Homework Assignment \# 11, due Dec. 3

1. (10 points) Let V be a vector space of dimension n, and let $\operatorname{Alt}^{k}(V, \mathbb{R})$ be the vector space of alternating multilinear maps $\omega: \underbrace{V \times \cdots \times V}_{k} \rightarrow \mathbb{R}$. Show that $\operatorname{dim} \operatorname{Alt}^{k}(V, \mathbb{R})=\binom{n}{k}$.

Hint: Let $\left\{b_{i}\right\}_{i=1, \ldots, n}$ be a basis for V, and for a multi-index $I=\left(i_{1}, \ldots, i_{k}\right)$ let $b_{I}:=$ $\left(b_{i_{1}}, \ldots, b_{i_{k}}\right) \in V \times \cdots \times V$. Show that an element $\omega \in \operatorname{Alt}^{k}(V, \mathbb{R})$ is uniquely determined by the numbers $\omega\left(b_{I}\right) \in \mathbb{R}$ as I runs through all length k multi-indices that are strictly increasing, i.e., $i_{1}<i_{2}<\cdots<i_{k}$.
2. (10 points) Let V be a vector space and let $\operatorname{Alt}^{k}(V, \mathbb{R})$ be the vector space of alternating multilinear maps $\omega: \underbrace{V \times \cdots \times V}_{k} \rightarrow \mathbb{R}$. We recall that the wedge product

$$
\operatorname{Alt}^{k}(V, \mathbb{R}) \times \operatorname{Alt}^{\ell}(V, \mathbb{R}) \xrightarrow{\wedge} \operatorname{Alt}^{k+\ell}(V, \mathbb{R})
$$

is a bilinear associative product defined by

$$
(\omega \wedge \eta)\left(v_{1}, \ldots, v_{k+\ell}\right):=\frac{1}{k!\ell!} \sum_{\sigma \in S_{k+\ell}} \operatorname{sign}(\sigma) \omega\left(v_{\sigma(1)}, \ldots, v_{\sigma(k)}\right) \eta\left(v_{\sigma(k+1)}, \ldots, v_{\sigma(k+\ell)}\right)
$$

for $\omega \in \operatorname{Alt}^{k} l(V, \mathbb{R}), \eta \in \operatorname{Alt}^{\ell}(V, \mathbb{R}), v_{1}, \ldots, v_{k+\ell} \in V$.
(a) Let $\left\{b_{i}\right\}_{i=1, \ldots, n}$ be a basis of V, and let $\left.\left\{b^{i}\right\}_{i=1, \ldots, n}\right\}$ be the dual basis of the dual vector space $V^{*}=\operatorname{Alt}^{1}(V, \mathbb{R})$. Let $I=\left(i_{1}, \ldots, i_{k}\right), J=\left(j_{1}, \ldots, j_{k}\right)$ be k-tupels with $1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n$ and similarly for J. Show that

$$
\left(b^{i_{1}} \wedge \cdots \wedge b^{i_{k}}\right)\left(b_{j_{1}}, \ldots, b_{j_{k}}\right)= \begin{cases}1 & I=J \\ 0 & I \neq J\end{cases}
$$

In particular, $\left\{b^{i_{1}} \wedge \cdots \wedge b^{i_{k}}\right\}_{1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n}$ is a basis of the vector space $\operatorname{Alt}^{k}(V, \mathbb{R})$. Hint: Use induction over k.
(b) Show that the wedge product is graded commutative, i.e.,

$$
\eta \wedge \omega=(-1)^{k \ell} \omega \wedge \eta \quad \text { for } \omega \in \operatorname{Alt}^{k} l(V, \mathbb{R}), \eta \in \operatorname{Alt}^{\ell}(V, \mathbb{R})
$$

Hint: First consider the case $k=\ell=1$, then argue that it suffices to prove the statement in the case $\omega=b^{i_{1}} \wedge \cdots \wedge b^{i_{k}}, \eta=b^{j_{1}} \wedge \cdots \wedge b^{j_{\ell}}$.
3. (10 points) Let M, N be smooth manifolds and $F: M \rightarrow N$ a smooth map. Then a differential form $\omega \in \Omega^{k}(N)$ leads to a form $F^{*} \omega \in \Omega^{k}(M)$, called the pullback of ω along F which is defined by

$$
\left(F^{*} \omega\right)_{p}\left(v_{1}, \ldots, v_{k}\right):=\omega_{p}\left(F_{*} v_{1}, \ldots, F_{*} v_{k}\right) \quad \text { for } p \in M, v_{1}, \ldots, v_{k} \in T_{p} M
$$

In more detail: the k-form $F^{*} \omega$ is a section of the vector bundle $\operatorname{Alt}^{k}(T M ; \mathbb{R})$, and hence it can be evaluated at $p \in M$ to obtain an element $\left(F^{*} \omega\right)_{p}$ in the fiber of that vector bundle over p, which is $\mathrm{Alt}^{k}\left(T_{p} M ; \mathbb{R}\right)$. In other words, $\left(F^{*} \omega\right)_{p}$ is an alternating multilinear map

$$
\left(F^{*} \omega\right)_{p}: \underbrace{T_{p} M \times \cdots \times T_{p} M}_{k} \longrightarrow \mathbb{R},
$$

and hence it can be evaluated on the k tangent vectors $v_{1}, \ldots, v_{k} \in T_{p} M$ to obtain a real number $\left(F^{*} \omega\right)_{p}\left(v_{1}, \ldots, v_{k}\right)$. On the right hand side to the equation defining $F^{*} \omega$, the map $F_{*}: T_{p} M \rightarrow T_{F(p)} N$ is the differential of F. Hence the alternating multilinear $\operatorname{map} \omega_{F(p)} \in \operatorname{Alt}^{k}\left(T_{F(p)} N ; \mathbb{R}\right)$ can be evaluated on $F_{*} v_{1}, \ldots, F_{*} v_{k}$ to obtain the real number $\omega_{p}\left(F_{*} v_{1}, \ldots, F_{*} v_{k}\right)$.

Let $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a smooth map. Show that

$$
\begin{equation*}
F^{*}\left(d x^{1} \wedge \cdots \wedge d x^{n}\right)=\operatorname{det}\left(d F_{x}\right) d x^{1} \wedge \cdots \wedge d x^{n} \tag{0.1}
\end{equation*}
$$

Here $d F_{x}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is the differential of F at the point $x \in \mathbb{R}^{n}$.
4. (10 points) For any smooth manifold M the de Rham differential (also called exterior differential) is the unique map $d: \Omega^{k}(M) \rightarrow \Omega^{k+1}(M)$ with the following properties:
(i) d is linear.
(ii) For a function $f \in C^{\infty}(M)=\Omega^{0}(M)$ the 1-form $d f \in \Omega^{1}(M)=C^{\infty}\left(M, T^{*} M\right)$ is the usual differential of f.
(iii) d is a graded derivation with respect to the wedge product; i.e.,

$$
d(\omega \wedge \eta)=(d \omega) \wedge \eta+(-1)^{k} \omega \wedge d \eta \quad \text { for } \omega \in \Omega^{k}(M), \eta \in \Omega^{l}(M)
$$

(iv) $d^{2}=0$.

Show that for $M=\mathbb{R}^{n}$ the de Rham differential of the k-form

$$
\omega=f d x^{i_{1}} \wedge \cdots \wedge d x^{i_{k}} \quad \text { for } f \in C^{\infty}\left(\mathbb{R}^{n}\right), i_{1}<i_{2}<\cdots<i_{k}
$$

is given explicitly by the formula

$$
d \omega=\sum_{j=1}^{n} \frac{\partial f}{\partial x^{j}} d x^{j} \wedge d x^{i_{1}} \wedge \cdots \wedge d x^{i_{k}}
$$

We note that every k-form $\eta \in \Omega^{k}\left(\mathbb{R}^{n}\right)$ can be written uniquely in the form

$$
\eta=\sum_{i_{1}<\cdots<i_{k}} f_{i_{1}, \ldots, i_{k}} d x^{i_{1}} \wedge \cdots \wedge d x^{i_{k}}
$$

for smooth functions $f_{i_{1}, \ldots, i_{k}} \in C^{\infty}\left(\mathbb{R}^{n}\right)$.
5. (10 points) Show that the exterior derivative for differential forms on \mathbb{R}^{3} corresponds to the classical operations of gradient resp. curl resp. divergence. More precisely, show that there is a commutative diagram

Here $\operatorname{Vect}\left(\mathbb{R}^{3}\right)$ is the space of vector fields on \mathbb{R}^{3}, and we recall that grad, curl and divergence are given by the formulas

$$
\begin{aligned}
\operatorname{grad}(f) & =\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right) \\
\operatorname{curl}\left(f_{1}, f_{2}, f_{3}\right) & =\left(\frac{\partial f_{3}}{\partial y}-\frac{\partial f_{2}}{\partial z}, \frac{\partial f_{1}}{\partial z}-\frac{\partial f_{3}}{\partial x}, \frac{\partial f_{2}}{\partial x}-\frac{\partial f_{1}}{\partial y}\right) \\
\operatorname{div}\left(f_{1}, f_{2}, f_{3}\right) & =\frac{\partial f_{1}}{\partial x}+\frac{\partial f_{2}}{\partial y}+\frac{\partial f_{3}}{\partial z}
\end{aligned}
$$

Here we identify a vector field on \mathbb{R}^{3} with a triple $\left(f_{1}, f_{2}, f_{3}\right)$ of smooth functions on \mathbb{R}^{3}. The vertical isomorphisms are given by

$$
\begin{aligned}
& \left(f_{1}, f_{2}, f_{3}\right) \mapsto f_{1} d x+f_{2} d y+f_{3} d z \\
& \left(f_{1}, f_{2}, f_{3}\right) \mapsto f_{1} d y \wedge d z+f_{2} d z \wedge d x+f_{3} d x \wedge d y \\
& f \mapsto f d x \wedge d y \wedge d z
\end{aligned}
$$

