Homework Assignment # 10, due Nov. 19

1. (10 points) Recall that the special linear group $SL_n(\mathbb{R})$ and the orthogonal group O(n) are both submanifolds of the vector space $M_{n \times n}(\mathbb{R})$ of $n \times n$ matrices. In particular, the tangent spaces $T_ASL_n(\mathbb{R})$ for $A \in SL_n(\mathbb{R})$ and $T_AO(n)$ for $A \in O(n)$ are subspaces of the tangent space $T_AM_{n \times n}(\mathbb{R})$, which can be identified with $M_{n \times n}(\mathbb{R})$, since $M_{n \times n}(\mathbb{R})$ is a vector space.

- (a) Show that $T_e SL_n(\mathbb{R}) = \{C \in M_{n \times n} \mid \operatorname{tr}(C) = 0\}$, where e is the identity matrix, and $\operatorname{tr}(C)$ denotes the trace of the matrix C.
- (b) Show that $T_e O(n) = \{C \in M_{n \times n} \mid C^t = -C\}.$

Hint for parts (a) and (b): $SL_n(\mathbb{R})$ and O(n) can be both be described as level sets $F^{-1}(c)$ of a regular value c for a suitable smooth map F (as we did in class for $SL_n(\mathbb{R})$ and you did for O(n) in problem 5 of homework assignment # 9; note that O(n) is equal to the Stiefel manifold $V_n(\mathbb{R}^n)$).

2. (10 points) Let M be a smooth manifold of dimension n. If $f: M \to \mathbb{R}$ is a smooth function, then for $p \in M$ its differential

$$f_*: T_p M \longrightarrow T_{f(p)} \mathbb{R} = \mathbb{R}$$

is an element of $\operatorname{Hom}(T_pM,\mathbb{R})$. This vector space dual to the tangent space T_pM is called the *cotangent space*, and is denoted T_p^*M . It is common to write $df_p \in T_p^*M$ for the differential $f_*: T_pM \to \mathbb{R}$.

- (a) Let $x^i \colon \mathbb{R}^n \to \mathbb{R}$ be the *i*-th coordinate function, which maps $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$ to $x_i \in \mathbb{R}$. Show that for any point $q \in \mathbb{R}^n$ a basis of the cotangent space $T_q^* \mathbb{R}^n$ is given by $\{dx_q^i\}_{i=1,\ldots,n}$.
- (b) If $M \supset U \xrightarrow{\phi} V \subset \mathbb{R}^n$ is a smooth chart of M, the component functions of ϕ , given by $y^i := x^i \circ \phi$ are called *local coordinates*. Show that for $p \in U$, a basis of the cotangent space T_p^*M is given by $\{dy_p^i\}_{i=1,\dots,n}$.

Hint for part (b): let $\phi^* \colon T_q^* \mathbb{R}^n \to T_p^* M$, $q = \phi(p)$ be the linear map dual to the differential $\phi_* \colon T_p M \to T_q \mathbb{R}^n$ defined by

$$(\phi^*\xi)(v) = \xi(\phi_*(v))$$
 for $\xi \in T_q^* \mathbb{R}^n$ and $v \in T_p M$.

Show first that $\phi^*(dx_q^i) = dy_p^i$.

3. (10 points) Let M be a smooth manifold and let $f: M \to \mathbb{R}$ be a smooth function. Show that the differential df is a smooth section of the cotangent bundle T^*M . Hint: smoothness of a section s is a local property and hence to check smoothness it suffices to check that the composition $\Phi_{\alpha} \circ s$ is smooth for local trivializations Φ_{α} of the cotangent bundle T^*M .

4. (10 points) The goal of this problem is to prove the following result.

Lemma 0.1. (Vector Bundle Construction Lemma). Let M be a smooth manifold of dimension n, and let $\{E_p\}$ be a collection of vector spaces parametrized by $p \in M$. Let E be the set given by the disjoint union of all these vector spaces, which we write as

$$E := \prod_{p \in M} E_p = \{(p, v) \mid p \in M, v \in E_p\}$$

and let $\pi: E \to M$ be the projection map defined by $\pi(p, v) = p$. Let $\{U_{\alpha}\}_{\alpha \in A}$ be an open cover of M, and let for each $\alpha \in A$, let $\Phi_{\alpha}: \pi^{-1}(U_{\alpha}) \longrightarrow U_{\alpha} \times \mathbb{R}^{k}$ be maps with the following properties

(i) The diagram

$$E_{|U_{\alpha}} := \pi^{-1}(U_{\alpha}) \xrightarrow{\Phi_{\alpha}} U_{\alpha} \times \mathbb{R}^{k}$$

$$(0.2) \quad eq:loc_triangletic for the second second$$

is commutative, where π_1 is the projection onto the first factor.

- (ii) For each $p \in U_{\alpha}$, the restriction of Φ_{α} to $E_p = \pi^{-1}(p)$ is a vector space isomorphism between E_p and $\{p\} \times \mathbb{R}^k = \mathbb{R}^k$ (which implies that Φ_{α} is a bijection).
- (iii) For $\alpha, \beta \in A$, the composition

$$(U_{\alpha} \cap U_{\beta}) \times \mathbb{R}^{k} \xrightarrow{\Phi_{\alpha}^{-1}} \pi^{-1}(U_{\alpha} \cap U_{\beta}) \xrightarrow{\Phi_{\beta}} (U_{\alpha} \cap U_{\beta}) \times \mathbb{R}^{k}$$

is smooth.

Then the total space E can be equipped with the structure of a smooth manifold of dimension n + k such that $\pi: E \to M$ is a smooth vector bundle of rank k with local trivializations Φ_{α} .

- (a) Construct a topology on E by declaring $U \subset E$ to be *open* if $\Phi_{\alpha}(U \cap E_{|U_{\alpha}})$ is an open subset of $U_{\alpha} \times \mathbb{R}^k$ for all $\alpha \in A$. Show that this satisfies the conditions for a topology, and that with this topology on E the projection map $\pi \colon E \to M$ is continuous and the map Φ_{α} is a homeomorphism (for the subspace topology on $E_{|U_{\alpha}}$).
- (b) Show that equipped with this topology E is a topological manifold of dimension n + k(don't bother to check the technical conditions of being Hausdorff and second countable). Hint: Let $\{(V_{\beta}, \psi_{\beta})\}_{\beta \in B}$ be an atlas for M. Show that the bundle chart Φ_{α} and the manifold chart ψ_{β} can be used to construct a chart

$$\chi_{\alpha,\beta} \colon E \underset{\text{open}}{\supset} E_{|U_{\alpha} \cap V_{\beta}} \longrightarrow \mathbb{R}^{n+k}$$

- (c) Show that the charts $\{(E_{|U_{\alpha}\cap V_{\beta}}), \chi_{\alpha,\beta}\}$ for $(\alpha, \beta) \in A \times B$ form a smooth atlas for E.
- (d) Show that $\pi: E \to M$ is a smooth vector bundle of rank k with local trivializations provided by Φ_{α} .

5. (10 points) We recall that the projective space \mathbb{RP}^n is a smooth manifold of dimension n whose underlying set is the set of 1-dimensional subspaces of \mathbb{R}^{n+1} . In particular, each point $p \in \mathbb{RP}^n$ determines tautologically a 1-dimensional subspace $E_p \subset \mathbb{R}^{n+1}$. Let E be the disjoint union $E = \prod_{p \in \mathbb{RP}^n} E_p$ of the vector spaces E_p . More explicitly,

$$E = \{ ([x], v) \mid [x] \in \mathbb{RP}^n, v \in \langle x \rangle \},\$$

where $x \in \mathbb{R}^{n+1} \setminus \{0\}$, $\langle x \rangle \subset \mathbb{R}^{n+1}$ is the one-dimensional subspace spanned by x, and $[x] \in \mathbb{RP}^n$ is the corresponding point in the projective space.

- (a) Use the Vector Bundle Construction Lemma to show that E is a smooth vector bundle of rank 1 over \mathbb{RP}^n (which is called the *tautological line bundle over* \mathbb{RP}^n ; *line bundle* is a synonym for vector bundle of rank 1). Hint: Construct local trivializations of Erestricted to $U_i = \{ [x_0, \ldots, x_n] \in \mathbb{RP}^n \mid x_i \neq 0 \}$.
- (b) Show that the complement of the zero section in E is diffeomorphic to $\mathbb{R}^{n+1} \setminus \{0\}$.
- (c) Show that the line bundle E is not isomorphic to the trivial line bundle. Hint: consider the complement of the zero-section of E and compare it with the complement of the zero-section of the trivial line bundle.