example of associativity property of the structure maps.

A factorization algebra is a pre-factorization algebra which is a homotopy cosheaf

with respect to a certain type of cover, called Weiss covers.

Definition 2.3 ([3], Ch. 6, Defn 1.2.1). A Weiss cover U = {Ua} of U is a cover

of U such that for any finite set of points S ⊂ U , there exists a Ua ∈ U such that

S ⊂ Ua.

Example 2.4. Consider the interval [b, c] ⊂ R. As an example of a Weiss cover of

[b, c], take Ua := [b, c] \ {xa}, where xa ∈ [b, c].

Definition 2.5 ([3] Ch. 6, Defn 1.3.1). A factorization algebra on M is a pre-

factorization algebra on M , F , which satisfies the following conditions:

(i) Multiplicative axiom: For disjoint U1, ..., Un ⊂M , the structure map

F(U1)⊗ · · · ⊗ F(Un)
∼−→ F(U1 t · · · t Un)

is a weak equivalence.
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(ii) Descent axiom: For any Weiss cover U = {Ua} of an open subset U ⊆M ,

Č(U;F)
∼−→ F(U)

is a weak equivalence, where Č(−;−) denotes the Čech complex:

Č(U;F) := hocolim
(⊕

a0

F(Ua0)⇔
⊕
a0,a1

F(Ua0a1) · · ·
)

where Ua0a1 := Ua0 ∩ Ua1 .

Remark 2.6. To see the physical motivation for these axioms, it is helpful to consider

the concrete case of one of the simplest examples of a classical field theory, scalar field

theory (i.e. a field theory where the fields are functionals whose value is invariant

when measured on different inertial frames related by a Lorentz transformation).

Consider the scalar field theory where the fields on an open subset U are given by

E(U) := C∞(U). The simplest field theory would be the one with action functional

identically zero, S ≡ 0, so all of the fields satisfy the Euler-Lagrange equations:

EL(U) = C∞(U).

The classical observables on U should be thought of as (heuristically) being func-

tions on this space of solutions to the Euler-Lagrange equations: we denote the

classical observables by Obscl(U) = C∞(EL(U)) = “Γ(C∞(U))”. We still have to

make sense of what we mean by the ‘functions’ on C∞(U), “Γ(C∞(U))” (because

C∞(U) is in general an infinite dimensional vector space). We will discuss this issue

more in the following remark; but for the moment, take the above as a heuristic

set-up to motivate the factorization algebra axioms.

If we have U ⊂ V , then we would get a map from EL(V ) → EL(U), by taking

fields that satisfy the Euler-Lagrange equation on V , and restricting them to U .

Then considering functions on these, C∞(−) (a contravariant functor), one gets a

10



map in the other direction: Obscl(U)→ Obscl(V ). This is the motivation for defining

pre-factorization algebras to be covariant functors.

To see the physical motivation for the multiplicative axiom, consider two disjoint

open subsets U1, U2 ⊂M . Then solutions to the Euler-Lagrange equations on U1tU2

will simply be pairs of solutions on each separate Ui. This gives:

C∞(EL(U1 t U2)) = C∞(EL(U1)× EL(U2))

' C∞(EL(U1))⊗̂C∞(EL(U2))

where ⊗̂ denotes a suitable completion of the tensor product (e.g. the completed

projective tensor product).

The descent axiom is motivated by the fact that field theories satisfy a ‘locality’

condition: knowing the observables on a collection of smaller open subsets of a space

U , one should be able to ‘glue’ those together to acquire the observables on the whole

of U . This gives general motivation for considering factorization algebras to be a type

of cosheaf.

Remark 2.7. What is the motivation for defining factorization algebras as homotopy

cosheaves with respect to Weiss covers specifically? Continuing to look at the example

of the classical scalar field theory in the above remark, let’s now zoom in to what we

mean by “Γ(C∞(U))”.

If V is a finite dimensional vector space, then

Γ(V ) := polynomial functions on V

=
∞⊕
k=0

{polynomial functions of degree k}

=
∞⊕
k=0

Symk(V ∗)

=: Sym(V ∗)
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When we move to the case of Γ(C∞(U)), if we take as a first attempt at a defini-

tion:

Γ(C∞(U))“ := ”Sym(C∞(U)∗)

= Sym(Homcontin.(C∞(U),C)),

then we get the symmetric algebra of the space of compactly supported distributions

on U .

Knowing that we want to be able to generalize this description of the observables

to the quantum level (and also to interacting field theories), we want to replace the

space of compactly supported distributions by something ‘smaller’. More specifically,

at the quantum level, in order to define the BV-Laplacian, one needs a degree +1

pairing on linear observables (given by multiplying the linear observables and then

integrating over U). This multiplication does not make sense for distributions: one

needs to replace the distributional linear observables with smooth linear observables

(or ‘smeared observables’).

C∞c (U) ↪→ C∞(U)∗

This cosheaf gives homotopically equivalent cochain complexes to the cosheaf of com-

pactly supported distributions, making it a suitable substitute, even at the classical

level. See Chapter 4, Section 2 (specifically Lemma 2.1.1) of [3] for more details.

Taking C∞c (U) as the suitable substitute for the space of distributions, we define:

Γ(C∞(U)) := Sym(C∞c (U))

=
∞⊕
k=0

Symk(C∞c (U)).

Recall that Symk(C∞c (U)) = (C∞c (U)⊗k)Σk , the coinvariants of the tensor algebra

under the symmetric group, where (⊗k) denotes a suitable completed tensor product
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(depending on the choice of target category; for example, the completed projective

tensor product or the completed bornological tensor product). Coinvariants can be

identified as a colimit:

Symk(C∞c (U)) = (C∞c (U))⊗kΣk
= colim∗//Σk

(
∗ //Σk

(C∞c (U))⊗k−−−−−−→ V ect
)

We will show that C∞c (−)⊗k is a cosheaf with respect to Weiss covers. Then we

will use the above description of Symk(C∞c (U)) to show that Symk(C∞c (−)) is also

a cosheaf with respect to Weiss covers.

To do this, we will first show that C∞(−)⊗k is a sheaf with respect to Weiss covers;

sheaves are contravariant, and taking functions with compact support is covariant;

taking functions with compact support, C∞c (−)⊗k, we will get a cosheaf with respect

to Weiss covers.

Take a cover U = {Ua ↪→ U}a∈A of U , remaining agnostic about what type of

cover (ordinary or Weiss) this is for the moment. For C∞(−)⊗k to be a sheaf with

respect to this cover, we would need:

C∞(U)⊗k
'?−→ eq

(⊕
a0

C∞(Ua)
⊗k ⇒

⊕
a0,a1

C∞(Ua0a1)
⊗k
)

What conditions on the cover U give this desired isomorphism in the sheaf condi-

tion?

Using the fact that we’re dealing with the completed tensor product, note that

C∞(Ua)
⊗k = C∞(Ua × · · · × Ua),

C∞(Ua0a1)
⊗k = C∞(Ua0a1 × · · · × Ua0a1) = C∞((Ua0 × · · · × Ua0) ∩ (Ua1 × · · · × Ua1)).

We can translate this problem into a question about the sheaf of smooth functions,

C∞(−), which we know is a sheaf with respect to ordinary covers: i.e. for {Ua×· · ·×
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Ua}a∈A an ordinary cover for U × · · · × U , then we have the identification:

C∞(U×· · ·×U)
'−→ eq

(⊕
a0

C∞(Ua0×· · ·×Ua0)⇒
⊕
a0,a1

C∞((Ua0×· · ·×Ua0)∩(Ua1×· · ·×Ua1))
)

What does it mean for {Ua×· · ·×Ua}a∈A to be an ordinary cover of U ×· · ·×U?

Given any point x = (x1, ..., xk) ∈ (U × · · · × U), then x must land in some element

of the cover; i.e. x1, ..., xk ∈ Ua for some Ua in U. This is precisely what it would

mean for U to be a Weiss cover for U .

So C∞(−)⊗k is a sheaf with respect to Weiss covers. We claim that C∞c (−)⊗k is

a cosheaf with respect to Weiss covers. For more details behind this, see [3] (Ch. 6,

Thm 5.2.1; Appendix A, section 4.4; Appendix B section 7.2). Now we want to use

this to show that Obscl(−) is in turn a cosheaf with respect to Weiss covers.

Symk(C∞c (U)) = colim∗//Σk

(
(C∞c (U))⊗k

)
' colim∗//Σk

(
colim·⇔:

(⊕
a0

C∞c (Ua0)
⊗k ⇔

⊕
a0,a1

C∞c (Ua0a1)
⊗k
))

' colim·⇔:

(
colim∗//Σk

(⊕
a0

C∞c (Ua0)
⊗k ⇔

⊕
a0,a1

C∞c (Ua0a1)
⊗k
))

' colim·⇔:

(⊕
a0

(C∞c (Ua0))
⊗k
Σk
⇔
⊕
a0,a1

(C∞c (Ua0a1))
⊗k
Σk

)
= colim·⇔:

(⊕
a0

Symk(C∞c (Ua0))⇔
⊕
a0,a1

Symk(C∞c (Ua0a1))
)

Thus we get that it is precisely with respect to Weiss covers that Symk(C∞c (−)),

our model for the observables in a classical scalar field theory, satisfies the descent

condition; thus we take Weiss covers to be the appropriate notion of cover in the

definition of the descent axiom for factorization algebras.

In more abstract language, this motivating example is a case of the following
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more general motivation: for any topological space X, one can consider the Ran

space Ran(X) of all non-empty finite subsets of X. One can put an interesting

topology on this space Ran(X); see section 5.5.1 of [10] for more details. It turns

out that ordinary covers of Ran(X) for this topology come from Weiss covers on the

original space X.

2.1.2 Some examples

Example 2.8. Factorization algebra on R: Let A be an associative algebra. We can

construct a factorization algebra on R as follows. Define

F((i, j)) := A

for any interval (i, j) ⊂ R.

Given two open, disjoint subsets (i′, j′), (i′′, j′′) ⊂ (i, j) (in other words, a triple

of intervals with i < i′ < j′ < i′′ < j′′ < j, as illustrated below), the structure map

coming from the inclusion (i′, j′) t (i′′, j′′) ↪→ (i, j) is defined by the multiplication

map A⊗ A µ−→ A.

This is an example of a locally constant factorization algebra.

Definition 2.9. A locally constant factorization algebra is a factorization algebra F

such that for any U ⊂ U ′ where U is a deformation retract of U ′, F(U)
∼−→ F(U ′) is

a weak equivalence.

It turns out that, conversely, a locally constant factorization algebra on R deter-

mines an E1-object in the target category of the factorization algebra (i.e. a weakly

associative algebra). In fact, this generalizes to higher dimensions, as shown in the

following classification result.
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i′ j′ i′′ j′′

i j

F7−−−−→

a⊗ b⊗ c ∈ A⊗ A⊗ A

ab⊗ c ∈ A⊗ A

abc ∈ A

Figure 2.2. Example of inclusions for a locally constant factorization
algebra on R.

Theorem 2.10 ([10], Thm 5.4.5.9). En-algebras are equivalent (as (∞, 1)-categories)

to locally constant factorization algebras on Rn.

Example 2.11. Factorization algebra on S1: Again, let A be an associative algebra.

Identifying the circle as S1 = [0, 1]/0∼1, define a factorization algebra F as follows.

For any interval (b, c) ⊂ S1, take

F((b, c)) := A.

To evaluate F on the whole circle, we use the descent axiom. Take the Weiss cover

on S1 given by

U = {Ua := [0, 1] \ {xa}|xa ∈ [0, 1)}.

Then

F(S1)
∼←− hocolim

(⊕
a0

F(S1 \ {xa0})⇔
⊕
a0,a1

F(S1 \ {xa0 , xa1}) · · ·
)

' hocolim
(
A⇔ A⊗ A · · ·

)
' Tot

(
A⇔ A⊗ A · · ·

)

This is the Hochschild chain complex associated to A. (See [5], Cor 5.)
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Example 2.12. Costello-Gwilliam [3, 4] show how to construct factorization algebras

from perturbative QFT; topological examples, such as perturbative Chern-Simons

theory, give locally constant factorization algebras.

2.1.3 G-equivariance

Field theories that arise in physics often involve symmetries of the physical system.

One of the ways to implement this in terms of the observables of the physical system

is to look at equivariant factorization algebras, where the spacetime manifold M is

equipped with an action by a group G, and this G-action is required to be compatible

with the factorization algebra structure as described in the following definition.

Definition 2.13 ([3], Defn 7.1.1; [5], Defn 18). Let G be a group acting on M :

G×M →M . A G-equivariant factorization algebra on M is a factorization algebra

F : Open(M)→ Ch

together with quasi-isomorphisms

σUg : F (U)→ F (gU)

for every g ∈ G and every U ⊆M , which satisfy the following conditions:

(i) σ1 = id

(ii) σUgh = σhUg ◦ σUh : F(U)→ F(ghU)

(iii) the σi are compatible with the structure maps of the factorization algebra, i.e.

squares of the following form commute:

F(U1)⊗ · · · ⊗ F(Un) F(gU1)⊗ · · · ⊗ F(gUn)

F(V ) F(gV )

'

'
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Alternatively, one can think of G-equivariant factorization algebras as being fac-

torization algebras over a multicategory OpenG(M) defined as follows:

Definition 2.14 ([3], Defn 7.2.1). Let M be a manifold with a group G acting on it.

Then OpenG(M) is the multicategory (i.e. colored operad) with objects the opens in

M and multimorphism sets given by

OpenG(M)(U1, ..., Un|V ) = {(g1, ..., gn) ∈ Gn|∀i, giUi ⊂ V ;∀i 6= j, giUi ∩ gjUj = ∅}.

Definition 2.15. A G-equivariant factorization algebra on M is a multicategory

functor

F : OpenG(M)→ Ch

which satisfies the following conditions:

(i) Multiplicative axiom: For disjoint U1, ..., Un ⊂M , the structure map

F(U1)⊗ · · · ⊗ F(Un)
∼−→ F(U1 t · · · t Un)

is a weak equivalence.

(ii) Descent axiom: For any Weiss cover U = {Ua} of an open subset U ⊆M ,

hocolim
(⊕

a0

F(Ua0)⇔
⊕
a0,a1

F(Ua0a1) · · ·
)
∼−→ F(U)

is a weak equivalence.

Lemma 7.2.2 of [3] shows that 2.13 and 2.15 are equivalent. We will use the notion

of G-equivariant factorization algebras as maps out of the multicategory OpenG(M)

for our work.

Example 2.16 ([5], Propn 21). If G is a discrete group and acts properly and

18



discontinuously on M , then G-equivariant factorization algebras on M are equivalent

to factorization algebras on M/G.

Example 2.17 ([5], Propn 22). Let q : R→ S1 = R/Z be the universal cover of S1.

Locally constant factorization algebras on S1 are equivalent to Z-equivariant locally

constant factorization algebras on R. If F is a locally constant factorization algebra

on S1, q∗(F) is the corresponding Z-equivariant locally constant factorization algebra

on R.

Recall that by 2.10 locally constant factorization algebras on R are equivalent to

E1-algebras. Also, the Z-equivariance gives us a map:

σ1 : 1∗(q∗(F))
'−→ q∗(F).

Using this and the canonical equivalence coming from the locally constant property

of F , we get the following self-equivalence:

mon : q∗F ' 1∗(q∗F)
σ1−→ q∗F .

This is called the ‘monodromy’ of F .

Then [5], Cor 4, gives us

Facl.c.S1 ' Aut(E1 − Alg)

where the right side is the∞-category of E1-algebras equipped with self-equivalences.

Using a similar argument, Facl.c.S1×S1 is equivalent to the category of E2-algebras

equipped with commuting monodromies (i.e. self-equivalences).

Example 2.18 ([7], Ch. 6). The βγ-system of mass m gives the following factoriza-
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tion algebra:

Obsq(U) :=
(
Sym(Ω1,∗

c (U) [1]⊕ Ω0,∗
c (U) [1]) [~] , Q+ ~∆

)
,

where U is an open of C, Q = ∂̄ −mdz̄, ∂̄ is the Dolbeault differential and ∆ is the

BV Laplacian. This is an example of a R2-equivariant factorization algebra.

Example 2.19 ([3], Ch. 4, Propn 3.0.3). If F is a locally constant smoothly trans-

lation invariant factorization algebra on R valued in vector spaces which corresponds

to the observables of a free scalar field theory on R with mass m, then the associative

algebra given by F((0, 1)) = A is the Weyl algebra. The smooth translation action

gives a smooth map R → Aut(A); differentiating this map and evaluating on the

basis element gives the Hamiltonian of the field theory.

As an additional connection to physically motivated examples, note that Costello-

Gwilliam show in general how unital, S1-equivariant, holomorphically translation

invariant pre-factorization algebras on C, valued in differentiable vector spaces (with

some additional assumptions), give vertex algebras ([3], Thm 2.2.1).

2.2 G-factorization algebras

Inspired by the fact that factorization algebras are built with a local-to-global

structure (the descent axiom), rather than simply looking at factorization algebras

on open subsets of a fixed manifold, one could look at factorization algebras that

live on a site of manifolds equipped with a geometric structure that can also be

described locally. In this dissertation, we will be looking at the particular case where

a rigid geometric structure on the manifolds in question is given by the action of

a group G on a model space M : we want to consider manifolds which locally look

like M and whose transition functions are given by the G-action. We denote this

pair (M,G) =: G; before defining this new version of G-factorization algebras, we
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define the site of manifolds with G-structure which these factorization algebras will

live over. This definition comes from the G-bordism categories in [16].

2.2.1 GMan

Let Mn be a manifold and G a group with a left action on M : G×M →M .

Definition 2.20. The category GMan consists of:

� objects: manifolds Xn with G := (G,M) structure, i.e. a maximal atlas of

charts:

{X ⊃ Ui
φi−→ Vi ⊂M}i∈I

which are diffeomorphisms, where the Ui cover X; as well as the data of a

collection {gij ∈ G} which determine the transition functions:

Ui ∩ Uj

Vi Vj

φi φj

gij

These are required to satisfy a cocycle condition:

gjk ◦ gij = gik.

� morphisms: smooth embeddings f : X ↪→ Y , and a collection {fi,i′ ∈ G} for

every pair of charts (Ui, φi), (U
′
i , φ
′
i) in the G structure for X and Y , respectively,

where f(Ui) ⊆ Ui′ . These are required to make diagrams of the following form

commute:

Ui U ′i

M M

f

φi φ′i

fi,i′
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� composition: composing embeddings; given two embeddings f : X ↪→ Y ,

g : Y ↪→ Z, then g ◦ f gives an embedding X ↪→ Z.

� monoidal structure: disjoint union; for X, Y ∈ GMan, XtY is a G-manifold

with the G-atlas given by taking the union of the atlases for X and Y and

taking the maximal atlas this belongs to. (Note that for Ui an element of the

atlas on X and Vj an element of the atlas on Y , the transition function for

Ui ∩ Vj will be trivial because Ui ∩ Vj = ∅.)

Remark 2.21. Note that the elements {fi,i′ ∈ G} are extra data included in a

morphism from X to Y in GMan.

In particular, note that for U, V connected open subsets of M , the morphisms

U ↪→ V considered as objects in GMan are different from the morphisms U ↪→ V

when considered as objects of Open(M). Viewed as objects in GMan, the morphisms

are of the following form:

Lemma 2.22. For U, V ∈ OpenG(M) ⊂ GMan, a morphism f ∈ GMan(U, V ) can

be factored in the following form:

f : U
g−→ gU

i
↪−→ V

for some g ∈ G.

Proof. Consider the identity charts U
φU=id−−−→ U , V

φV =id−−−→ V in the maximal atlases

for U and V , respectively. Then the fact that f is G-structure preserving means that

we have:

(i) a smooth embedding f : U ↪→ V

(ii) because f(U) ⊆ V , we have an element fUV ∈ G such that the following

diagram commutes:
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U V

M M

f

φU=id φV =id

fUV

This diagram gives that fUV (U) ⊂ V ; take fUV as the element of G in the above

factorization.

Some examples of G-structures of particular interest to us are the following:

Example 2.23. Euclidean structure: Take M = Rn, G = Rn o O(n) (where Rn

corresponds to the translations and O(n) corresponds to the dilations). In this case,

a G-structure on X means that X has a flat Riemannian metric (i.e. a Euclidean

structure); it is induced by pulling back the standard Riemannian metric on the open

subsets Ui ⊂ Rn via the chart maps, φi.

Example 2.24. Euclidean spin structure: Take M = Rn, G = RoSpin(n), proceed

as above.

Example 2.25. Conformal Euclidean structure: Take M = Rn, G = Rno (SO(n)×

R+), where R+ acts by dilations of Rn.

2.2.2 G-factorization algebras

We now want to define a generalized version of factorization algebras which, in-

stead of living over the opens of a fixed manifold M , will live over the category GMan.

We will call these G-factorization algebras.

Analogous to the factorization algebras on M , G-factorization algebras will be

cosheaves with respect to Weiss covers. In the case of GMan, a Weiss cover is as

follows:

Definition 2.26. A Weiss cover of X ∈ G Man is a collection of morphisms in

GMan, U = {Ua
fa
↪−→ X}a∈A, such that for any finite set of points S ⊆ X, there is

some Ua
fa
↪−→ X in U such that S ⊆ fa(Ua).
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Definition 2.27. A G-factorization algebra is a (lax) symmetric monoidal functor

F̂ : GMan→ Ch

which satisfies:

(i) Multiplicative axiom: For any X1, ..., Xn ∈ GMan, the map from the lax sym-

metric monoidal structure

F̂(X1)⊗ · · · ⊗ F̂(Xn)
∼−→ F̂(X1 t · · · tXn)

is a weak equivalence.

(ii) Descent axiom: For any Weiss cover U = {Ua → X} of X ∈ GMan,

hocolim
(⊕

a0

F̂(Ua0)⇔
⊕
a0,a1

F̂(Ua0 ×X Ua1) · · ·
)
∼−→ F̂(X)

is a weak equivalence.
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CHAPTER 3

NEW VERSION OF THE DESCENT AXIOM

Our eventual goal is to develop an ∞-categorical generalization of factorization

algebras, which will be well suited to talk about families (or parameterized versions)

of factorization algebras. Before doing so, it is helpful to first relate the descent

axiom for the factorization algebras in chapter 2, which was very geometric, to a

more categorical version of the descent axiom. We develop this categorical version of

the descent axiom in this section, and show it is equivalent to the previous descent

axioms in definitions 2.5, 2.15 and 2.27. The generalization to ∞-categorical

versions of factorization algebras will be done in chapter 4; the categorical version of

the descent axiom from this section will generalize particularly nicely in that context.

To motivate the new categorical descent axiom, note what role descent philosoph-

ically plays. For a factorization algebra F to satisfy descent means that F satisfies

a locality condition: evaluating F on a manifold X is equivalent to evaluating F on

a collection of smaller subsets of X and then gluing that data together. In other

words, we pull back F to a cover of X, i.e. restrict F to that cover; and then ‘push it

forward’ via gluing to say what F gives on the whole X, i.e. take a left Kan extension

related to the cover. If this restriction-left Kan extension composite agrees with what

F originally gave on X, then F satisfies descent.

In order to formally describe this categorical process of restriction-left Kan exten-

sion, we will want to deal with a precise categorical formulation of Weiss covers: this

is given by the notion of a Grothendieck topology on a category. In section 3.1 we

review the axioms of a Grothendieck topology and look at what this means for our
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categories and covers of interest. Then in section 3.2 we give a categorical version of

the descent axiom, and show that it agrees with the previous versions of the descent

axiom in chapter 2.

3.1 Background on Grothendieck topologies

Let C be a small category.

Definition 3.1 ([12], Section I.4). A sieve S on an object c ∈ C is a full subcategory

S ⊂ C/c which is closed under precomposition with morphisms in C; i.e. if f : c′ → c

is in S and g : d→ c′ is a morphism in C, then f ◦ g is in S.

Given a morphism h : d → c in C and a sieve S on c, the pullback sieve h∗S (on

d) is defined to be the full subcategory of C/d spanned by morphisms g : d′ → d such

that h ◦ g is in S.

Definition 3.2 ([12], III.2, Defn 1). A Grothendieck topology on a category C is a

function J which assigns to each object c ∈ C a collection J(c) of sieves on c, called

covering sieves, which satisfy the following conditions:

(i) (Trivial sieve covers:) For all c ∈ C, C/c is in J(c).

(ii) (Stability axiom:) If f : c → d is a morphism in C and S ∈ J(d), then f ∗S ∈

J(c).

(iii) (Transitivity axiom:) Let c ∈ C, S be in J(c) and S ′ be an arbitrary sieve on

c. If for every f : d→ c in S, the pullback f ∗S ′ is in J(d), then S ′ is in J(c).

A site is a pair (C, J) of a small category C with a Grothendieck topology J on C.

Remark 3.3. Note that for the sources of our factorization algebras, we are dealing

with something slightly more complicated than a category: Open(M), OpenG(M)

are multicategories and GMan is a symmetric monoidal category. For these spe-

cific cases, we take a Grothendieck topology on a multicategory (resp. symmetric

26



monoidal category) to be a Grothendieck topology on its underlying category (i.e. we

only allow multimorphisms which have a single object as the source, so are ordinary

morphisms). This is not necessarily a general notion of a Grothendieck topology on

any multicategory, but it works for the specific multicategories Open(M), OpenG(M)

and GMan.

This notion of a Grothendieck topology works for these specific examples of mul-

ticategories B = Open(M), OpenG(M),GMan because they all share a special prop-

erty: if f ∈MulB(b1, ..., bn; b), then the source of f can be thought of as another object

of B itself (for Open(M), U1 t · · · t Un ↪→ U ; for OpenG, g1U1 t · · · t gnUn ↪→ U ;

for GMan, X1 t · · · tXn ↪→ X). This allows us to make sense of pullback sieves in

these multicategories, which is needed for the stability and transitivity axioms of a

Grothendieck topology. However, for an arbitrary multicategory, the multimorphisms

don’t necessarily have such a property.

For our multicategories of interest B = Open(M), OpenG(M),GMan, we need to

consider a saturated version of the Weiss covers, in order to obtain a collection of

sieves:

Definition 3.4. Let B = Open(M), OpenG(M) or GMan. Let U = {ua → b} be a

Weiss cover of b ∈ B. Define U to be the full subcategory of B/b consisting of objects

which factor through an element of U, i.e.:

v

ua b

for some (ua → b) ∈ U. We refer to U as a saturated Weiss cover of b.

Note that there is a canonical forgetful functor U
j−→ B, which forgets the map to

b; when we refer to a saturated cover of an object b ∈ B we will often include this

canonical functor.
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Lemma 3.5. Let B = Open(M), OpenG(M) or GMan. The collection of all satu-

rated Weiss covers defines a Grothendieck topology on B, called the Weiss topology.

Proof. Note that by definition, the saturated Weiss covers are sieves (closed under

precomposition).

(i) For all b ∈ B, the identity map b→ b gives a Weiss cover. Taking the saturated

version of this gives the overcategory B/b itself, which is thus a covering sieve.

(ii) If f : b → b′ is a 1-ary morphism in B and U′ is a saturated Weiss cover of b′,

then f ∗U′ consists of objects v → b of the following form:

v ui

b b′
f

which factor through some element ui of the Weiss cover U′ of b′. Taking the

pullback gives an element of a Weiss cover of b; by the universal property of

the pullback, v factors through this element:

v

b×b′ ui ui

b b′
f

Varying over all elements ui of U′, the pullbacks b×b′ ui provide a Weiss cover

of b. Thus f ∗U′ is a covering sieve of b.

(iii) Let b ∈ B and U be a saturated Weiss cover of b. Consider any other sieve S ′

on b, such that for any f : b′ → b in U, f ∗S ′ is a saturated Weiss cover for b′. In

particular, for X ⊆ b a finite set of points in b, then because U is a saturated

Weiss cover of b, there exists some ui
f−→ b such that X ⊆ f(ui). The preimage

f−1(X) ⊆ ui will be a finite set of points. Because f ∗S ′ is a saturated Weiss
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cover for ui, there exists a vj
g−→ ui in f ∗S ′ such that the image contains f−1(X).

By definition, (vj
f◦g−−→ b) ∈ S ′, and X ⊆ f ◦ g(vj); thus S ′ is a saturated Weiss

cover of b.

In our cases of interest (Open(M), OpenG(M),GMan, with their respective Weiss

topologies), the saturated Weiss covers U satisfy an even stronger property:

Condition 3.6. Let U be a saturated Weiss cover of b ∈ B. If (v
φ−→ b) is an element

of U, then for any other map ψ, (v
ψ−→ b) is also in U.

We will refer to this as the translation property of U, as it comes, in our specific

examples, by considering possible translations of v by the G-action, and requiring

that these still sit inside some element of the Weiss cover.

3.2 Categorical descent axiom

Having this construction of a Grothendieck topology associated to Weiss covers,

we can now describe a categorical version of the descent axiom as a composite of

restriction-left Kan extension; we show this is equivalenct to the Čech complex.

Proposition 3.7. Let B = Open(M), OpenG(M),GMan. Let U = {ua → b} be a

Weiss cover of b ∈ B, and U
j−→ B its associated saturated Weiss cover (as in 3.4).

Define U to be the full subcategory of B consisting of objects in the image of j; denote

the inclusion functor by j : U → B. Then

hocolim
(⊕

a0

F(ua0)⇔
⊕
a0,a1

F(ua0 ×b ua1) · · ·
)
' j!j

∗F(b).

We will break down the proof of 3.7 into several lemmas: First, in 3.9 we reindex

the Čech colimit using a new category which arranges the data in a more convenient
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combinatorial way; we define this new category in 3.8. In 3.12 we relate this

to a colimit involving the saturated Weiss cover, using the Grothendieck topology

formalism introduced in the previous section. Finally, in 3.13 we relate this to the

restriction-left Kan extension composite. This equivalence of colimits allows us to

reformulate the original definitions of the factorization algebras given in chapter 2 in

terms of a more categorical descent axiom.

Take B = Open(M), OpenG(M) or GMan. We start by defining a category which

we will use to re-index the Čech colimit.

Definition 3.8. Given a set A, define the category Pfin(A) to consist of:

� objects: a : [m]→ A for [m] ∈ ∆op

� morphisms: a morphism from [m]
a−→ A to [n]

a′−→ A consists of a map in ∆op

from [m] to [n] (i.e. an order-preserving map φ : [n] → [m]), which makes the

following diagram commute:

[m]

A

[n]

a

φ

a′

When A is the indexing set corresponding to a cover U = {ua}a∈A of b ∈ B, there

is a natural functor:

α : Pfin(A)→ B

which sends an object a : [m] → A to α(a) := ua(0) ×b · · · ×b ua(m). A morphism

φ : a→ a′ is sent to an inclusion map:

ua(0) ×b · · · ×b ua(m) ↪→ ua′(0) ×b · · · ×b ua′(n).
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We now want to re-index the colimit for the Čech complex in 2.5 in terms of the

category Pfin(A).

Lemma 3.9. Let U = {ua → b}a∈A be a Weiss cover of b ∈ B. There is a weak

equivalence:

hocolim
(⊕

a0

F(ua0)⇔
⊕
a0,a1

F(ua0 ×b ua1) · · ·
)
' hocolim

(
Pfin(A)

α−→ B F−→ Ch
)

Proof. Denote the composition of the functors on the right by

G := F ◦ α : Pfin(A)→ Ch.

Then consider the diagram:

Pfin(A) ∆op ∗

Ch

G

β

β!G

T

where β : Pfin(A) → ∆op denotes the forgetful functor, which forgets the map into

A; and T denotes the terminal functor.

Note that the functorial property of the left Kan extension gives:

hocolim∆op(β!G) ' T!(β!G)

= (T ◦ β)!(G)

' hocolimPfin(A)(G).

We want to show that hocolim∆op(β!G) corresponds to the Čech complex. Note

that the Čech complex is also a colimit indexed by the simplicial category ∆op; the

n-simplices correspond to taking a direct sum of the factorization algebra evaluated

on all possible intersections of n-tuples of elements of the cover U. We will show that

the β!G recovers this direct sum.
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By definition of the left Kan extension, β!G acts on elements [n] ∈ ∆op as follows:

(β!G)([n]) = hocolim
(

(Pfin(A)/ [n])
forget−−−→ Pfin(A)

G−→ Ch
)

The objects in Pfin(A)/ [n] consist of pairs (a, f) where a is an object of Pfin(A)

and f is a map in ∆op:

[n]
f−→ [m]

a−→ A.

Each connected component of Pfin(A)/ [n] contains a terminal object: if (a, f), (a′, f ′)

are in the same connected component, there is a zig-zag of maps:

[m]

[n]
... A

[m′]

af

f ′ a′

such that the whole diagram commutes. In particular, for any (a, f), (a′, f ′) in the

same connected component, a ◦ f = a′ ◦ f ′. The terminal object for the connected

component containing (a, f) can then be taken to be:

[n]
id−→ [n]

a◦f−−→ A

This composite corresponds to a particular n-tuple of elements in A. Because

the homotopy colimit breaks into the direct sum of the homotopy colimit for each

connected component of the indexing category, and each connected component of

Pfin(A)/ [n] has a terminal object, one obtains the following:
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(β!G)([n]) = hocolim
(

(Pfin(A)/ [n])
forget−−−→ Pfin(A)

G−→ Ch
)

'
⊕

conn.comp.

G(a ◦ f)

'
⊕

a0,...,an

F(ua0 ×b · · · ×b uan)

Thus,

hocolim
(⊕

a0

F(ua0)⇔
⊕
a0,a1

F(ua0 ×b ua1) · · ·
)
' hocolim

(
Pfin(A)

α−→ B F−→ Ch
)

We now want to relate the colimit involving a Weiss cover U to the colimit in-

volving its associated saturated Weiss cover U. We will use the Pfin(−) category to

organize and relate the different information.

Before doing so, we recall some definitions and results that will be of use.

Definition 3.10 ([14], Defn 8.5.1). A functor K : C → D is homotopy final if for all

d ∈ D the simplicial set N(d/K) is contractible.

The reason why homotopy final functors will be useful for us has to do with the

following result comparing different homotopy colimits.

Proposition 3.11 ([14], Thm 8.5.6). Let F : D →M be any functor into a simplicial

model category. If K : C → D is homotopy final, then

hocolimC(F ◦K)
∼−→ hocolimD(F )

is a weak equivalence.

33



Note that we are dealing with a simplicial model category M = Ch in all of the

situations we consider.

Using these tools, we now relate the colimit indexed by Pfin(A) to a colimit

indexed by the saturated Weiss cover.

Lemma 3.12. Let U = {ua}a∈A be a Weiss cover of b ∈ B. Consider the saturated

version of this cover, U
j−→ B. as in 3.4. Then there is a weak equivalence:

hocolim
(
Pfin(A)

α−→ B F−→ Ch
)
' hocolim

(
U

j−→ B F−→ Ch
)

Proof. Consider the following commutative diagram:

Pfin(A) U

B

Ch

K

α
j

F

where K sends ([m]
a−→ A) ∈ Pfin(A) to (ua(0) ×b · · · ×b ua(m) → b) ∈ U (note that by

construction this factors through an element of U, namely any of the ua(i)’s).

We claim that K is homotopy final; by the commutativity of the above diagram,

this gives the desired equivalence of homotopy colimits.

Take an arbitrary object (v → b) ∈ U; note that this means the maps factors

through v → ui → b for some (ui → b) of U. Consider the slice category v/K. The

objects of this category consist of ([m]
a−→ A;φ) where ([m]

a−→ A) ∈ Pfin(A) and φ is

a map in B/b making the following diagram commute:

v b

ua(0) ×b · · · ×b ua(m)

φ

Because of the definition of v as an object that factors through some element of

the cover U, the category v/K is always non-empty.
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Take an arbitrary object (a, φ) ∈ v/K. Consider the following diagram:

v/K v/KP

const(a,φ)

id

where const(a,φ) is the constant functor which sends every object to (a, φ), and P is

the functor which sends (a′, φ′) to (a′′, φ′′) := P (a′, φ′) where

[m+m′ + 1]
a′′−→ A

a′′(i) :=


a(i), if 0 ≤ i ≤ m,

a′(i−m− 1), if m+ 1 ≤ i ≤ m+m′ + 1

.

and φ′′ : v → ua′′(0) ×b · · · ×b ua′′(m+m′+1) is defined by the universal property of the

pullback, using the maps φ and φ′.

There are natural transformations P ⇒ const(a,φ), P ⇒ id, consisting of maps

f, f ′ for objects (a′, φ′) ∈ v/K:

[m]

[m+m′ + 1] A

[m′]

f
a

a′′

f ′
a′

defined as f(i) := i, f ′(i) := i+m+ 1.

Upon taking the nerve, these natural transformations define a zig-zag of homo-

topies from the identity to a constant map, giving the contractibility of N(v/K).

Thus K is a homotopy final functor. This gives:

hocolim
(
Pfin(A)

α−→ B F−→ Ch
)

= hocolim
(
Pfin(A)

K−→ U
j−→ B F−→ Ch

)
' hocolim

(
U

j−→ B F−→ Ch
)
.
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Finally, we relate the colimit on the right above to the colimit given by the left

Kan extension.

Lemma 3.13. Let U
j−→ B be a saturated Weiss cover of b ∈ B which satisfies the

translation property ( 3.6). Let U be the full subcategory of B consisting of objects in

the image of j; i.e. U := j(U). Denote the inclusion functor by j : U → B.

Then there is a weak equivalence:

hocolim
(
U

j−→ B F−→ Ch
)
' j!j

∗F(b).

Proof. Note that the definition of the left Kan extension gives:

j!j
∗F(b) ' hocolim

(
U/b→ U j−→ B F−→ Ch

)
.

The categories U/b and U are isomorphic. This follows from the translation

property (see 3.6). The composite U/b → U j−→ B is equal to the functor U
j−→ B.

Thus,

j!j
∗F(b) ' hocolim

(
U/b→ U j−→ B F−→ Ch

)
= hocolim

(
U

j−→ B F−→ Ch).

Proof of 3.7. The equivalence follows from 3.9, 3.12, and 3.13.

We can thus give alternative, equivalent definitions to 2.5, 2.15, 2.27, utilizing

this more categorical version of the descent axiom:
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Definition 3.14. A factorization algebra on M is a multicategory functor

F : Open(M)→ Ch,

which satisfies the following conditions:

(i) Multiplicative axiom: For disjoint U1, ..., Un ⊂M , the structure map

F(U1)⊗ · · · ⊗ F(Un)
∼−→ F(U1 t · · · t Un)

is a weak equivalence.

(ii) Descent axiom: For any saturated Weiss cover U
j−→ Open(M) of U ∈ Open(M)

and associated U := j(U)
j−→ Open(M),

j!j
∗F(U)

∼−→ F(U)

is a weak equivalence.

Definition 3.15. A G-equivariant factorization algebra on M is a multicategory

functor

F : OpenG(M)→ Ch,

which satisfies the following conditions:

(i) Multiplicative axiom: For disjoint U1, ..., Un ⊂M , the structure map

F(U1)⊗ · · · ⊗ F(Un)
∼−→ F(U1 t · · · t Un)

is a weak equivalence.

(ii) Descent axiom: For any saturated Weiss cover U
j−→ OpenG(M) of U ∈ OpenG(M)
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which satisfies the translation property, and associated U := j(U)
j−→ OpenG(M),

j!j
∗F(U)

∼−→ F(U)

is a weak equivalence.

Definition 3.16. A G-factorization algebra is a lax symmetric monoidal functor

F : GMan→ Ch,

which satisfies the following conditions:

(i) Multiplicative axiom: For X1, ..., Xn ∈ GMan, the structure map

F(X1)⊗ · · · ⊗ F(Xn)
∼−→ F(X1 t · · · tXn)

is a weak equivalence.

(ii) Descent axiom: For any saturated Weiss cover U
j−→ GMan of X ∈ GMan

which satisfies the translation property, and associated U := j(U)
j−→ GMan,

j!j
∗F(X)

∼−→ F(X)

is a weak equivalence.
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CHAPTER 4

DEFINITION OF ∞-VERSION OF FACTORIZATION ALGEBRAS

In this section we generalize the previous definitions to the world of (∞, 1)-operads

and symmetric monoidal (∞, 1)-categories. There are several reasons for this move:

(a) Factorization algebras use a weak notion of equivalence throughout (quasi-

isomorphisms of chain complexes show up in both the descent axiom and the

multiplicative axiom); (∞, 1)-categories are the natural place to talk about

things up to this weaker notion of equivalence.

(b) The (∞, 1)-framework is a natural place to develop the smooth or parameterized

version of factorization algebras, which is ultimately the result we’re interested

in, in order to talk about smooth families of field theories.

(c) The higher algebraic techniques for dealing with (∞, 1)-categories in the quasi-

category perspective in particular have been well developed in [9] and [10],

and this perspective of (∞, 1)-categories is currently used in the literature on

factorization homology (see [1] for example). This makes the quasi-categorical

perspective for a higher categorical version of factorization algebras a convenient

one to take.

The goal of this section is to (i) define a new (∞, 1)-version of factorization alge-

bras, and (ii) show that this is generalization is compatible with the original definition

of factorization algebras as given by [3, 4], outlined in chapter 2. In chapter 5 we

will use techniques of higher algebra to prove an equivalence of two (∞, 1)-categories
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of these new (∞, 1)-factorization algebras. The motivation for proving this result at

this level of generality is for ease of application to future work on the parameterized

version of this result, involving smooth families of factorization algebras.

In what follows, when we mention∞-operads or∞-categories, we really mean the

(∞, 1)-versions of those; we will work with the particular model of quasi-categories

throughout. We summarize the background on ∞-operads from [6, 10] needed for

this project in Appendix A for ease of reference, and refer the reader there for more

motivation and details behind the following paragraphs.

Given a symmetric monoidal category (C,⊗) (in the sense of [11]), one can equiv-

alently view this as an associated category C⊗ (see A.2) equipped with a functor

to pointed finite sets, C⊗ → Fin∗ which is an op-fibration and satisfies a Segal-like

condition (allowing one to decompose the fiber over arbitrary objects of Fin∗ in terms

of a product of the fiber over the finite set consisting of a single element; see A.6

and A.7 for the precise details of these conditions).

Applying the nerve to this functor gives a map of quasi-categories: NC⊗ → NFin∗.

One can then define a symmetric monoidal ∞-category to be a quasi-category with

a map to NFin∗ which satisfies the quasi-categorical analog of the properties in the

previous paragraph (see A.14). By construction, NC⊗ → NFin∗ is an example of a

symmetric monoidal ∞-category.

Multicategories (i.e. colored operads) are a generalization or weakening of sym-

metric monoidal categories. Roughly, one can see this by noting that multi-morphisms

are biased as to whether a collection of objects are in the source or the target of the

morphism; if the former, one is allowed to ‘combine’ them (i.e. there are multimor-

phisms from multiple source objects), but not in the case of the latter. Symmetric

monoidal categories ‘correct’ this bias: one can combine objects in general, regardless

of whether they are in the source or target of the desired multi-morphism set. Just

as there were two views of the symmetric monoidal category C above, an analogous
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situation holds in the case of a multicategory O: one can equivalently think of this

as a category equipped with a functor, O⊗ → Fin∗, which satisfies certain proper-

ties, weakened versions of the properties above (specifically, the condition of being

an op-fibration is relaxed).

Again, one can then define ∞-operads to be the quasi-categorical version of this

notion (see A.12). In particular, taking the nerve gives an∞-operad, NO⊗ → NFin∗.

More details of these constructions and definitions are spelled out in Appendix A.

We can thus translate the operads and symmetric monoidal categories of interest

to us for factorization algebras (Open(M), OpenG(M),GMan,Ch of chapter 2) into

the appropriate ∞-versions. In section 4.1 we give a generalized definition of ∞-

factorization algebras using this ∞-operadic perspective. In subsection 4.1.1 and

subsection 4.1.2, we show that this∞-version of factorization algebras generalizes the

definitions factorization algebras in chapter 3. One key feature is that the categorical

formulation of the descent axiom in chapter 3 generalizes well to this more abstract,

∞-operadic context. Another subtlety to note involves how we translate the category

Ch into the ∞-category setting; the category Ch is not just a symmetric monoidal

category, but a dg-category. As such, there is a special notion of an ∞-category

associated to it (by applying what is called the dg-nerve). We will not use the

full higher categorical structure available here in this project, as we are primarily

concerned with looking at the examples of G-equivariant factorization algebras and

G-factorization algebras. However, we mention the structure that is available and

point to possibilities of where it could be used in future work in section 4.2.

4.1 ∞-version of factorization algebras

Since factorization algebras satisfy a ‘local-to-global’ property (the descent ax-

iom), we need a notion of an open covering for the case of (∞, 1)-categories. We

review the background definitions for this ∞-analog of a site here; see [9] (section
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6.2.2) or [17] for more details.

Definition 4.1 ([9], Defn 6.2.2.1). Let C be an ∞-category. A sieve on C is a full-

subcategory S ⊂ C which is closed under precomposition with morphisms in C, i.e.

such that if f : c → d is a morphism of C and d ∈ S, then c ∈ S. We refer to this

property as the saturation condition of a sieve.

If c ∈ C, then a sieve on c is a sieve on the slice ∞-category C/c.

Given a morphism f : c→ d in C and a sieve S on d, the pullback sieve f ∗S on c

is the full-subcategory of C/c spanned by morphisms which, after post-composition

with f , are equivalent to a morphism in S.

Analogously to the case of Grothendieck topologies on ordinary categories, in the

∞-categorical world one has:

Definition 4.2. A Grothendieck topology on an ∞-category C consists of an assign-

ment to every object c ∈ C of a collection of sieves on c, called covering sieves, which

satisfy the following conditions:

(i) (Trivial sieve covers:) If c ∈ C, then C/c ⊂ C/c is a covering sieve on c.

(ii) (Stability axiom:) If f : c→ d is a morphism of C and S is a covering sieve on

d, then f ∗S is a covering sieve on c.

(iii) (Transitivity axiom:) Let c ∈ C, S be a covering sieve on c and S ′ be an

arbitrary sieve on c. If for each f : d → c in S the pullback f ∗S ′ is a covering

sieve on d, then S ′ is a covering sieve on c.

For our new formulation of the descent axiom, we will want the following con-

struction from a Grothendieck topology on an ∞-category C.

Notation 4.3. Let C be an ∞-category equipped with a Grothendieck topology.

Let c ∈ C and S be a particular covering sieve on c. Note that there is a canonical

42



forgetful functor S j−→ C, which forgets the map to c. We will often refer to this

functor when we speak of a cover of c.

The specific cases of ∞-categories that we’re interested in for factorization alge-

bras at the moment come from a multicategory (or symmetric monoidal category)

B, equipped with a Grothendieck topology; we then take the associated category B⊗

(see A.2 for the construction of this associated category); finally we apply the nerve

to this category to obtain an ∞-category. In our cases of interest, the Grothendieck

topologies on B induce a Grothendieck topology on the category B⊗ (see 4.5). We

can then utilize the following observation:

Remark 4.4. If B⊗ is a category with a Grothendieck topology, a Grothendieck

topology on N(B⊗) reduces to the original notion of Grothendieck topology on the

category B⊗. Unpacking this, for b ∈ B⊗ (i.e. a 0-simplex in N(B⊗)), the slice

∞-category N(B⊗)/b will consist of composable tuples of morphisms in B⊗ with the

final target b. The sieve property (closed under pre-composition by morphisms in B⊗)

makes sieves on B⊗/b and sieves on N(B⊗)/b equivalent. Thus having a collection

of covering sieves on N(B⊗) is equivalent to having a collection of covering sieves on

B⊗. In fact, in the case of a general∞-category C, the set of Grothendieck topologies

on C is in natural bijection with the set of Grothendieck topologies on the homotopy

category hC. See Remark 6.2.2.3 of [9].

Construction 4.5. For B = Open(M), OpenG(M),GMan, we obtain a Grothendieck

topology on B⊗ by taking, for any object (〈m〉; b1, ..., bm) ∈ B⊗, the collection of cov-

ering sieves to be given by all m-tuples of saturated Weiss covers U1, ...,Um for each

bi ∈ B, 1 ≤ i ≤ m.

More explicitly, for a particular m-tuple of saturated Weiss covers U1, ...,Um of

b1, ..., bm ∈ B, take the sieve that contains all objects

(〈n〉;U1, ..., Un)
f−→ (〈m〉; b1, ..., bm)
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consisting of a map α : 〈n〉 → 〈m〉 in Fin∗; and such that each fj ∈MulB({Ui}i∈α−1(j); bj)

is in Uj.

Varying over all m-tuples of saturated Weiss covers of b1, ..., bm gives the collection

of covering sieves for B⊗. It inherits the properties of a covering sieve from the

covering sieves of the objects in B.

Thus in our cases of interest (taking Open(M), OpenG(M),GMan as source cate-

gories), we get induced Grothendieck topologies on the∞-categories N(Open(M)⊗),

N(OpenG(M)⊗), N(GMan⊗). We can extend the previous definition of factoriza-

tion algebras to more general ∞-operads, where the source is a general ∞-operad

equipped with a Grothendieck topology, as follows.

Definition 4.6. Let O⊗ → N(Fin∗) be an ∞-operad with a Grothendieck topol-

ogy on the underlying ∞-category of O⊗, and such that pullbacks exist in O⊗. A

factorization algebra on O⊗ is a map of ∞-operads:

O⊗ N(Ch⊗)

N(Fin∗)

F

which satisfies:

(i) Multiplicative axiom: For every coCartesian morphism α̃ in O⊗, F(α̃) is a

coCartesian morphism in N(Ch⊗). (See A.10 for the definition of a coCartesian

morphism.)

(ii) Descent axiom: For every object U ∈ O⊗ and any covering sieve on U , S j−→ O⊗,

denote the image of j by V := j(S) and the inclusion functor by j : V → O⊗.

Then there is a weak equivalence:

j!j
∗F(U)

∼−→ F(U).

We denote the (∞, 1)-category of factorization algebras onO⊗ as Fun⊗,desc(O⊗, N(Ch⊗)).
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Notation 4.7. If O⊗ = N(Open(M)⊗), we call these ‘factorization algebras on M ’

and denote the (∞, 1)-category Fun⊗,desc(N(Open(M)⊗), N(Ch⊗)) by FacM .

Notation 4.8. If O⊗ = N(OpenG(M)⊗), we call these ‘G-equivariant factorization

algebras on M ’ and denote the (∞, 1)-category Fun⊗,desc(N(OpenG(M)⊗), N(Ch⊗))

by FacGM .

Notation 4.9. If O⊗ = N(GMan⊗), we call these ‘G-factorization algebras’ and

denote the (∞, 1)-category Fun⊗,desc(N(GMan⊗), N(Ch⊗)) by GFac.

We claim that 4.6 is a good generalization of 2.5 (or equivalently, 3.14; similarly

for 3.15 and 3.16) in that, given a factorization algebra F in the latter sense, if one

applies the N((−)⊗) construction to obtain a map of∞-operads, then F satisfies the

descent axiom of 3.14 ( 3.15, 3.16) if and only if N(F⊗) satisfies the descent axiom

of 4.6, and likewise for the multiplicative axioms. We prove these two claims in the

following sections.

4.1.1 ∞-version of the descent axiom

Having the reformulation of the descent axiom in 3.14 ( 3.15, 3.16, respectively),

and the proof that this new descent axiom is equivalent to the one of 2.5 ( 2.15, 2.27,

respectively), makes the compatibility between the ∞-version of the descent axiom

and the original descent axiom follow formally, from the property of a Grothendieck

topology on an ∞-category N(B⊗).

Remark 4.10. More explicitly, we use the following facts about the Grothendieck

topology on N(B⊗). Let B be a multicategory with a Grothendieck topology and

b ∈ B. Consider any covering sieve U
j−→ B of b. In the result that follows, we will

use the image of j along with the inclusion functor; denote these: V := j(U)
j
↪−→ B.

We can think of b as an object (〈1〉; b) ∈ N(B⊗). Because N(B⊗) is the nerve of

an ordinary category, the Grothendieck topology on N(B⊗) is determined by the
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Grothendieck topology on B⊗ (see 4.4). So we can think of U
j−→ N(B⊗) as also

giving a covering sieve of (〈1〉; b). Abusing notation slightly, we will denote the image

of this functor also by V , and denote the inclusion functor V
j
↪−→ N(B⊗); this abuse of

notation is justified by the fact that the higher simplices (of V thought of in N(B⊗)),

which correspond to composable strings of morphisms, are already included (in V

thought of in B) by the saturation property of covering sieves.

Proposition 4.11. Let B = Open(M), OpenG(M) or GMan. Let F : B → Ch be

a map of multicategories (i.e. colored operads). Take any b ∈ B and any saturated

Weiss cover U
j−→ B of b. Let V := j(U)

j
↪−→ B be the inclusion functor.

Then the following are equivalent:

(1) The map

j!j
∗F(b)

∼−→ F(b)

is a weak equivalence.

(2) Let F̂ := N(F⊗). Think of b as the object (〈1〉; b) ∈ N(B⊗), with saturated

Weiss cover corresponding to U. Following 4.10 we denote the inclusion functor

V
j
↪−→ N(B⊗). The map

j!j
∗F̂((〈1〉; b)) ∼−→ F̂((〈1〉; b))

is a weak equivalence.

For the pre-factorization algebras F , N(F⊗) to satisfy the descent axiom, they

must satisfy descent for all objects in B, N(B⊗), respectively, with respect to any

Weiss cover. This recovers the descent axioms for 3.14 (equivalently, 2.5), 3.15,

3.16 and 4.6.
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Proof. Note that it suffices to consider objects of the form (〈1〉; b) ∈ N(B⊗) because

the fiber over 〈m〉, N(B⊗)〈m〉 is equivalent to an m-fold product of the fiber over 〈1〉:

N(B⊗)〈m〉 ' (N(B⊗)〈1〉)
m (see A.7).

By definition of F̂ , F̂(〈1〉; b) = (〈1〉;F (b)). The morphism in N(Ch⊗) in (2)

consists of the following morphism in Ch⊗:

(〈1〉; j!j
∗F(b)) (〈1〉;F(b))

〈1〉 〈1〉

f

id

which in turn consists of a morphism in Ch:

f1 : j!j
∗F(b)→ F(b).

The morphism in N(Ch⊗) is a weak equivalence if the morphism in Ch is a weak

equivalence, giving the desired result. (See section 4.2 for more details about the

weak equivalences in N(Ch⊗).)

4.1.2 ∞-version of the multiplicative axiom

We now want to show that the multiplicative axioms of 2.5 ( 3.15, 3.16, respec-

tively) and 4.6 are equivalent. We will work with the multicategoriesOpen(M), OpenG(M)

separately from GMan, as the latter is a symmetric monoidal category and so has

structure not available in the other two multicategories.

Proposition 4.12. Let B = Open(M), OpenG(M). Let F : B → Ch be a map of

multicategories (i.e. colored operads). The following are equivalent:

(1) For disjoint U1, ..., Un in B, the structure map

F(U1)⊗ · · · ⊗ F(Un)
∼−→ F(U1 t · · · t Un)

is a weak equivalence.
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(2) The map N(F⊗) : N(B⊗) → N(Ch⊗) of ∞-operads preserves coCartesian

morphisms.

Proposition 4.13. Let B = GMan and F : GMan → Ch be a lax symmetric

monoidal functor. The following are equivalent:

(1) For X1, ..., Xn ∈ B, the structure map

F(X1)⊗ · · · ⊗ F(Xn)
∼−→ F(X1 t · · · tXn)

is a weak equivalence. (I.e. F is a symmetric monoidal functor.)

(2) The map N(F⊗) : N(GMan⊗)→ N(Ch⊗) preserves coCartesian morphisms.

Proof of 4.13. The equivalence follows by definition: in the case where O⊗ is a

symmetric monoidal ∞-category, the (∞-)multiplicative axiom is equivalent to re-

quiring that N(F⊗) is actually a symmetric monoidal ∞-functor (see A.24). Thus

for the case of B = GMan, the definition of the multiplicative axiom of 2.27,

i.e. the requirement that F : GMan → Ch is a symmetric monoidal functor,

directly generalizes upon applying the nerve construction to the requirement that

N(F⊗) : N(GMan⊗)→ N(Ch⊗) be a symmetric monoidal ∞-functor.

The proof of 4.12 will make use of the following lemmas, which provide a char-

acterization of some of the coCartesian morphisms in B and Ch:

Lemma 4.14. Let B = Open(M), OpenG(M). Consider N(B⊗). Let α : 〈n〉 → 〈1〉

be the unique active morphism in N(Fin∗) and α̃ a morphism in N(B⊗) over α, as

shown below:

(〈n〉;U1, ..., Un) (〈1〉;U)

〈n〉 〈1〉

α̃

α
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Then α̃ is coCartesian if and only if α̃1 ∈MulB(U1, ..., Un;U) is an isomorphism

(i.e. U1 t · · · t Un ∼= U for B = Open(M); or there exist g1, · · · gn ∈ G so that

g1U1 t · · · t gnUn ∼= U for B = OpenG(M)).

Proof. Assume α̃ is coCartesian. α̃ consists of a morphism α̃1 ∈MulB(U1, ..., Un;U);

i.e. of elements gi ∈ G such that g1U1 t · · · t gnUn ↪→ U (where if B = Open(M),

then gi = idG for all i).

Consider the maps g (where g consists of g1U1 t · · · t gnUn
id
↪−→ g1U1 t · · · t gnUn),

γ := α, β := id in the diagram below:

(〈1〉; g1U1 t · · · t gnUn)

(〈n〉;U1, ..., Un) (〈1〉;U)

〈1〉

〈n〉 〈1〉

α̃

g

∃h

α

γ=α

β=id

Because α̃ is coCartesian, there is a contractible space of maps h filling the dia-

gram. The maps h1 give an inverse to α̃1. Thus g1U1 t · · · t gnUn ∼= U .

Conversely, assume that α̃1 is an isomorphism (i.e. g1U1 t · · · t gnUn ∼= U). Then

for arbitrary g, γ, β making the diagram below commute:

(〈m〉;V1, · · · , Vm)

(〈n〉;U1, · · · , Un) (〈1〉;U)

〈m〉

〈n〉 〈1〉

α̃

g

∃h

α

γ

β

there is a contractible space of h’s filling the diagram above, given (up to weak

equivalence) by:
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� β : 〈1〉 → 〈m〉, mapping {1} 7→ {γ(1) = · · · = γ(n)}

� hi :=


U

gβ(1)◦α̃−1
1−−−−−→ Vβ(1), if i = β(1) 6= ∗

1→ Vi, else

Thus, α̃ is coCartesian.

Lemma 4.15. Let C be a symmetric monoidal category with a notion of weak equiv-

alence (for example, C = Ch). Consider N(C⊗). Let α : 〈n〉 → 〈1〉 be the unique

active morphism and α̃ a morphism in N(C⊗) over α, as shown below:

(〈n〉; c1, ..., cn) (〈1〉; c)

〈n〉 〈1〉

α̃

α

Then α̃ is coCartesian if and only if α̃1 : c1 ⊗ · · · ⊗ cn → c is a weak equivalence.

Proof. Assume α̃ is coCartesian. Consider the maps g (where g1 := id), γ := α, β :=

id in the diagram below:

(〈1〉; c1 ⊗ · · · ⊗ cn)

(〈n〉; c1, · · · , cn) (〈1〉; c)

〈1〉

〈n〉 〈1〉

α̃

g

∃h

α

γ=α

β=id

Because α̃ is coCartesian, the space of h’s filling the diagram is contractible. The

maps h1 give weak inverses to α̃1. Thus c1 ⊗ · · · ⊗ cn ' c.

Conversely, assume that α̃1 : c1 ⊗ · · · ⊗ cn → c is a weak equivalence. Then for

arbitrary g, γ, β making the diagram below commute:

50



(〈m〉; d1, · · · , dm)

(〈n〉; c1, · · · , cn) (〈1〉; c)

〈m〉

〈n〉 〈1〉

α̃

g

∃h

α

γ

β

there is a contractible space of h’s filling the diagram above, given (up to weak

equivalence) by:

� β : 〈1〉 → 〈m〉, mapping {1} 7→ {γ(1) = · · · = γ(n)}

� hi :=


c
∼←− (c1 ⊗ · · · ⊗ cn)

gβ(1)−−→ dβ(1), if i = β(1) 6= ∗

1→ di, else

Thus, α̃ is coCartesian.

Proof of 4.12. Let F̂ := N(F⊗). First, assume F satisfies (1).

Consider a coCartesian morphism α̃ in N(B⊗):

(〈n〉;U1, ..., Un) (〈m〉;V1, ..., Vm)

〈n〉 〈m〉

α̃

α

α factors uniquely (up to unique isomorphism) as an inert morphism (α′′) followed

by an active morphism (α′) (see A.8, B.1 for definitions):

〈n〉 α′′−→ 〈n′〉 α′−→ 〈m〉,

where α′′ sends all the elements in 〈n〉 to the basepoint which α sends to the basepoint,

and is injective on all the other elements; and α′ only sends the basepoint to the

basepoint, and does what α does for the other, non-trivial maps (see [9], Rmk 2.1.2.2).
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This factorization system for the morphisms of Fin∗ induces a factorization system

for the morphisms of any∞-operad (see [9], Propn 2.1.2.4). In our situation, α̃ factors

as follows:

(〈n〉;U1, ..., Un) (〈n′〉;U ′1, ..., U ′n′) (〈m〉;V1, ..., Vm)

〈n〉 〈n′〉 〈m〉

α̃′′

coCart.

α̃′

α′′

inert

α′

active

For ease of argument, we assume m = 1; for more general active morphisms,

consider a union of maps in the following argument. We know that α̃′′ is coCartesian

by the lifting property in the definition of ∞-operads. We claim that α̃′ is also

coCartesian.

To see this, consider any g, β as in the diagram below:

(〈p〉;W1, ...,Wp)

(〈n〉;U1, ..., Un) (〈n′〉;U ′1, ..., U ′n′) (〈1〉;V )

〈p〉

〈n〉 〈n′〉 〈1〉

α̃′′

coCart.

g◦α̃′′

α̃′

g

α′′

β◦α′◦α

α′

β◦α′

β

Because α̃ itself is coCartesian, considering maps g ◦ α̃′′, β, which by construction

make the diagram commute, there is a contractible space of morphisms (〈1〉;V ) →

(〈p〉;W1, ...,Wp) which fill the diagram; these also serve as the necessary fillers to

show that α̃′ is coCartesian.

By 4.14, this implies that (α̃′)1 ∈ MulB(U ′1, ..., U
′
n;V ) is an isomorphism; i.e.

there exist gi ∈ G such that α̃′1 : g1U
′
1 t · · · t gn′U ′n′ ∼= V .

Because F̂ is a map of∞-operads, it preserves inert coCartesian morphisms; thus

F̂(α̃′′) is coCartesian. Note that F̂(α̃′) consists of the following map:
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F(U ′1)⊗ · · · ⊗ F(U ′n′) F(V )

F(g1U
′
1)⊗ · · · ⊗ F(gnU

′
n)

'

F̂(α̃′)1

∼

where the vertical map comes from the natural isomorphisms that are part of the data

of a G-equivariant factorization algebra; and the diagonal map comes from the fact

that F satisfies (1). (In the case of B = Open(M), the vertical map is an equality, as

gi = idG for all i.) Thus, F̂(α̃′)1 is a weak equivalence. By 4.15 F̂(α̃′) is coCartesian.

The composition of coCartesian morphisms is coCartesian, so F̂(α̃) is coCartesian.

Thus F̂ satisfies (2).

Now suppose that F̂ satisfies (2). Let U1, ..., Un in B be disjoint. Consider the

following coCarteisan morphism in N(B⊗), where α : 〈n〉 → 〈1〉 is the unique active

morphism:

(〈n〉;U1, ..., Un) (〈1〉;U1 t · · · t Un)

〈n〉 〈1〉

f

α

where f consists of:

� α : 〈n〉 → 〈1〉

� f1 := U1 t · · · t Un
id
↪−→ U1 t · · · t Un

By 4.14, f is coCartesian. Because F̂ satisfies (2), this implies that

F̂(f) : (〈n〉;F(U1), · · · ,F(Un))→ (〈1〉;F(U1 t · · · t Un))

is also a coCartesian morphism. By 4.15, F̂(f)1 is a weak equivalence, i.e. the

structure map

F(U1)⊗ · · · ⊗ F(Un)→ F(U1 t · · · t Un)

is a weak equivalence. Thus F satisfies (1).
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4.2 Subtleties with chain complexes and weak equivalences

There are subtleties involved in what we mean by the nerve of the category

Ch, coming from the fact that this category has several different types of struc-

ture: it is a symmetric monoidal category, it has a notion of weak equivalence (quasi-

isomorphisms), and it is a dg-category (enriched over chain complexes). When we ask

for the ∞-category associated to Ch, we want to take these structures into account.

We have already discussed what it means to look at the ∞-analog of a symmetric

monoidal category; we construct an associated category Ch⊗ with a special functor

to Fin∗ and then take the nerve of that combination of data (see section A.2 for more

details). In this section we survey aspects of the dg-categorical structure, and note

to what extent this plays a role in the current project.

We start with some generalities. Let D be a dg-category. There are two ordinary

categories we can associate to D:

(1) the underlying category, D0; whose objects are the objects of D; and whose

morphisms are given by chain maps, HomD0(X, Y ) := {f ∈MapD(X, Y )0|df =

0}. (See [9] Rmk 1.3.1.4.)

(2) the homotopy category, hD; whose objects are the objects of D; and whose

morphisms are given by HomhD(X, Y ) := H0(MapD(X, Y )∗). (See [9], Rmk

1.3.1.5.)

There are various (equivalent) ways to associate a quasi-category to the dg-

category D. Lurie gives a particularly nice description a quasi-category associated to

D via what he calls the dg nerve ([9], Construction 1.3.1.6). Define Ndg(D) to be the

54



simplicial set with n-simplices the set of ordered pairs:

Ndg(D)n = {({Xi}0≤i≤n, {fI})}

where

� Xi are objects of D, for all 0 ≤ i ≤ n

� for every subset I = {i− < im < · · · < i1 < i+} ⊆ [n] ,m ≥ 0, fI ∈

MapD(Xi− , Xi+)m such that

dfI =
∑

1≤j≤m

(−1)j
(
f(I−{ij}) − f{ij<···<i+} ◦ f{i−<···<ij}

)

Unpacking this for the first few n-simplices (see [9], Ex 1.3.1.8):

� Ndg(D)0: objects of D

� Ndg(D)1: X, Y ∈ D plus f ∈MapD(X, Y )0 such that df = 0

X Y
f

� Ndg(D)2: X, Y, Z ∈ D; f ∈ MapD(X, Y )0, g ∈ MapD(Y, Z)0, h ∈ MapD(X,Z)0

such that df = dg = dh = 0; z ∈MapD(X,Z)1 such that dz = (g ◦ f)− h

Y

X Z

g
f

h

z

� Ndg(D)3: X, Y, Z,W ∈ D corresponding to vertices of a 3-simplex; 6 elements

corresponding to the edges, in degree 0 of the various morphism-complexes;

4 elements corresponding to the faces, in degree 1 of the various morphism-

complexes; 1 element in MapD(X,W )2 which corresponds to the inside of the

3-simplex, witnessing the compatibility of the different faces
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Y

X W

Z

jf

l

h k

g

Remark 4.16. (See [9], Rmk 1.3.1.9) Consider the nerve of the underlying (ordinary)

category associated to D, N(D0). The simplicial set N(D0) is isomorphic to the

simplicial subset of Ndg(D) with trivial higher simplices information (fI = 0 whenever

I has more than 2-elements; this means we only really see things up to (composable

strings of) 1-simplices). More precisely, the map N(D0) → Ndg(D) is bijective on

n-simplices for n ≤ 1.

In general it would be interesting to think about what an∞-factorization algebra

would be as a map of ∞-operads

O⊗ Ndg(Ch
⊗)

NFin∗

F

satisfying the multiplicative and descent axioms. We could then use the full data of

the higher simplices in the quasi-category Ndg(D) for the descent axiom: we could

require that the edge in the descent axiom be a chain homotopy equivalence (which

would be a quasi-isomorphism, but not conversely).

However, for the specific examples of ∞-factorization algebras which we con-

sider in this project, where the source ∞-categories are N(B⊗) = N(Open(M)⊗),

N(OpenG(M)⊗), N(GMan⊗) (i.e. are the nerves of ordinary categories), our fac-

torization algebras do not involve this higher categorical structure. Because of the

simplicity of the source categories (the higher simplices are strings of composable

morphisms), the image of the functor F can only have trivial higher simplicial data;

i.e. F factors through a more basic simplicial subset of Ndg(Ch
⊗), namely N(Ch⊗0 ):
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N(B⊗) N(Ch⊗0 ) Ndg(Ch
⊗)

NFin∗

N(F⊗)

In this dissertation, we will take N(Ch⊗) to mean this subset N(Ch⊗0 ); it is a

symmetric monoidal∞-category, thus making sense of N(F⊗) as a map of∞-operads

(or a symmetric monoidal ∞-functor in the case of B = GMan). We call an edge in

N(Ch⊗0 ) (i.e. a chain map) a weak equivalence if it is a quasi-isomorphism.

The questions about how this fits into a more honest ∞-categorical framework

(where one does use the higher simplicial data in Ndg(Ch
⊗) in a non-trivial way) are

left for future work. In particular, to make sense of the diagram above, we would like

to address the following questions:

1. Is Ndg(Ch
⊗)→ NFin∗ a symmetric monoidal ∞-category?

2. Is the map N(Ch⊗0 ) → Ndg(Ch
⊗) a symmetric monoidal ∞-functor? This

should follow immediately: if an edge is coCartesian in N(Ch⊗0 ), it would also

be coCartesian in Ndg(Ch
⊗) by taking the same contractible space of lifts. In

fact, the ∞-category Ndg(Ch
⊗) has more ways of ‘contracting’ edges (it has

non-trivial 2-simplices). This would imply that the composite in the diagram

above satisfies the multiplicative axiom.

3. For the descent axiom, in the case of Ndg(Ch
⊗) the requirement that an edge

be a weak equivalence could be weakened from the version of requiring it to be

a quasi-isomorphism: we could instead ask that the edge be a chain homotopy

equivalence. This would use the higher simplicial data available in Ndg(Ch
⊗)

in a non-trivial way.

We leave these details about the higher categorical structure available for general

∞-factorization algebras and the implications this structure would have for future
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work. In the next section, chapter 5, we focus on showing that the ∞-categories

FacGM and GFac are equivalent; we use higher algebra techniques to show this, with

a view towards being able to translate these results into more general cases (choosing

different source ∞-categories for the factorization algebras, in particular parameter-

ized or family versions of the ones currently discussed, and possibly using the higher

structure available in Ndg(Ch
⊗)).

Remark 4.17. From now on we will only be interested in the ∞-version of fac-

torization algebras and will drop the ∞-notation, leaving it implicit throughout.

I.e. when we write OpenG(M),GMan,Ch or Fin∗, we are actually referring to

N(OpenG(M)⊗), N(GMan⊗), N(Ch⊗), N(Fin∗) but drop the nerve notation for sim-

plicity.
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CHAPTER 5

COMPARISON RESULT: G-EQUIVARIANT FACTORIZATION ALGEBRAS ON

M ARE EQUIVALENT TO G-FACTORIZATION ALGEBRAS

Inspired by the fact that factorization algebras satisfy a local-to-global property

(the descent axiom), we now want to relate factorization algebras on M , equipped

with a structure given by a group G acting on M (i.e. G-equivariant factorization

algebras), to factorization algebras on more general manifolds which locally look like

M with a geometric structure given by the G-action (i.e. G-factorization algebras).

More precisely, we show that the (∞, 1)-categories FacGM and GFac are equivalent.

While we look specifically at these two particular flavors of factorization algebras in

this project, many of the results utilize general features of ∞-operads, and so could

readily be generalized to other flavors of factorization algebras. In future work, we

will investigate a generalization of the current result to the case of parameterized

or smooth family versions of the factorization algebras considered here. This is of

interest as related to the families of twisted field theories in the work of Dwyer-Stolz-

Teichner.

In this section we first recall results that hold from higher algebra techniques de-

veloped in [1, 10]; these techniques are summarized in more detail in Appendix B and

Appendix D. These constructions give us maps between functor categories involving

the desired ∞-operads for our factorization algebras. We then show in section 5.1

and section 5.2 how imposing the axioms of factorization algebras, as defined in 4.6,

yields an equivalence of (∞, 1)-categories. For a review of background material about

equivalences and adjunctions of∞-categories, using the model of quasi-categories, see
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Appendix C.

Consider the ∞-operads OpenG(M),GMan and Ch as described above. The

monoidal envelope construction, which can be thought of as a monoidal ‘exterior

completion,’ constructs a symmetric monoidal∞-category from an∞-operad; see Ap-

pendix B for more details. We apply this construction to the ∞-operad OpenG(M):

the associated symmetric monoidal∞-category is denoted Env(OpenG(M)). For any

∞-operadO⊗, there is a natural functor into its monoidal envelope: O⊗ ↪→ Env(O⊗).

This induces a map between the respective functor categories out of these∞-operads.

When these functor categories are into another symmetric monoidal∞-category (for

example, Ch in the diagram below), this map is a weak equivalence.

In our case, we have an inclusion of symmetric monoidal ∞-categories

i : Env(OpenG(M))→ GMan.

It is the inclusion of the full subcategory consisting of all finite disjoint unions of opens

in M into the category of general G-manifolds. This functor i satisfies conditions

which, together with properties of the ∞-category Ch, make the restriction and

operadic left Kan extension adjoint functors. This is a particular application of a

result in [1]; see Appendix D for more details.

We summarize these results from the literature in the diagram below:

Funinert(OpenG(M), Ch) Fun⊗(Env(OpenG(M)), Ch) Fun⊗(GMan,Ch)∼
(1)

(2)

a

It is known that:

(1) is an equivalence of (∞, 1)-categories by the universal property of the monoidal

envelope (see [10], Propn 2.2.4.9; further details are summarized in Appendix B),

and
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(2) is an adjunction (see [1], Lemma 2.16; further details about how this result

applies to our particular ∞-categories are given in Appendix D).

As is, these results simply apply to functor categories (of∞-operads and symmet-

ric monoidal ∞-categories respectively). To raise these to a comparison of factoriza-

tion algebra categories we need to restrict to functors which satisfy the factorization

algebra axioms. Imposing these axioms on all functor categories involved gives G-

equivariant factorization algebras on M (FacGM) on the left and G-factorization alge-

bras (GFac) on the right of the diagram above. In section 5.1 we show that imposing

the axioms preserves the equivalence in (1). In section 5.2 we show that imposing

the axioms lifts the adjunction in (2) to an equivalence of (∞, 1)-categories.

This gives the following main result:

Theorem 5.1. Let M be a manifold and G be a group acting on M . There is an

(∞, 1)-categorical equivalence between the G-equivariant factorization algebras on M

and G-factorization algebras:

FacGM ' GFac.

5.1 Equivalence involving the monoidal envelope

Because OpenG(M) is an∞-operad and Ch is a symmetric monoidal∞-category,

by B.4 we have an equivalence of ∞-categories:

Fun⊗(Env(OpenG(M)), Ch)
∼−→ Funinert(OpenG(M), Ch)

where the left side denotes symmetric monoidal∞-functors and the right side denotes

∞-operad maps.

We impose the additional axioms for factorization algebras on both sides and

claim that the equivalence of ∞-categories is preserved:
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Proposition 5.2. Let O⊗ be an ∞-operad equipped with a Grothendieck topology on

its underlying ∞-category. Let Env(O⊗) be its monoidal envelope (i.e. its associated

symmetric monoidal ∞-category) equipped with a Grothendieck topology compatible

with that on O⊗ in the following sense: if i : O⊗ → Env(O⊗) denotes the inclusion

functor, X ∈ O⊗ and U
j−→ O⊗ is a covering sieve of X, then U

i◦j−→ Env(O⊗) is a

covering sieve of iX ∈ Env(O⊗).

Then there is an equivalence of ∞-categories:

Fun⊗,desc(Env(O⊗), Ch)
∼−→ Fun⊗,desc(O⊗, Ch).

In particular, for O⊗ = OpenG(M) there is an equivalences of ∞-categories in-

volving G-equivariant factorization algebras on M :

Fun⊗,desc(Env(OpenG(M)), Ch) ' Fun⊗,desc(OpenG(M), Ch) =: FacGM .

Proof. As B.4 gives an equivalence of the functor categories, it remains to show that

this equivalence is preserved after imposing the multiplicative and descent axioms on

both sides of the equivalence.

(i) Multiplicative axiom: The map above sends F ∈ Fun⊗(Env(O⊗), Ch) to i∗F ∈

Funinert(O⊗, Ch). Note that if f ∈ O⊗ is coCartesian, then i∗F (f) is also

coCartesian, as illustrated below, as F preserves coCartesian morphisms:

(〈m〉;U1, ..., Um) (〈n〉;V1, ..., Vn)

〈m〉 〈n〉

f

(coCart.)

α

i7−→
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(〈m〉;U1, ..., Um) (〈n〉;V1, ..., Vn)

〈m〉 〈n〉

〈m〉 〈n〉

f

(coCart.)

α

id id

α

F7−→

(〈m〉;F (U1), ...) (〈n〉;F (V1), ...)

〈m〉 〈n〉

F (f)

(coCart.)

α

This means that (F ◦ i) ∈ Fun⊗(O⊗, Ch) ⊂ Funinert(O⊗, Ch) satisfies the

multiplicative axiom. Thus the functor in B.4 restricts to a fully faithful

and essentially surjective functor onto Fun⊗(O⊗, Ch), the category of functors

satisfying the multiplicative axiom.

(ii) Descent axiom: Assume F ∈ Fun⊗(Env(O⊗), Ch) satisfies the descent axiom.

We want to show that i∗F ∈ Funinert(O⊗, Ch) also satisfies the descent axiom.

Take an arbitrary X ∈ O⊗ and any covering sieve U
j−→ O⊗ of X; consider the

inclusion functor U := j(U)
j
↪−→ O⊗. Showing that i∗F satisfies descent with

respect to X and U amounts to showing that:

j!j
∗(i∗F )(X)

∼?−→ i∗F (X).

Consider iX ∈ Env(O⊗). By assumption, U
j−→ O⊗ i−→ Env(O⊗) is a covering

sieve of iX. Consider U j−→ O⊗ i−→ Env(O⊗). Since F satisfies the descent

axiom,

(i ◦ j)!(i ◦ j)∗F (iX)
∼−→ F (iX).

Also note that i : O⊗ → Env(O⊗) is a full and faithful functor; thus i∗i! ' 1,

see D.6.
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Thus we have:

j!j
∗(i∗F )(X) ' (i∗i!)j!j

∗i∗F (X)

= (i!j!j
∗i∗F )(iX)

' F (iX)

= i∗F (X).

Varying over all X and all covering sieves U gives the desired descent axiom for

i∗F .

5.2 Adjoint equivalence involving the operadic Lan

Note that there is an inclusion functor of a full subcategory i : Env(OpenG(M)) ↪→

GMan. This induces an adjunction:

Fun⊗(Env(OpenG(M)), Ch) Fun⊗(GMan,Ch)

i!

i∗

a

which we get for formal reasons involving the operadic left Kan extension (see Ap-

pendix D, specifically D.8; [1], Lemma 2.16).

In the particular case of Env(OpenG(M)) and GMan, there is a special com-

patibility of the respective Grothendieck topologies: for any X ∈ GMan, there is a

covering sieve for X consisting of objects in Env(OpenG(M)); i.e. there is a Weiss

covering of X built from open subsets of M . Imposing the descent axiom on both

sides lifts the adjunction to an equivalence of categories:

Fun⊗,desc(Env(OpenG(M)), Ch) ' Fun⊗,desc(GMan,Ch)
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This is a special case of a more general result; we prove the more general result

here, with a view towards being able to apply this to the case of smooth, family

versions of the respective ∞-categories.

Proposition 5.3. Let A,B be symmetric monoidal ∞-categories; let i : A ↪→ B be a

symmetric monoidal functor satisfying the conditions of D.7 ([1], Lemma 2.16). Let

A,B be equipped with Grothendieck topologies which are compatible in the following

sense: if a ∈ A and W
k−→ A is a covering sieve of a, then W

k−→ A i−→ B is a covering

sieve of ia ∈ B; and for every b ∈ B there is a covering sieve on b consisting of objects

in A.

Then there is an equivalence of ∞-categories:

Fun⊗,desc(A, Ch) ' Fun⊗,desc(B, Ch)

witnessed by the adjoint functors i∗, i!.

In particular, for A = Env(OpenG(M)),B = GMan, there is an equivalence of

∞-categories:

Fun⊗,desc(Env(OpenG(M)), Ch) ' GFac.

We will prove this proposition in the following steps: We first need to show that

when we restrict the functor catgories by imposing the descent axiom, the functors

i∗, i! still have the appropriate source and target categories; we do this in 5.4. We

then need to show that these functors are (a) still adjoint functors, and (b) witness

the categorical equivalence; we will do these steps together by showing the functors

give an adjoint equivalence in 5.5. See Appendix C for background on adjoint equiv-

alences in the setting of ∞-categories.

Lemma 5.4. Let i : A → B as above. When restricting to functors that satisfy the

descent axiom, the functors:

65



Fun⊗,desc(A, Ch) Fun⊗,desc(B, Ch)

i!

i∗

have the desired sources and targets.

Proof. We first show that i∗ preserves the descent axiom. Assume thatG ∈ Fun⊗(B, Ch)

satisfies descent; i.e. for any object b ∈ B and for any covering sieve U
j−→ B of b,

denote the inclusion functor by U := j(U)
j−→ B. Then

j!j
∗G(b) ' G(b).

Take an arbitrary a ∈ A and any covering sieve W
J−→ A of a. Note that W

J−→

A i−→ B is then a covering sieve of i(a) ∈ B. Denote the inclusion functor W :=

J(W)
J
↪−→ A i−→ B. The fact that G satisfies descent in particular means that:

(i ◦ J)!(i ◦ J)∗G(ia) ' G(ia).

Then

i∗G(a) = G(ia)

' (i ◦ J)!(i ◦ J)∗G(ia)

= i!J!J
∗i∗G(ia)

' hocolim
(
A/ia → A

J!J
∗i∗G−−−−→ Ch

)
' J!J

∗i∗G(a)

Note that the fifth line follows because i is a full functor; the terminal object in

the category A/ia is (a, ia
id−→ ia); the colimit can then be evaluated by applying the

composite functor to the terminal object.
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Thus i∗ preserves the descent condition.

We now show that i! preserves the descent axiom. Assume that F ∈ Fun⊗(A, Ch)

satisfies descent; i.e. for any object a ∈ A and for any covering sieve W
J−→ A of a,

with inclusion functor denoted W := J(W)
J−→ A, then

J!J
∗F (a) ' F (a).

Take an arbitrary b ∈ B and a covering sieve U
j−→ B of b. Denote the correspond-

ing inclusion functor U := j(U)
j
↪−→ B. Let V be the full subcategory of A/(A/b)

consisting of objects of the form:

a′ a

u b

where u → b is an object of U, a′ → u is an element of the covering sieve on u

consisting of elements in A, and a→ b is an object of A/b.

We will denote such an object by (a′, a, u), suppressing the maps for ease of

notation. Note that by the stability axiom of Grothendieck topologies, if we fix an

object (a
f−→ b) ∈ A/b, the collection of all (a′, a, u) with this a fixed gives the pullback

covering sieve f ∗U on a.

Let V denote the image of V in A (i.e. the objects a′ ∈ A). Consider the

commutative diagram:

V A Ch

U B

J

I

F

i

j

i!F

where J and I are inclusion functors. (Note that a′ ∈ V gives an object of U by the

saturation property of U.)
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For any a ∈ A/b, the descent axiom for F gives:

F (a) ' J!J
∗F (a).

Also note that I!J
∗F ' j∗i!F : U → Ch; this can be seen by comparing the

respective colimits as follows: Take u ∈ U . The definition of the left Kan extension

gives:

I!J
∗F (u) = hocolim

(
V/u→ V J−→ A F−→ Ch

)

j∗i!F (u) = i!F (j(u))

= i!F (u)

' hocolim
(
A/u→ A F−→ Ch

)

Note that A/u ' V/u and the following diagram commutes trivially:

V/u V

A/u A

forget

' J

forget

Putting these results together, one gets:
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i!F (b) ' hocolim
(
A/b→ A F−→ Ch

)
' hocolima∈A/b

(
F (a)

)
' hocolima∈A/b

(
J!J
∗F (a)

)
' i!J!J

∗F (b)

= j!I!J
∗F (b)

' j!j
∗i!F (b)

Thus i! preserves the descent condition.

We now show that i∗, i! give an adjoint equivalence between the ∞-categories of

factorization algebras.

Lemma 5.5. Let i : A → B as in 5.4. Then

Fun⊗,desc(A, Ch) Fun⊗,desc(B, Ch)

i!

i∗

'

gives an adjoint equivalence of ∞-categories.

Proof. For background about adjoint equivalences of ∞-categories see Appendix C.

In summary, we will show that there exists a unit transformation u : 1Fun⊗,desc(A,Ch) →

i∗i! (i.e. i!, i
∗ are adjoint functors), and that the desired compositions are naturally

isomorphic to the respective identity functors:

1Fun⊗,desc(A,Ch)
∼= i∗i! i!i

∗ ∼= 1Fun⊗,desc(B,Ch).

The first of these equivalences will be given by the unit transformation.
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Since i : A → B is an inclusion of a full subcategory, there is a particularly nice

choice for the unit transformation, namely the identity, (see D.5). This is a natural

isomorphism, giving the desired equivalence:

1Fun⊗,desc(A,Ch)
∼= i∗i!.

For the other equivalence, take an arbitrary F ∈ Fun⊗,desc(B, Ch). We want to

show, for any b ∈ B,

i!i
∗F (b) '? F (b).

Let U
j−→ B be an arbitrary covering sieve of b, with associated category U :=

j(U)
j
↪−→ B. Consider the following diagram, involving the same V , I, J as in the proof

of 5.4

V A

U B Ch

J

I
i∗F

i

j F

Note that the stability axiom of Grothendieck topologies implies that V J−→ A

gives a cover for all a ∈ A/b; thus i∗F |A/b ' J!J
∗i∗F |A/b.

Also note that V J−→ A i−→ B gives a cover of b, by definition of V and the

transitivity axiom of Grothendieck topologies.

Then

i!i
∗F (b) ' i!J!J

∗i∗F (b)

= (i ◦ J)!(i ◦ J)∗F (b)

' F (b)

which gives the desired equivalence.

Proof of 5.3. Putting 5.4 and 5.5 together gives the proof of the desired equivalence.
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APPENDIX A

∞-OPERAD BACKGROUND

In this section we review the ∞-operad and symmetric monoidal ∞-category

background used in this project. This material is taken from [10] and [6]; there is

no claim of originality. It is included as an introduction to this background material

and for the sake of completeness.

A.1 Motivation from (non-∞) symmetric monoidal categories and operads

There are different ways to think of symmetric monoidal categories. The standard

approach (à la MacLane) defines a symmetric monoidal category as a category, C,

equipped with a bifunctor, ⊗ : C × C → C, and a unit object, 1C, for the monoidal

structure ⊗; these are required to satisfy certain coherence data, witnessed by nat-

ural isomorphisms (the associator and unitors); see [11]. For 1-categories this is a

good perspective; but if one is interested in generalizing this to a notion of sym-

metric monoidal higher categories, the coherence data quickly become prohibitively

complicated.

An alternative approach that avoids this difficulty is to formulate a symmetric

monoidal category instead as a category equipped with a special functor to the cat-

egory of pointed finite sets, Fin∗; this functor is required to satisfy certain lifting

conditions. In contrast to the first approach, this outlook is convenient for general-

izations: for (∞, 1)-categories one looks at a functor between quasi-categories which

satisfies appropriate generalizations of the lifting properties, thus yielding a natural
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(and more workable) notion of a symmetric monoidal higher category. The histor-

ical motivation for this viewpoint is due to Segal: he outlined how one could view

a symmetric monoidal category as a pseudo-functor from Fin∗ → Cat plus a certain

condition; or, equivalently, as a cofibration C → Fin∗. This led to the more general

notion of an operad as a category that is ‘partially cofibered’ over Fin∗.

We outline this functor-plus-properties perspective for ordinary multicategories

(i.e. colored operads) and symmetric monoidal categories in this section. We do

this to motivate the definition of symmetric monoidal ∞-categories and ∞-operads

which will follow in section A.2. Just as ordinary symmetric monoidal categories

can be viewed as a special case of an ordinary operad, an analogous situation holds

in the world of ∞-categories: a symmetric monoidal ∞-category will be a special

case of an ∞-operad. After reviewing these definitions, we include descriptions of

two constructions with ∞-operads which are used in this project in Appendix B and

Appendix D. In Appendix C we review the notions of adjunctions and equivalences

between ∞-operads.

Let Fin∗ denote the category whose objects are pointed finite sets, denoted 〈m〉 =

{∗, 1, ...,m}, where m ≥ 0; and whose morphisms are basepoint preserving maps of

sets. Let 〈m〉◦ denote the set 〈m〉 without the basepoint.

Remark A.1. Note that any finite set is isomorphic to one of this kind, so it suffices

to consider this category. See Remark 2.0.0.3 of [10]; we follow this notation.

We define some particular maps in Fin∗ that will be of use: for 1 ≤ i ≤ n define

ρi : 〈n〉 → 〈1〉 to be the map given by

ρi(j) =


1, if i = j

∗, else

.

73



Construction A.2. Let (C,⊗) be a symmetric monoidal category, as defined in [11].

Then one can construct a new category from it, denoted C⊗, consisting of:

� objects: finite (possibly empty) sequences of objects in C; denote these by

(〈m〉; c1, ..., cm), where the object 〈m〉 ∈ Fin∗ is the indexing set for the objects

of C

� morphisms: a morphism from (〈m〉; c1, ..., cm)→ (〈n〉; c′1, ..., c′n) consists of:

– a morphism in Fin∗, α : 〈m〉 → 〈n〉

– a collection of morphisms in C:

{
fi :

⊗
j∈α−1(i)

cj → c′i

}
1≤i≤n

� composition: from composition in Fin∗ and C

Remark A.3. Note that the domain of fi above is not a well-defined object (there are

choices involved both in how the objects in the tensor product are ordered, and how

one brackets the resulting tensor product). However, due to MacLane’s coherence

theorem all such choices of objects are isomorphic, making the morphism set with

this domain well-defined.

There is a natural forgetful functor p : C⊗ → Fin∗. When C⊗ comes from a

symmetric monoidal category C as in the construction above, this functor p satisfies

some additional properties, which we now unpack. We first recall some terminology.

Notation A.4. Let C⊗〈m〉 denote the fiber of p over 〈m〉 ∈ Fin∗.

Definition A.5. Let p : C → D be a functor. An arrow f : c → c′ in C is p-

coCartesian if for any arrow g : c → c′′ in C and any arrow β : pc′ → pc′′ in D with

β ◦ pf = pg, there exists a unique arrow h : c′ → c′′ with ph = β and h ◦ f = g, as

shown below:

74



c′′

c c′

pc′′

pc pc′

g

f ∃!h

pf

pg

β

Equivalently, f : c→ c′ is p-coCartesian if the following is a pullback diagram:

homC(c
′, c′′) homC(c, c

′′)

homD(pc′, pc′′) homD(pc, pc′′)

f∗

p p

(pf)∗

Definition A.6. A functor p : C → D is a (Grothendieck) op-fibration if for all c ∈ C

and any morphism α : pc → d′ in D, there exists a p-coCartesian arrow f : c → c′,

such that pf = α (i.e. there exists a coCartesian lift of α, f).

Remark A.7. In the construction above, where C⊗ comes from a symmetric monoidal

category C, the forgetful functor p : C⊗ → Fin∗ enjoys two features of note:

(i) The functor p is an op-fibration.

(ii) (Segal condition) There is an equivalence C⊗〈1〉 ' C; more generally, the functors

{ρi : 〈n〉 → 〈1〉}1≤i≤n induce equivalences C⊗〈n〉 ' (C)n for all n ≥ 0.

The symmetric monoidal structure on C is determined, up to equivalence, by C⊗

and the functor p. It turns out that the reverse is true as well: having a functor

p : D → Fin∗ which satisfies the properties (i) and (ii) above gives D〈1〉 the structure

of a symmetric monoidal category. See pages 167-168 of [10] or Section 4.1 of [6]

for more details. In other words, a symmetric monoidal category is equivalent to a

functor D → Fin∗ satisfying (i) and (ii) above.

There are different advantages of these two views of symmetric monoidal cate-

gories. One of the key advantages of the latter is that the coherence conditions of

a symmetric monoidal category, such as the commutativity of MacLane’s pentagon
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diagram, are hidden in the combinatorial data of Fin∗. Especially when one wants to

consider a higher categorical version of monoidal categories, where the coherence con-

ditions become exceedingly more complicated, the functor-plus-property viewpoint

becomes much more convenient. Following [10], we thus use this viewpoint to define

symmetric monoidal ∞-categories.

Analogous to the case with ordinary categories, where multicategories (or colored

operads) are a generalization of symmetric monoidal categories, relaxing the lifting

conditions on the fibration p gives the more general notion of an ∞-operad. More

precisely, we will be asking for coCartesian lifts for particular types of maps which

are called inert, instead of for all maps. In the following section we first review this

more general theory, before addressing the particular case of symmetric monoidal

∞-categories. We then discuss various notions of maps between∞-operads, building

up to the notion of symmetric monoidal ∞-functors.

A.2 ∞-operads and symmetric monoidal ∞-categories

For general ∞-operads, we will want lifts with respect to a particular class of

maps in N(Fin∗).

Definition A.8 ([10], Defn 2.1.1.8). A morphism f : 〈m〉 → 〈n〉 in Fin∗ is inert if

for every element i ∈ 〈n〉◦, the preimage f−1(i) has exactly one element.

A coCartesian fibration of ∞-categories is defined in an analogous way to the

Grothendieck op-fibrations above, using the ∞-categorical version of a coCartesian

lift.

Definition A.9 ([6], Defn 1.37). Let p : X → S be a morphism of simplicial sets.

p is an inner fibration if it has the right lifting property with respect to all maps

Λn
k → ∆n for 0 < k < n.
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Definition A.10 ([6], Defn 4.12). Let p : C → D be a functor between∞-categories.

f : c1 → c2 in C is a p-coCartesian arrow if

Cf/ → Cc1/ ×Dpc1/ Dpf/

is an acyclic Kan fibration.

Definition A.11 ([6], Defn 4.13). Let p : C → D be a functor between∞-categories

p is a p-coCartesian fibration if

1. p is an inner fibration.

2. for all c1 ∈ C and for all morphisms α : p(c1) = d1 → d2 in D, there exists a

p-coCartesian lift f : c1 → c2 of α.

Both ∞-operads and symmetric monoidal ∞-categories will be defined as ∞-

categories with functors to N(Fin∗), which have coCartesian lifts with respect to

certain morphisms, as well as certain other properties.

Definition A.12 ([10], Defn 2.1.1.10). An ∞-operad is a functor p : O⊗ → N(Fin∗)

between ∞-categories satisfying:

(i) For every inert morphism f : 〈m〉 → 〈n〉 in N(Fin∗) and every object C ∈ O⊗〈m〉,

there exists a p-coCartesian lift f̄ : C → C ′ in O⊗ of f . In particular, f induces

a functor f! : O⊗〈m〉 → O
⊗
〈n〉.

(ii) For C ∈ O⊗〈m〉, C ′ ∈ O
⊗
〈n〉 and f : 〈m〉 → 〈n〉, let MapfO⊗(C,C ′) be the union

of those connected components of MapO⊗(C,C ′) which lie over f . Choose p-

coCartesian morphisms C ′ → C ′i lying over the inert morphisms ρi : 〈n〉 → 〈1〉

for 1 ≤ i ≤ n. Then the induced map

MapfO⊗(C,C ′)→
∏

1≤i≤n

Mapρ
i◦f
O⊗ (C,C ′i)
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is a homotopy equivalence.

(iii) For every n ≥ 0, the functors {ρi : 〈n〉 → 〈1〉} induce an equivalence of ∞-

categories O⊗〈n〉 ' (O⊗〈1〉)n.

Remark A.13. Note that in Definition 2.1.1.10 of [10], Lurie gives a different version

of condition (iii), but in Remark 2.1.1.14 he notes the equivalence to the above

formulation.

Definition A.14 ([10], Defn 2.0.0.7). A symmetric monoidal ∞-cateogry is a p-

coCartesian fibration of simplicial sets p : C⊗ → N(Fin∗), satisfying the following

property:

� For n ≥ 0, the maps {ρi : 〈m〉 → 〈1〉}1≤i≤m induce an equivalence

C⊗〈m〉 ' (C⊗〈1〉)
m.

Remark A.15. Note that the definition of symmetric monoidal ∞-categories con-

tains condition (iii) of the definition of ∞-operads; conditions (i) and (ii) are sub-

sumed in the requirement that p : C⊗ → N(Fin∗) is a coCartesian fibration (there are

coCartesian lifts for all maps with a vertex over the target, rather than just for inert

ones).

When the functor p is clear from the context, we will drop the notation of p− and

simply say ‘coCartesian fibration/morphism’.

A.3 Maps of ∞-operads

We now look at maps between∞-operads, which will give us another perspective

on symmetric monoidal ∞-categories as well as the notion of symmetric monoidal

∞-functors.
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Definition A.16 ([10], Defn 2.1.2.7). Let O⊗,O′⊗ be∞-operads. An∞-operad map

from O⊗ to O′⊗ is a map of simplicial sets f : O⊗ → O′⊗ such that:

(1) The diagram

O⊗ O′⊗

N(Fin∗)

f

commutes.

(2) The functor f preserves inert morphisms.

Notation A.17. Lurie letsAlgO(O′) denote the full subcategory of FunN(Fin∗)(O⊗,O′⊗)

spanned by the ∞-operad maps. Because we want to emphasize that these are sim-

ply functors of∞-operads (highlighting that they preserve inert morphisms), we will

denote this subcategory by Funinert(O,O′).

Definition A.18 ([10], Defn 2.1.2.10). A map of ∞-operads q : C⊗ → O⊗ is a

fibration of ∞-operads if q is a categorical fibration.

Proposition A.19 ([10], Propn 2.1.2.12). Let O⊗ be an ∞-operad, and let p : C⊗ →

O⊗ be a coCartesian fibration (of ∞-categories). The following are equivalent:

� The composite q : C⊗ p−→ O⊗ → N(Fin∗) exhibits C⊗ as an ∞-operad.

� For every T ' T1 ⊕ · · · ⊕ Tn ∈ O⊗〈n〉, the inert morphisms T → Ti induce an

equivalence of ∞-categories

C⊗T →
∏

1≤i≤n

C⊗Ti .

Definition A.20 ([10], Defn 2.1.2.13). Let O⊗ be an∞-operad. A map p : C⊗ → O⊗

is a coCartesian fibration of ∞-operads if it satisfies the hypotheses of A.19.

We say that p ‘exhibits C⊗ as an O-monoidal ∞-category ’.
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Notation A.21. In the particular case of the above definition where O⊗ = N(Fin∗),

we say that C⊗ is a symmetric monoidal ∞-category ; i.e. it is an ∞-category C⊗

equipped with a coCartesian fibration of ∞-operads p : C⊗ → N(Fin∗).

Example A.22. This generalizes the ordinary symmetric monoidal category case

in the following sense. Let C be a symmetric monoidal category, with associated

category C⊗. Then N(C⊗) is a symmetric monoidal ∞-category, with underlying

∞-category N(C⊗)〈1〉.

Remark A.23. One of the motivations for formulating our results in this frame-

work comes from the flexibility built into this perspective of symmetric monoidal

∞-categories. In future work, we would like to explore replacing O⊗ = N(Fin∗) with

a more general∞-operad that would encode a parameterizing category for the family

or smooth versions of factorization algebras.

A.3.1 Symmetric monoidal ∞-functors

What does it mean to have a symmetric monoidal functor in this ∞-category

version? To start, suppose that p : C⊗ → N(Fin∗), q : D⊗ → N(Fin∗) are two

symmetric monoidal ∞-categories. Then an ∞-operad map F ∈ Funinert(C⊗,D⊗)

is a functor F : C → D compatible with the symmetric monoidal stucture in a lax

sense, i.e. we are given maps

F (C)⊗ F (C ′)→ F (C ⊗ C ′) 1→ F (1)

which are compatible with commutativity and associativity properties for the monoidal

structure on C and D.

Definition A.24. Let O⊗ be an ∞-operad; let p : C⊗ → O⊗, q : D⊗ → O⊗ be

coCartesian fibrations of ∞-operads (i.e. O-monoidal ∞-categories). An ∞-operad

80



map f ∈ Funinert(C⊗,D⊗) is an O-monoidal functor if it carries p-coCartesian mor-

phisms to q-coCartesian morphisms. We denote the full subcategory spanned by

O-monoidal functors Fun⊗O⊗(C⊗,D⊗) ⊂ Funinert(C⊗,D⊗).

In the case where O⊗ = N(Fin∗), we call these symmetric monoidal functors from

C⊗ to D⊗; we denote these Fun⊗(C⊗,D⊗).
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APPENDIX B

A USEFUL CONSTRUCTION: THE MONOIDAL ENVELOPE

There is a forgetful functor from symmetric monoidal∞-categories to∞-operads,

which forgets the extra structure a symmetric monoidal∞-category C⊗ → NFin∗ has

(of being a coCartesian fibration of ∞-operads, as opposed to having weaker lifting

properties). In Construction 2.2.4.1 of [10], Lurie gives an adjoint to this functor,

creating from an ∞-operad, O⊗, an associated symmetric monoidal ∞ category,

Env(O⊗), which he calls the monoidal envelope. This is an ‘exterior completion’ of

the ∞-operad, where the objects consist of formal tensor products of the objects in

O⊗; it is analogous to the Stone-Čech compactification for topological spaces.

We first outline the construction of the monoidal envelope. It will use the following

special type of morphisms in Fin∗:

Definition B.1. A morphism α : 〈m〉 → 〈n〉 in Fin∗ is active if α−1{∗} = {∗}.

Let p : O⊗ → N(Fin∗) be an ∞-operad. A morphism f in O⊗ is active if p(f) is

active.

Notation B.2. Let Act(NFin∗) ⊆ Fun(∆1, NFin∗) denote the full subcategory spanned

by the active morphisms in NFin∗.

Definition B.3. Let p : O⊗ → NFin∗ be an ∞-operad. The monoidal envelope of

O⊗ is defined to be the fiber product:

Env(O⊗) := O⊗ ×Fun({0},NFin∗) Act(NFin∗)
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where the map Act(NFin∗) → Fun({0}, NFin∗) is given by taking the source of

the active morphism.

Unpacking this definition, the 0-simplices of Env(O⊗) consist of pairs (c, α) where

c ∈ O⊗ and α : p(c)→ 〈n〉 is any active morphism in NFin∗.

Projection onto the target of the active morphisms (i.e. the target of α for an

object (c, α)) induces a map Env(O⊗) → NFin∗; this is a coCartesian fibration of

∞-operads, making Env(O⊗) a symmetric monoidal ∞-category. See [10], Propn

2.2.4.4 for the proof of this result.

Note that there is an map of ∞-operads:

O⊗ ↪→ Env(O⊗).

The monoidal envelope satisfies the following universal property which will be of

particular use for our project:

Proposition B.4 ([10], Propn 2.2.4.9). Let O⊗ → NFin∗ be an∞-operad, Env(O⊗)→

NFin∗ the associated symmetric monoidal ∞-category and C → NFin∗ another sym-

metric monoidal ∞-category. The inclusion i : O⊗ ↪→ Enc(O⊗) induces an equiva-

lence of ∞-categories:

Fun⊗(Env(O⊗), C) ∼−→ Funinert(O⊗, C)

where Fun⊗(Env(O⊗), C) denotes the symmetric monoidal∞-functors and Funinert(M, C)

denotes the maps of ∞-operads.
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APPENDIX C

ADJOINT EQUIVALENCES FOR ∞-CATEGORIES

C.1 Adjunctions for ∞-categories

Just as in the case of adjunctions for ordinary categories, there are several different

equivalent ways of formulating adjunctions of ∞-categories. For ordinary categories,

an adjunction between two categories C,D can be defined to be a pair of functors

f : C → D, g : D → C, plus a function φ : C × D → Set which assigns to any

pair (c, d) ∈ C × D a bijection between the hom-sets: φ(c, d) : C(c, gd) ∼= D(fc, d).

This data (f, g, φ) determines two natural transformations, called the unit, η : 1C →

gf , and the counit, ε : fg → 1D, which satisfy certain compatibility conditions.

Conversely, the adjunction is completely determined by the data (η, ε), plus the

compatibility conditions. This is an example of the different perspectives possible for

adjunctions: the hom-set definition, and the unit/counit definition.

An analogous situation holds in the quasi-category world. We will begin by giving

what would be the analog of the hom-set definition, as this is how adjunctions between

∞-categories are defined in [9]. For our purposes, it will be more convenient to take

the analog of the unit/counit definition, so we develop that perspective as well. We

finally recall the definition of equivalences of ∞-categories. There are also multiple

equivalent definitions of these; we take the one that fits well with the unit/counit

adjunction set-up.

In what follows, let C,D be quasicategories.
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Definition C.1 ([9], 5.2.2.1). An adjunction between C and D is a map

p :M→ ∆1

which is both a Cartesian and coCartesian fibration, together with equivalences C ∼−→

M{0} and D ∼−→M{1}.

There are functors associated to this Cartesian-coCartesian fibration; this is an

example of a correspondence and its associated functors (see [9], section 5.2.1).

We unpack this for the situation above. Take p : M → ∆1 to be an adjunction

between C and D with associated functors f : C → D, g : D → C. Identify M{0}

with C, and M{1} with D. The fact that f, g are associated with M means that we

have commutative diagrams:

C ×∆1 M

∆1

F

p

such that

F |C×{0} = idC

F |C×{1} = f

F |{c}×∆1 is coCartesian for every c ∈ C

and

D ×∆1 M

∆1

G

p
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such that

G|D×{0} = g

G|D×{1} = idD

G|{d}×∆1 is Cartesian for every d ∈ D

It will be convenient for our purposes to look at an alternative description of ad-

junctions between∞-categories, using the notion of unit and counit transformations.

Definition C.2 ([9], 5.2.2.7). Suppose f : C → D, g : D → C are functors between

quasicategories. A unit transformation for (f, g) is a morphism u : idC → g ◦ f in

Fun(C, C) such that for every c ∈ C, d ∈ D, the composition

MapD(f(c), d)→MapC(gf(c), g(d))
u(c)−−→MapC(c, g(d))

is an isomorphism in the homotopy category of spaces, H.

Dually, one has:

Definition C.3. Suppose f : C → D, g : D → C are functors between quasicate-

gories. A counit transformation for (f, g) is a morphism ε : f ◦g → idD in Fun(D,D)

such that for every c ∈ C, d ∈ D, the composition

MapC(c, g(d))→MapD(f(c), fg(d))
ε(d)−−→MapD(f(c), d)

is an isomorphism in the homotopy category of spaces, H.

The definition of an adjunction between ∞-categories in terms of the correspon-

dence p :M→ ∆1 is equivalent to a definitions in terms of the unit transformation:

Proposition C.4 ([9], 5.2.2.8). Let f : C → D and g : D → C be a pair of functors

between quasicategories. The following conditions are equivalent:
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(1) The functor f is left adjoint to g.

(2) There exists a unit transformation u : idC → g ◦ f .

Dually, one gets an equivalent definition in terms of the counit transformation:

Proposition C.5. Let f : C → D and g : D → C be a pair of functors between

quasicategories. The following conditions are equivalent:

(1) The functor f is left adjoint to g.

(2) There exists a counit transformation ε : f ◦ g → idD.

This proof is completely analogous to the proof that Lurie gives, see [9], Propn

5.2.2.8.

C.2 Equivalences of ∞-categories

We will use the notion of equivalence of ∞-categories as formulated in [13].

Definition C.6 ([13], Defn 19.1). Let f : C → D be a functor of ∞-categories. A

functor g : D → C is a categorical inverse to f if there are natural isomorphisms:

gf ∼= 1C fg ∼= 1D.

A functor f is a categorical equivalence if it admits a categorical inverse.

Note that this is equivalent to the definition of equivalences of∞-categories given

in [9], see [13], Rmk 19.6, Propn 22.11). We will use the definition in [13] because

it more naturally fits our situation: we are dealing with an adjunction (between the

restriction map and the left Kan extension) with unit and counit maps which give

the desired natural isomorphisms.

As in the case of ordinary categories, natural isomorphisms for quasi-categories

can be checked objectwise:
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Proposition C.7 ([13], 18.3-18.5). A natural transformation α : C × ∆1 → D of

functors between quasicategories, f0, f1 : C → D, is a natural isomorphism if and

only if for every object c ∈ C the map α(c) : f0(c)→ f1(c) is an isomorphism in D.

Equivalently, α is a natural isomorphism if and only if hα is an isomorphism of

the homotopy categories.
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APPENDIX D

ANOTHER USEFUL CONSTRUCTION: OPERADIC LEFT KAN EXTENSION

The theory of left Kan extensions has an analog in the world of∞-categories. We

sketch some of the background here, starting with some general definitions and then

focusing on the case that is applicable to our situation, where we are dealing with

symmetric monoidal ∞-categories.

D.1 Background about operadic left Kan extension

For more details about limits and colimits in the context of ∞-categories, see [9],

Chapter 4.

Let C be an ∞-category and C0 a full subcategory of C.

Definition D.1 ([9], Defn 4.3.2.2). Given a commutative diagram of ∞-categories

of the following form

C0 D

C D′

F0

pF

where p is an inner fibration and the left vertical map is the inclusion of the full

subcategory, then F is a p-left Kan extension of F0 at c ∈ C if the induced diagram

C0/c D

(C0/c)B D′

Fc

p
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exhibits F (c) as a p-colimit of Fc.

We say that F is a p-left Kan extension of F0 if it is a p-left Kan extension of F0

at c for every object c ∈ C.

Left Kan extensions for∞-categories satisfy various stability conditions which we

would want. Of particular note for our purposes is the following existence result:

Lemma D.2 ([9], Lemma 4.3.2.13). Suppose we are given a diagram of the form in

D.1

C0 D

C D′

F0

pF

The following are equivalent:

(1) There exists a functor F : C → D filling the diagram, such that F is a p-left

Kan extension of F0.

(2) For every object c ∈ C,

C0/c→ C0 F0−→ D

admits a p-colimit.

The following results allow us to talk about a left Kan extension functor:

Proposition D.3 ([9], Propn 4.3.2.15). Suppose we are given a diagram of ∞-

categories:

C0 D

C D′
i p

where p is a categorical fibration and C0 is a full subcategory of C.

Let K ⊆ MapD′(C,D) be the full subcategory spanned by functors F : C → D

which are p-left Kan extensions of F |C0.
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Let K′ ⊆ MapD′(C0,D) be the full subcategory spanned by functors F0 : C0 → D

such that, for each c ∈ C, C0/c→ D has a p-colimit.

Then the restriction functor K → K′ is a trivial fibration of simplicial sets.

Corollary D.4 ([9], Cor 4.3.2.16). Suppose we are given a diagram of ∞-categories

as before:

C0 D

C D′
i p

where p is a categorical fibration and C0 is a full subcategory of C.

Suppose for every F0 ∈ MapD′(C0,D) there exists an F ∈ MapD′(C,D) which is

a p-left Kan extension of F0.

Then

i∗ : MapD′(C,D)→MapD′(C0,D)

admits a section i!. The essential image of i! is precisely those F which are p-left

Kan extensions of F |C0.

In this case, we call i! a left Kan extension functor.

The previous proposition proves the existence of i! and its uniqueness up to ho-

motopy.

D.2 Operadic Lan in the case of inclusion functors

In the case where i : A → B is the inclusion of a full subcategory, the adjunction

between i∗ and i! follows naturally:

Proposition D.5 ([9], Propn 4.3.2.17). Suppose one is given a diagram of ∞-

categories:

B → C ′ p←− C,
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where p is a categorical fibration. Suppose i : A → B is the inclusion of a full

subcategory and that every functor F ∈ FunC′(A, C) admits a p-left Kan extension.

Then the left Kan extension functor i! : FunC′(A, C) → FunC′(B, C) is a left adjoint

to the the restriction functor i∗ : FunC′(B, C)→ FunC′(A, C).

The proof of this proposition consists of noting that i∗i! is equivalent to identity

functor on Fun(A, C) and that there is a particularly nice candidate for the unit

transformation

η : id⇒ i∗i!,

namely the identity transformation.

We unpack the claim that i∗i! is equivalent to the identity functor here.

Proposition D.6. Let C be a symmetric monoidal ∞-category admitting sifted col-

imits; let i : A → B be a fully faithful functor of symmetric monoidal ∞-categories.

Consider the restriction functor i∗ : Fun⊗(B, C)→ Fun⊗(A, C) and left Kan extension

functor i! : Fun⊗(A, C)→ Fun⊗(B, C). Then

i∗i! ∼= 1Fun(A,C).

Proof. Recall that showing there is a natural isomorphism i∗i! ∼= 1Fun⊗(A,C) amounts

to showing that for every F ∈ Fun(A, C) and for every a ∈ A, F(a) ' i∗i!F (a). Note

that on the left hand side, the left Kan extension formula gives us

i∗i!F = i!F (i(a))

= colim(A/i(a) → A
F−→ C)

Note that the category A/i(a) consists of objects x ∈ A together with a map in

B, f : i(x)→ i(a). A morphism between (x, f) and (x′, f ′) consists of a morphism in

A, φ : x→ x′, such that
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i(x)

i(a)

i(x′)

f

i(φ)

f ′

The object (a, idi(a)) is a terminal object in A/i(a). To see this, consider any

(x, f) in A/i(a). Because i is fully faithful, f ∈ HomB(i(x), i(a)) corresponds to an

f̄ ∈ HomA(x, a). Take φ := f̄ ; by construction we have

i(x)

i(a)

i(a)

f

i(f̄)=f

id

,

thus giving that i∗i! ∼= 1Fun(A,C) are naturally isomorphic.

D.3 Operadic Lan in the case of symmetric monoidal ∞-categories

When A,B are symmetric monoidal ∞-categories, we can ask whether i : A → B

gives an adjunction on the categories of symmetric monoidal functors. [1] give the

conditions for this to hold, as well as an explicit description of the operadic left Kan

extension, in the following result:

Lemma D.7 ([1], Lemma 2.16). Suppose C is a symmetric monoidal ∞-category.

Let i : A → B be a symmetric monoidal functor of symmetric monoidal ∞-categories

where A is small and B is locally small. Consider the commutative diagram of solid

arrows:
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Fun⊗(A, C) Fun⊗(B, C)

Fun(A, C) Fun(B, C)

i⊗!

i∗

i!

i∗

where the vertical arrows forget that a given functor was symmetric monoidal (i.e.

forget that it preserves coCartesian morphisms).

If

(1) the underlying ∞-category of C admits sifted colimits;

(2) for each b ∈ B, the slice ∞-category A/b is sifted

Then i∗ has a left adjoint i!, which can be calculated as

i!F : b 7→ colim
(
A/b→ A F−→ C

)
' i∗b⊗A F.

If additionally

(3) the symmetric monoidal structure for C distributes over sifted colimits;

(4) the functor A/(1A)→ A/(1B) is final; and

(5) for each pair b, b′ ∈ B, the tensor product functor

⊗
: A/b×A/b′ → A/(b⊗ b′)

is final,

then there is a left adjoint i⊗! and the ‘downward right square commutes’.

If i is fully faithful then so are i! and i⊗! .

94



We apply this lemma to A = Env(OpenG(M)),B = GMan and the inclusion

functor i : A → B. It gives us an adjunction between multiplicative pre-factorization

algebras on Env(OpenG(M)) and GMan, which we then show lifts to an equivalence

of (∞, 1)-categories when we impose the descent condition (in chapter 5).

Corollary D.8. Applying the above to i : Env((OpenG(M)⊗) → GMan, one gets

an adjunction:

Fun⊗(Env(OpenG(M)⊗), Ch) Fun⊗(GMan,Ch)

a

Proof. Let A = Env(OpenG(M)),B = GMan and i be the inclusion functor i : A →

B. Conditions (1) and (3) follow from the fact that (Chk,⊗) is ⊗-sifted cocomplete

(see [1], Defn 1.15, Ex 1.18).

For condition (2), A/b is sifted if it is non-empty and the diagonal functor K :

A/b → A/b × A/b is final. For every b ∈ B, A/b is non-empty because each G-

manifold has a covering by elements of A. To see that the diagonal functor is final,

take an arbitrary ((a1
p1−→ b), (a2

p2−→ b)) ∈ A/b×A/b and consider the slice category

(a1, a2)/K. Objects of this category consist of (a
p−→ b) ∈ A/b equipped with the

following maps in A/b:

a1 a a2

b

φ1

p1
p

p2

φ2

Morphisms of this category consist of f : (a, p) → (a′, p′), making the following

diagrams commute:

a

b

a′

f

p

p′

a

a1 a2

a′

f

φ1

φ′1

φ2

φ′2

Take an arbitrary object (a, p) ∈ (a1, a2)/K. Consider the following endofunctors:
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(a1, a2)/K (a1, a2)/K

const(a,p)

P

id

η

ζ

where id is the identity functor; const(a,p) is the constant functor sending all objects

to (a, p); and P is the functor that sends (a′, p′) to the categorical product in A/b,

(a, p)× (a′, p′) =: (a× a′, p̃), where the maps φ̃i (i = 1, 2) are given by the universal

property of the product, as illustrated in the diagram below (where all objects and

morphisms should be considered in A/b):

ai

a a× a′ a′

φi φ′i
φ̃i

ππ′

There are natural transformations η : P ⇒ const(a,φ) and ζ : P ⇒ id, given by

η(a′,φ′) := π and ζ(a′,φ′) := π′. Upon taking the nerve, these natural transformations

give a zig-zag of homotopies between the identity map and a constant map, giving

the contractibility of N((a1, a2)/K) and the desired finality of the diagonal functor.

For condition (4), note that 1A = ∅ = 1B, and A/∅ only contains the trivial

element, ∅; thus the functor is final trivially.

For condition (5), take an arbitrary object (ã
p−→ btb′) ∈ A/(b⊗b′). Then consider

the undercategory ã/
⊗

. An object of this category consists of a → b, a′ → b′, plus

a map making the following diagram commute:

ã a t a′

b t b′

φ

p

Because the maps in B = GMan are embeddings, we can decompose ã into the

components over b, b′, respectively: ã = ãbt ãb′ . This gives an initial object for ã/
⊗

;

for any other object (a, a′, φ), the map φ gives the desired morphism, as illustrated

in the diagram below:
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ãb t ãb′ ã a t a′

b t b′
p

φ

id φ

p
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