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1 Elliptic differential operators and their index

1.1 Differential operators

Before defining differential operators, let us first present two examples of differential opera-
tors.

Example 1.1. (Examples of differential operators in Rn).

(i) Let V be a smooth vector field in Rn. There are equivalent ways to define/think of a
vector field:

• as a smooth function V : Rn → Rn, or

• as a derivation V : C∞(Rn) → C∞(Rn) of the algebra of smooth functions on
Rn, i.e., a linear map satisfying the product rule V (fg) = V (f)g + fV (g) for
f, g ∈ C∞(Rn).
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Explicitly, if V1, . . . , Vn ∈ C∞(Rn) are the component functions of a smooth function
V : Rn → Rn, then the corresponding derivation

V : C∞(Rn)→ C∞(Rn)

maps a smooth function f ∈ C∞(Rn) to the function V f ∈ C∞(Rn) defined by

V f :=
n∑
j=1

Vj
∂f

∂xj
.

(ii) The Laplace operator ∆: C∞(Rn)→ C∞(Rn) is defined by ∆ := −
∑n

j=1
∂2

∂x2j
. Warning:

the definition of the Laplace operator is not consistent in the literature. The definition
above is the convention preferred by geometers, while analysts define ∆ without the
minus sign.

Definition 1.2. A linear map D : C∞(Rn)→ C∞(Rn) is a differential operator of order ≤ k
if it can be written in the form

Df =
∑
|α|≤k

Aα

(
∂

∂x1

)α1

· · ·
(

∂

∂xn

)αn
f (1.3)

for f ∈ C∞(Rn), where α = (α1, . . . , αn) is a multi index with αj ∈ N, |α| := α1 + · · ·+ αn|,
and Aα ∈ C∞(Rn). The operator has order k if some function Aα with |α| = k is non-zero.

In particular, D : C∞(Rn) → C∞(Rn) is a differential operator of order 0 if it given by
multiplication by a smooth function A0 ∈ C∞(Rn). A vector field V : C∞(Rn)→ C∞(Rn) is
a first order differential operator, and the Laplace operator ∆ is a second order differential
operator.

More generally, if E, F are vector spaces (finite dimensional, real or complex), let
C∞(Rn;E) be the space of smooth maps f : Rn → E and similar for C∞(Rn;F ). A lin-
ear map

D : C∞(Rn;E) −→ C∞(Rn;E)

is a differential operator of order ≤ k if (Df)(x) is given by the equation (1.3) where now
Aα is a smooth function on Rn with values in the space Hom(E,F ) of linear maps from E
to F .

This definition can be further generalized from the Euclidean space Rn to n-dimensional
smooth manifolds X as follows. Let E, F be smooth vector bundles on X (finite dimensional,
real or complex), and let Γ(X;E) resp. Γ(X;F ) be the vector space of smooth sections. A
linear map

D : Γ(X;E) −→ Γ(X;E)

is a differential operator of order ≤ k if locally Df has the form (1.3) (using a smooth chart

X ⊃ U
≈−→ V ⊂ Rn and local trivializations of E|U and F|U the section spaces Γ(U ;E),

Γ(U ;F ) can be identified with vector valued functions on V ).
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1.2 Digression: the adjoint of a differential operator

Let C∞c (Rn) be the smooth functions on Rn with compact support (we recall that the support
of a function or section f is the closure of the subset of the domain of f where f is non-zero).
There is an inner product

〈 , 〉 : C∞c (Rn)× C∞c (Rn) −→ R

defined by

〈f, g〉 :=

∫
Rn
f(x)g(x)dx.

We recall that inner product means that 〈f, g〉 is multlinear (i.e., it is linear in each slot),
it is symmetric (i.e., 〈f, g〉 = 〈g, f〉), and positive definite (i.e., 〈f, f〉 ≥ 0 for all f and
〈f, f〉 = 0 if and only if f = 0). All of these properties are immediate from the definition,
except possibly the statement that 〈f, f〉 = 0 implies f = 0. To argue this, suppose that
f(x) 6= 0 for some point x. The continuity of f implies that f(y) ≥ ε for all y in some ball
around x, which forces 〈f, f〉 =

∫
Rn f(x)2dx to be strictly positive; this provides the desired

contradiction.

Remark 1.4. The inner product space C∞c (Rn) of smooth compactly supported functions is
not complete, that is, not every Cauchy sequence converges. In other words, C∞c (Rn) is not a
Hilbert space, and so we need to be careful not to use well-known facts for Hilbert spaces that
rely on the completeness assumption. Of course, we can complete the inner product space
C∞c (Rn) to obtain a real Hilbert space (whose elements are equivalence classes of Cauchy
sequences in the inner product space). This Hilbert space is denoted L2(Rn), the Hilbert
space of square integrable functions on Rn.

Similarly, on the space C∞c (Rn;C) of C-valued smooth functions on Rn with compact
support, there is a hermitian inner product

〈 , 〉 : C∞c (Rn;C)× C∞c (Rn;C) −→ C

defined by

〈f, g〉 :=

∫
Rn
f(x)g(x)dx.

We recall that hermitian inner product means that 〈f, g〉 is is C-linear in the first slot, and
C-antilinear in the second slot (i.e., 〈f, zg〉 = z̄〈f, g〉 for z ∈ C), it is conjugate-symmetric
(i.e., 〈f, g〉 = 〈g, f〉), and positive definite (i.e., 〈f, f〉 ≥ 0 for all f and 〈f, f〉 = 0 if and only
if f = 0).

More generally, if E is a complex vector space equipped with Hermitian inner product
〈 , 〉E, this allows us to define a Hermitian inner product on C∞c (Rn;E) the space of E-valued
functions with compact support on Rn by

〈f, g〉 :=

∫
Rn
〈f(x), g(x)〉Edx. (1.5)
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Remark 1.6. If E is a real vector space equipped with an inner product 〈 , 〉E, then
the formula above defines an inner product on the real vector space C∞c (Rn;E) of smooth
functions f : Rn → E with compact support. Moreover, the complexification the real vector
space C∞c (Rn;E) can be identified with C∞(Rn;E⊗RC). The inner product on E induces a
hermitian inner product on E ⊗R C, leading to a hermitian inner product on C∞(Rn;E ⊗R
C) = C∞c (Rn;E)⊗RC, which in turn is given by extending the inner product on C∞(Rn;E)
to a hermitian inner product on C∞c (Rn;E) ⊗R C. In other words, the inner product on
C∞c (Rn;E) and the hermitian inner product on C∞c (Rn;E ⊗R C) are closely related, and so
we might drop the adjective “hermitian” in front of “inner product” when it is clear from
the context whether our vector spaces are real or complex.

Let E, F be complex vector spaces equipped with Hermitian inner products and let
T : E → F be a C-linear operator. Then a C-linear operator T ∗ : F → E is called the
adjoint of T if

〈Tv, w〉F = 〈v, T ∗w〉F for all v ∈ E, w ∈ F .

Example 1.7. 1. The operator D = ∂
∂x

: C∞c (R;C) → C∞c (R;C) has adjoint D∗ = −D,
since for every f, g ∈ C∞c (R;C)

〈Df, g〉 =

∫
R
f ′(x)g(x)dx = −

∫
R
f(x)g′(x)dx = −〈f,Dg〉.

Here the second equality is given by integration by parts.

2. Let E, F be hermitian inner product spaces, and let

D : C∞c (R;E)→ C∞c (R;F )

be the first order differential operator given by

(Df)(x) = A(x)f ′(x),

where A : R→ Hom(E,F ) is a smooth function. To determine the adjoint of D, let us
differentiate the complex valued function 〈Af, g〉F = 〈A(x)f(x), g(x)〉F , where 〈 , 〉F
is the hermitian inner product on F :

∂

∂x
〈Af, g〉F =〈A′f, g〉F + 〈Af ′, g〉F + 〈Af, g′〉F

=〈Df, g〉F + 〈f, (A′)∗g〉F + 〈f, A∗g′〉F
=〈Df, g〉F + 〈f, A∗g′ + (A′)∗g〉F

Due to our assumption that the functions f, g are compactly supported, we can inte-
grate these functions over R and obtain

0 = 〈Df, g〉+ 〈f, A∗g′ + (A′)∗g〉.
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This shows that D∗, the adjoint of D is given by D∗ = −A∗ ∂
∂x
− (A′)∗. We note

that although the operator D did not involve a zero order term, the operator D∗ does
involve the zero order term −(A′)∗. While the formula for D∗ is somewhat unpleasant,
the formula for the principal symbol couldn’t be nicer:

σD
∗

dx (x) = i(−A∗) = (iA)∗ = (σDdx(x))∗

In other words, the factor of i in the definition of the principal symbol is helpful since
it cancels the effect to the annoying minus sign coming from integration by parts.

The last statement holds much more generally.

Proposition 1.8. For any differential operator D : C∞c (Rn;E) → C∞c (Rn;F ) of order k,
there is an adjoint differential operator D∗ : C∞c (Rn;F )→ C∞c (Rn;E) of order k. Moreover,
the principal symbol of D∗ is given by

σD
∗

ξ (x) = (σDξ (x))∗ ∈ Hom(F,E) for x ∈ Rn, ξ ∈ T ∗xRn.

The proof involves a straightforward calculation using Stokes’ Theorem, which is com-
pletely analogous, but lengthier than our calculation above.

Next we would like to generalize our construction of the inner product on C∞c (Rn) above
to an inner product on the vector space C∞c (X) of compactly supported smooth func-
tions f : X → R on an n-manifold X. It is tempting to define 〈f, g〉 :=

∫
X
f(x)g(x) for

f, g ∈ C∞(X), but this is nonsense since compactly supported smooth functions cannot be
integrated over a manifold X without additional geometric data. For example, if f : X → R
is the constant function f ≡ 1 on a compact manifold X, then our experience with integrat-
ing functions over compact subsets of Rn would lead us to expect that integral is the volume
of X. It is pretty clear that it doesn’t make sense to talk about the volume of a manifold
without additional geometric structure on X.

If X is an oriented manifold, and ω ∈ Ωn
c (X) = Γc(X; ΛnT ∗X) is a compactly supported

differential form on X of degree n, then the integral∫
X

ω ∈ R

is well-defined. An n-form ω is a volume form if for every x ∈ X and every oriented basis
{e1, . . . , en} of TxX

ωx(e1, . . . , en) > 0

Here ωx ∈ ΛnT ∗xX denotes the evaluation of the section ω ∈ Γ(X; Λn
xT
∗X) at the point

x ∈ X. Volume forms exist on any oriented manifold. They can be constructed locally
using the local trivializations of TX, and then combined to a volume form on all of X via
partitions of unity.
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Example 1.9. Let g be a Riemannian metric on X, i.e., every tangent space TxX is equipped
with an inner product gx : TxX × TxX → R which depends smoothly on X (technically,
this is expressed by saying that g is a section of the vector bundle Sym2(TX,R) whose fiber
Sym2(TX,R)x at a point x ∈ X is the vector space of symmetric bilinear maps TxX×TxX →
R). Then an orientation on X determines a volume form volg ∈ Ωn(X) which is determined
by the requirement that

volg(e1, . . . , en) = 1

for any oriented orthonormal basis {e1, . . . , en} of TxX. The volume form volg is called
Riemannian volume form.

Summarizing this discussion one could say that a Riemannian metric on X is a measuring
device for the length of tangent vectors, and the angle between two tangent vectors belonging
to the same tangent space. If X is oriented, a volume form vol ∈ Ωn(X) is a measuring device
for volumes of compact codimension 0 pieces of X: if K ⊂ X is a compact codimension 0
submanifold of X, then we interpret

∫
K

vol as the volume of K. So the construction of the
Riemannian volume form volg associated to a Riemannian metric g means geometrically that
knowing how to measure lengths of tangent vectors of X allows us to measure volumes of
compact codimension 0 submanifolds of X.

Let X be an oriented n-manifold and E a complex vector bundle over X equipped with
a volume form vol (e.g., the volume form volg associated to a Riemannian metric g on
X). A bundle metric 〈 , 〉E on E consists of hermitian inner products on the fibers Ex for
all x ∈ X which depend smoothly on x (in the same sense as explained for Riemannian
metrics above). Then there is a hermitian inner product on the space Γc(X;E) of compactly
supported smooth sections of E defined by

〈f, g〉 :=

∫
X

〈f(x), g(x)〉E vol (1.10)

Similarly, if E is a real vector bundle, a bundle metric on E consists of inner products on
the fibers Ex (which are now real vector spaces), depending smoothly on x. For example, a
bundle metric on the tangent bundle TX is the same thing as a Riemannian metric on X.
Then the real vector space Γc(X;E) can be equipped with an inner product (real valued)
defined by formula (1.10) (now the function x 7→ 〈f(x), g(x)〉E is real-valued and hence 〈f, g〉
is a real number).

The statement of Proposition 1.8 concerning the existence of adjoints of differential op-
erators holds in this more general setting.

Proposition 1.11. Let X be an oriented n-manifold equipped with a volume form vol. Let
E, F be real or complex vector bundles over X equipped with bundle metrics, and let

D : Γc(X;E) −→ Γc(X;F )
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be a differential operator of order k. Then there is a differential operator

D∗ : Γc(X;F ) −→ Γc(X;E)

of order k which is adjoint to D. The principal symbol of D∗ is given by

σD
∗

ξ (x) = (σDξ (x))∗ ∈ Hom(Fx, Ex) for x ∈ Rn, ξ ∈ T ∗xRn.

Remark 1.12. The assumption that X is oriented in not necessary for the above result.
We used the orientation to define the inner product on Γ(X;E) using a bundle metric on E
and a volume form vol ∈ Ωn(X). More generally, the volume form vol could be replaced by
a density, a section of a real line bundle |ΛnT ∗X| satisfying a positivity condition. The line
bundle |ΛnT ∗X| is built from ΛnT ∗X, but it differs from ΛnT ∗X in the following ways:

• Sections of |ΛnT ∗X| with compact support can be integrated over X to obtain a real
number without requiring an orientation on X;

• The line bundle |ΛnT ∗X| is always trivializable, unlike ΛnT ∗X which is trivializable if
and only if X is orientable.

1.3 Elliptic operators built from the de Rham differential

We recall from Lemma ?? that the principal symbol of the de Rham differential

Ωk(X) = Γ(X,ΛkT ∗X)
d−→ Ωk+1(X) = Γ(X,Λk+1T ∗X)

evaluated at a cotangent vector ξ ∈ T ∗xX is the homomorphism σdξ (x) : ΛkT ∗xX → Λk+1T ∗xX
given by ω 7→ iξ ∧ ω. If X is a Riemannian n-manifold, then the inner product on the
tangent space TxX given by the Riemannian metric induces an inner product on the dual
space T ∗xX. This in turn leads to an inner product on the exterior power space ΛkT ∗xX for
any k. These inner products depends smoothly on x ∈ X; in other words, the Riemannian
metric gives us bundle metrics on TX, T ∗X and ΛkT ∗ X. In particular, if X is oriented,
the Riemannian metric determines a volume form volg, thus giving us an inner product on
the space of compactly supported k-forms Ωk

c (X) = Γc(X; ΛkT ∗xX) for any k.

Remark 1.13. The orientation on X is not necessary here, since a riemannian metric g
on X always determines a riemannian density | volg |, a section of the density line bundle
|ΛnT ∗X| mentioned in Remark 1.12. As discussed there, this leads to an inner product on
Γc(X;E) for any vector bundle E with bundle metric.

Then we know from Proposition ?? that there is a first order differential operator

d∗ : Ωk+1(X) −→ Ωk(X)
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which is adjoint to the de Rham differential, and that its principal symbol σd
∗

ξ (x) is the
adjoint of the linear map

ΛkT ∗xX −→ Λk+1T ∗xX given by ω 7→ iξ ∧ ω

with respect to the inner product on domain and codomain induced by the inner product
on TxX provided by the Riemannian metric. A calculation (exercise!) gives the following
result.

Lemma 1.14. The principal symbol of d∗ at ξ ∈ T ∗xX is given by σd
∗

ξ (x) = −iιv, where

• v ∈ TxX is the tangent vector corresponding to ξ ∈ T ∗xX via the isomorphism

TxX
∼=−→ T ∗xX

which sends a vector v ∈ TxX to the linear map (w 7→ 〈v, w〉 ∈ Hom(TxX,R) = T ∗xX.

• ιu is the derivation on the exterior algebra Λ∗T ∗xX :=
⊕n

k=0 ΛkT ∗xX determined by
ιu(ω) = ω(u) for ω ∈ T ∗xX = Hom(TxX,R).

Let D : Ω∗(X) =
⊕n

k=0 Ωk(X) −→ Ω∗(X) be the first order differential operator given
by D = d + d∗. This operator is sometimes called the de Rham operator (to be carefully
distinguished from the de Rham differential d).

Lemma 1.15. The de Rham operator D = d+ d∗ is an elliptic operator.

Proof. We need to show that for any non-zero cotangent vector ξ ∈ T ∗xX the principal symbol

σd+d∗

ξ (x) : Λ∗T ∗xX −→ Λ∗T ∗xX

is invertible. Applying the principal symbol to ω ∈ Λ∗T ∗xX we obtain

(σd+d∗

ξ (x))ω = σd+d∗

ξ (x) + σd+d∗

ξ (x) = iξ ∧ ω − iιvω = i(ξ ∧ ω − ιvω).

To show that σd+d∗

ξ (x) is invertible it suffices to show that its square is invertible. Writing
ξ ∧ for the map given by wedging with ξ, we calculate

(σd+d∗

ξ (x))2ω =− (ξ ∧ − ιv)(ξ ∧ ω − ιvω)

=− ξ ∧ ξ ∧ ω + ιv(ξ ∧ ω) + ξ ∧ ιvω − ιv(ιvω)

=ιv(ξ ∧ ω) + ξ ∧ ιvω
=ιv(ξ) ∧ ω − ξ ∧ ιvω + ξ ∧ ιvω
=ιv(ξ) ∧ ω = ξ(v)ω = ||ξ||2ω

In other words, the linear map (σd+d∗

ξ (x))2 is simply given by multiplication by ||ξ||2. In
particular, this is an isomorphism for ξ 6= 0 as claimed.
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It will be useful to also consider the Laplace-Beltrami operator

∆ := D2 = (d+ d∗)2 = dd∗ + d∗d : Ω∗(X)→ Ω∗(X).

We note that unlike the de Rahm operator D the Laplace operator ∆ maps k-form to k-form.
In other words, ∆ is the direct sum of the operators ∆k : Ωk(X) → Ωk(X) obtained by
restricting ∆ to k-forms. The following lemma implies that compositions of elliptic operators
are elliptic; in particular ∆ = D2 is elliptic since D is. The operator ∆0 : C∞(X)→ C∞(X)
is the usual Laplace operator acting on the functions on X.

Lemma 1.16. Let D1 : Γ(X;E1)→ Γ(X;E2) and D2 : Γ(X;E2)→ Γ(X;E3) be differential
operators of order k1 resp. k2. Then their composition D2 ◦ D1 is a differential operator
of order k1 + k2 whose principal symbol σD2◦D1

ξ (x) : E1
x → E3

x for ξ ∈ T ∗xX is given by the
composition

E1
x E2

x E3
x

σ
D1
ξ (x) σ

D2
ξ (x)

To calculate the index of the de Rham operator D and the Laplace operators ∆k it will
be useful to express the dimension of the cokernel of an elliptic operator D in terms of its
adjoint D∗. So let X be a compact oriented n-manifold, let E, F be vector bundles over X
equipped with bundle metrics, and let D : Γ(X,E)→ Γ(X,F ) be a differential operator and
D∗ its adjoint. We note that

ker(D∗) ={g ∈ Γ(X;F ) | 〈f,D∗g〉 = 0 for all f ∈ Γ(X;E)}
={g ∈ Γ(X;F ) | 〈Df, g〉 = 0 for all f ∈ Γ(X;E)}
= im(D)⊥.

We might be tempted to conclude that there is an orthogonal direct sum decomposition

Γ(X;F ) = im(D)⊕ im(D)⊥ = im(D)⊥ ⊕ ker(D∗).

However, the first equality might not hold if the image of D is not equal to (im(D)⊥)⊥; in
general im(D) is just a subspace of (im(D)⊥)⊥.

Theorem 1.17. (see e.g. Theorem 5.5 in [LM]). Let X be a compact Riemannian
manifold, let E, F be vector bundles over X equipped with bundle metrics, and let

D : Γ(X;E) −→ Γ(X;F )

be an elliptic differential operator. Then there is an orthogonal direct sum decomposition

Γ(X;F ) = im(D)⊕ ker(D∗).
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As mentioned in Remarks 1.12 and 1.13 the assumption that X is oriented in not needed
here.

Corollary 1.18. If D is elliptic, then dim cokerD = dim kerD∗ and hence

indexD = dim kerD − dim kerD∗.

In particular, if D is self-adjoint, i.e., D∗ = D, then indexD = 0.

This implies the disappointing statement that the indices of the de Rham operator D,
the Laplace operator ∆ and all its summands ∆k are zero since these operators are all self-
adjoint. Before constructing examples of elliptic operators with non-zero indices, we would
like to point out another consequence of Theorem 1.17.

Corollary 1.19. (The Hodge Decomposition Theorem) Let X be a compact rieman-
nian n-manifold. Then there is an orthogonal direct sum decomposition

Ω∗(X) = H∗ ⊕ im d⊕ im d∗,

where H∗ := ker ∆ ⊂ Ω∗(X) is the space of harmonic forms.

The proof of this statement will use the following useful alternative ways to describe
harmonic forms.

Lemma 1.20. Let D = d+d∗ be the de Rham operator and ∆ = D2 be the Laplace operator.
Then

ker ∆ = kerD = ker d ∩ ker d∗.

Proof. It is clear that kerD ⊆ kerD2 = ker ∆. To prove equality, let ω ∈ ker ∆. Then

||Dω||2 = 〈Dω,Dω〉 = 〈ω,D2ω〉 = 〈ω,∆ω〉 = 0

and hence ω ∈ kerD.
Concerning the second equality, it is clear that ker d ∩ ker d∗ ⊆ ker(d + d∗) = kerD. To

prove the converse inclusion, let ω ∈ kerD = ker(d+ d∗). Then dω = −d∗ω and hence

||dω||2 = 〈dω, dω〉 = −〈d∗ω, dω〉 = −〈ω, d2ω〉 = 0.

This implies dω = 0, i.e., ω ∈ ker d. Similarly,

||d∗ω||2 = 〈d∗ω, d∗ω〉 = −〈dω, d∗ω〉 = −〈ω, (d∗)2ω〉 = 0,

and hence d∗ ∈ ker d∗.
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Proof of Corollary 1.19. Applying Theorem 1.17 to the self-adjoint Beltrami-Laplace oper-
ator ∆: Ω∗(X)→ Ω∗(X) gives an orthogonal direct sum decomposition

Ω∗(X) = im ∆⊕ ker ∆ = im ∆⊕H∗. (1.21)

It remains to show that there is an orthogonal direct sum decomposition im ∆ = im d⊕im d∗.
To argue that im d is orthogonal to im d∗ we note that

〈dω, d∗η〉 = 〈d2ω, η〉 = 0.

It is clear that the image of ∆ = (d+d∗)2 is contained in im d⊕ im d∗. To prove the converse
inclusion, we need to show that dω and d∗η are contained in im ∆ for any ω, η ∈ Ω∗(X).
Using the orthogonal direct sum decomposition (1.21) it suffices to show that dω and d∗η
belong to (ker ∆)⊥. To check this, let ζ ∈ ker ∆. Then

〈dω, ζ〉 = 〈ω, d∗ζ〉 = 0 and 〈d∗η, ζ〉 = 〈η, dζ〉 = 0

since ζ ∈ ker ∆ = ker d ∩ ker d∗.

Restricting the decomposition (??) to the summand Ωk(X) ⊂ Ω∗(X) we obtain an or-
thogonal direct sum decomposition

Ωk(X) = Hk(X)⊕ im(d : Ωk−1(X)→ Ωk(X))⊕ im(∗ : Ωk+1(X)→ Ωk(X)),

where Hk(X) := H∗(X) ∩ Ωk(X) is the space of harmonic forms of degree k. This has
interesting consequences for the de Rham cohomology

Hk
dR(X) :=

ker d : Ωk(X)→ Ωk+1(X)

im d : Ωk−1(X)→ Ωk(X)
.

Clearly the summands Hk(X) and im d are in the kernel of the de Rham differential d : Ωk(X)→
Ωk−1(X). To see that d restricted to im d∗ is injective, let d∗η ∈ im d∗. Then

〈dd∗η, η〉 = 〈d∗η, d∗η〉 = ||d∗η||2,

which implies that if d∗η is in the kernel of d, then d∗η = 0 as desired. This shows that

ker(d : Ωk(X)→ Ωk−1(X)) = Hk ⊕ im d

and hence

Hk
dR(X) =

Hk ⊕ im d

im d
∼= Hk.

This statement is known as the Hodge Theorem. For future reference we state it explicitly.
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Theorem 1.22. Hodge Theorem. Let X be a compact riemannian manifold. Then the
map

Hk(X) −→ Hk
dR(X) given by ω 7→ [ω]

is a vector space isomorphism. Here [ω] is the de Rham cohomology class of the harmonic
form ω.

The ellipticity of the Beltrami-Laplace operator ∆ implies that the space of harmonic
forms H∗ = ker ∆ is finite dimensional. Hence the Hodge Theorem has the following conse-
quence.

Corollary 1.23. The de Rham cohomology groups Hk
dR(X) of a compact manifold X are

finite dimensional.

It is interesting to contrast the two sides of the isomorphism of the Hodge Theorem. The
advantage of the de Rham cohomology Hk

dR(X) is that its construction does not require a
Riemannian metric on X, unlike the the space of harmonic forms H∗(X) = ker ∆. The
advantage of harmonic forms is that each de Rham cohomology class has a unique harmonic
cocycle representative.

1.4 The Euler characteristic operator and the signature operator

For an n-manifold X, let

Ωev(X) :=
⊕
k even

Ωk(X) and Ωodd(X) :=
⊕
k odd

Ωk(X).

We observe that the de Rham operator D = d + d∗ : Ωk(X) → Ωk(X) maps even forms to
odd forms and vice versa. In other words, D restricts to operators

D+ : Ωev(X)→ Ωodd(X) and D− : Ωodd(X)→ Ωev(X)

and with respect to the orthogonal direct sum decomposition

Ω∗(X) = Ωev(X)⊕ Ωodd(X) (1.24)

the operator D has the form

Ωev(X)⊕ Ωodd(X) Ωev(X)⊕ Ωodd(X).

 0 D−

D+ 0



In particular, the ellipticity of D implies that D+ and D− are elliptic, and the self-adjointness
of D implies that D− is the adjoint of D+, since

〈D+ω, η〉 = 〈Dω, η〉 = 〈ω,Dη〉 = 〈ω,D−η〉 for ω ∈ Ωev(X) and η ∈ Ωodd(X).
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It follows that

indexD+ = dim kerD+ − dim kerD−

=
∑
k even

dimHk(X)−
∑
k odd

dimHk(X)

=
n∑
k=0

(−1)k dimHk(X)

In conjunction with the Hodge isomorphism Hk(X) ∼= Hk
dR(X), this implies the following

result.

Proposition 1.25. For a compact n-manifold X the index of the operator

d+ d∗ : Ωev(X)→ Ωodd(X)

is the Euler characteristic of X, defined by χ(X) :=
∑n

k=0(−1)k dimHk
dR(X).

This statement is the reason that the elliptic operator d+d∗ : Ωev(X)→ Ωodd(X) is called
the Euler characteristic operator.

Let us step back and look at the abstract features of this example.

Definition 1.26. A Z/2-graded vector space or super vector space is a vector space V
equipped with a Z/2-grading, i.e., direct sum decomposition V = V + ⊕ V −. Alternatively,
a Z/2-grading can be described as given by an involution ε : V → V . An involution ε deter-
mines a decomposition V = V + ⊕ V −, where V ± are the ±1 eigenspaces of ε. Conversely,
a decomposition V = V + ⊕ V − determines an involution ε : V → V by ε(v) = v for v ∈ V +

and ε(v) = −v for v ∈ V −.
If V is finite dimensional, its super dimension sdimV ∈ Z is defined to by

sdimV := dimV + − dimV −.

A Z/2-graded (or super) inner product space is an inner product space V equipped with
a Z/2-grading V = V + ⊕ V − such that this is an orthogonal direct sum decomposition.
Equivalently, in terms of a grading involution ε, the required compatibility with the inner
product is that ε is an isometry.

Exercise: prove the last statement.

Using this terminology, Ω∗(X) is a Z/2-graded inner product space with Z/2-grading
given by the decomposition (1.24) into even/odd forms.

Definition 1.27. Let V a graded vector space and D : V → W a linear operator. The
operator D is even if
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• D maps V + to V + and V − to V −, or equivalently if

• D commutes with the grading involution ε

and D is odd if

• D maps V + to V − and V − to V +, or equivalently, if

• D anti-commutes with the grading involution ε.

More explicitly, with respect to the decomposition V = V +⊕V −, the operator D is given
by a 2 × 2-matrix. The operator D is even (resp. odd) if the off-diagonal (resp. diagonal)
entries of this matrix vanish.

Proposition 1.28. Let X be a compact riemannian manifold, E a vector bundle over X
equipped with a bundle metric, and let

D : Γ(X;E) −→ Γ(X;E)

be an elliptic differential operator which is self-adjoint (i.e., D∗ = D) or skew-adjoint (i.e.,
D∗ = −D). Assume that Γ(X;E) is equipped with a Z/2-grading such that D is an odd
operator. Then D+ : Γ(X;E)+ → Γ(X;E)− is an elliptic operator and

indexD+ = sdim kerD,

where the Z/2-grading on kerD is given by restricting the grading involution ε to kerD (the
assumption that D is odd, i.e., anti-commutes with ε implies that ε maps kerD to itself).

Proof. We note that if D is self-adjoint, then (D+)∗ = D−; if D is skew-adjoint, then
(D+)∗ = −D−. In either case, dim cokerD+ = dim ker(D+)∗ = dim kerD−, and hence

indexD+ = dim kerD+ − dim kerD− = dim(kerD)+ − dim(kerD)− = sdim kerD.

1.4.1 Hodge star and the signature operator

For an n-manifold X the dimension of ΛkT ∗xX is
(
n
k

)
. In particular, ΛkT ∗xX and Λn−kT ∗xX

have the same dimension. In fact the wedge product

ΛkT ∗xX × Λn−kT ∗xX
∧−→ ΛnT ∗xX

provides a pairing which is non-degenerate in the sense that the map

Λn−kT ∗xX Hom(ΛkT ∗xX,Λ
nT ∗xX)

ω (β 7→ β ∧ ω)
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is an isomorphism. If X is an oriented Riemannian n-manifold with volume form vol, then
volx ∈ ΛnT ∗xX is a distinguished non-zero element and the vector space ΛkT ∗xX has an
inner product determined by the Riemannian metric. Hence for any element α ∈ ΛkT ∗xX
determines an element

(β 7→ 〈α, β〉 volx) ∈ Hom(ΛkT ∗xX,Λ
nT ∗xX).

Hence the isomorphism above determines a unique element ?α ∈ Λn−kT ∗xX. More explicitly,
?α is uniquely determined by

β ∧ ?α = 〈α, β〉 volx for all β ∈ ΛkT ∗xX.

The linear isomorphism ? : ΛkT ∗xX → Λn−kT ∗xX depends smoothly on x and hence these
maps fit together to give a vector bundle isomorphism

? : ΛkT ∗X
∼=−→ Λn−kT ∗X.

This in turn induces an isomorphism on the associated section spaces:

? : Γ(X; ΛkT ∗X) = Ωk(X)
∼=−→ Γ(X; Λn−kT ∗X) = Ωn−k(X)

The last isomorphism are referred to as Hodge star operator.

Lemma 1.29. The Hodge star operator ? : Ω∗(X)→ Ω∗(X) acting on the differential forms
of an n-manifold X has the following properties.

1. ? ? α = (−1)k(n−k)α for α ∈ Ωk(X).

2. The adjoint d∗ of the de Rham operator can be expressed in terms of the Hodge star
operator; namely

d∗α = (−1)nk+n+1 ? d ? α for α ∈ Ωk(X)

3. The Hodge star operator anti-commutes with the de Rham operator D = d + d∗, i.e.,
D? = − ? D.

Part (3) shows that for α ∈ H∗ = kerD the element ?α is again harmonic, since

D ? α = − ? Dα = 0.

This implies:

Corollary 1.30. The star operator ? : Ωk(X) → Ωn−k(X) restricts to an isomorphism
Hk(X) ∼= Hn−k(X). In particular, by the Hodge Theorem 1.22, it follows that dimHk

dR(X) =
dimHn−k

dR (X), which is one form of Poincare duality.
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Let X be an oriented compact manifold of dimension n = 2`. Then the map

H` ×H` −→ R defined by (α, β) 7→
∫
X

α ∧ β

is a non-degenerate bilinear form. Via the Hodge isomorphism H`(X) ∼= H`
dR(X) it corre-

sponds to the bilinear form

H`
dR(X)×H`

dR(X) −→ R defined by (a, b) 7→ 〈a ∪ b, [X]〉,

where a∪ b ∈ Hn
dR(X) is the cup product of the cohomology classes a, b, and 〈a∪ b, [X]〉 ∈ R

is the evaluation of a ∪ b on the fundamental class [X] ∈ Hn(X).
Due to α ∧ β = (−1)`β ∧ α, this form is symmetric if ` is even and skew-symmetric if `

is odd. In the former case, i.e., if the dimension of X is divisible by 4, then the vector space
H`(X) can be decomposed in the form

H`(X) = H`
+(X)⊕H`

−(X),

where the form is positive definite on H`
+(X) and negative definite on H`

−(X). The signature
of X is defined by

sign(X) := dimH`
+(X)− dimH`

−(X).

We note that for ` even ? : H`(X) → H`(X) is an involution. If α ∈ H`(X) belongs to the
+1-eigenspace, i.e., ?α = α, then∫

X

α ∧ α =

∫
X

〈α, ?α〉 vol =

∫
X

〈α, α〉 vol =

∫
X

||α||2 vol ≥ 0.

In other words, we can take H`
±(X) to be the±1-eigenspace of ?. Summarizing the discussion

so far we conclude that for a manifold X of dimension n = 2` with ` even

sign(X) = sdimH`(X), (1.31)

where H`(X) is Z/2-graded with grading involution ?.
Unfortunately, the Hodge star operator is not an involution on all of Ω∗(X), and hence

we cannot use ? as grading involution giving us an new Z/2-grading on Ω∗(X).

Lemma 1.32. Let X be an oriented riemannian manifold of dimension n = 2` = 4m. Let

τ : Ω∗(X)→ Ω∗(X) be defined by τα := (−1)(
k
2)+m ? α for α ∈ Ωk(X). Then

1. τ is an involution,

2. τ agrees with ? on Ω`(X), and

3. τ anti-commutes with the de Rham operator D = d+ d∗.
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Proof: exercise.

The involution τ gives Ω∗(X) a Z/2-grading; in particular, we have direct sum decom-
position of Ω∗(X) as

Ω∗(X) = Ω∗+(X)⊕ Ω∗−(X), (1.33)

where Ω∗±(X) is the ±1-eigenspace of τ . Then the fact that τ anti-commutes with D implies
that applying D to α ∈ Ω∗±(X) produces an element Dα ∈ Ω∗∓(X), since

τ(Dα) = −Dτα =

{
−Dα if α ∈ Ω∗+(X)

Dα if α ∈ Ω∗−(X)

In other words, with respect to the decomposition (1.33) the de Rham operator D has the
form

Ω∗+(X)⊕ Ω∗−(X) Ω∗+(X)⊕ Ω∗−(X).

 0 D−

D+ 0



The operator D+ : Ω∗+(X) → Ω∗−(X), given by the restriction of the de Rham operator D
to Ω∗+(X) ⊂ Ω∗(X) is called the signature operator. This terminology is motivated by the
following result.

Proposition 1.34. Let X be a compact oriented riemannian manifold of dimension n = 2`
with ` even. Then the index of the signature operator D+ is equal to the signature of the
manifold X.

Proof. By the Proposition 1.28 the index of D+ is the super dimension of kerD = H∗(X),
graded by the involution τ (by construction, τ is an involution on Ω∗(X), but it restricts to
an involution on kerD since τ anti-commutes with D by part (3) of the previous lemma).
We observe that the involution τ on

H∗(X) = H0(X)⊕H1(X)⊕ · · · ⊕Hn(X)

does not restrict to an involution of each piece Hk(X), since applying τ to α ∈ Hk(X) yields
an element τα ∈ Hn−k(X), except for k = ` = n/2. However, if we decompose H∗(X) in
the form

H∗(X) = (H0(X)⊕Hn(X))⊕ · · · ⊕ (H`−1(X)⊕H`+1(X))⊕H`(X),

then τ does preserve each of the block summands Hk(X) ⊕Hn−k(X) for k = 0, . . . , ` − 1
and the summand H`(X). It follows that the super dimension of H∗(X) is the sum of the
super dimensions of the pieces:

sdimH∗(X) =
`−1∑
k=0

sdim(Hk(X)⊕Hn−k(X)) + sdimH`(X)
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We observe that for k = 1, . . . , `− 1 the map

Hk(X) −→ Hk(X)⊕Hn−k(X) given by α 7→ α± τα

in an isomorphism onto the±1-eigenspace of the involution τ acting on Hk(X)⊕Hn−k(X). In
particular, the dimension of the +1-eigenspace is equal to the dimension of the −1-eigenspace
and hence the super dimension of Hk(X) ⊕Hn−k(X) (the difference between these dimen-
sions) is zero. It follows that

sdimH∗(X) = sdimH`(X) = sign(X)

as claimed.

2 Dirac operators and their index

Dirac operators and twisted Dirac operators are a very important class of first order elliptic
operators defined on spin manifolds (see Definition 2.3 below). The reasons are:

• Many elliptic operators that show up in a geometric context are (twisted) Dirac op-
erators; for example, the Euler characteristic operator or the signature operator are
examples of twisted Dirac operators (at least if the manifold is spin, or with a suitably
generalized notion of “Dirac operator).

• The index of an elliptic operator D on a compact manifold X depends only on its
principal symbol σD, more precisely on the element [σD] in theK-theoryK(T ∗X,T ∗X0)
of the pair (T ∗X,T ∗X0) consisting of the total space of the cotangent bundle T ∗X and
its subspace T ∗X0 ⊂ T ∗X consisting of all non-zero cotangent vectors ξ ∈ T ∗X (this
will be dealt with in detail later; this is an essential part of the “K-theory proof of the
Index Theorem” that we will follow). It turns out that for a spin manifold X every
class of K(T ∗X,T ∗X0) is given by the symbol of a twisted Dirac operator.

2.1 Spin structures

The notion of “spin manifold” has its origin in the fact that the group SO(n) of orientation
preserving isometries g : Rn → Rn is not simply connected for n ≥ 2; rather, its fundamental
is

π1SO(n) =

{
Z n = 2

Z/2 n ≥ 3

In particular, for n ≥ 2 there is a non-trivial double covering of SO(n), unique up to
isomorphism, which is usually denoted Spin(n) → SO(n). In particular, Spin(n) → SO(n)
is the universal covering for n ≥ 3. This is extended to n = 1 by noting that SO(1) is the
trivial group, and defining Spin(1) := Z/2.
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Exercise 2.1. Show that there is a unique group structure on Spin(n) such that the pro-
jection map Spin(n) → SO(n) is a homomorphism. Hint: Show that for any connected Lie

group G, there is a group structure on its universal covering G̃ by using the usual description
of the universal covering of a space as homotopy classes relative endpoints of paths starting
at the base point.

Remark 2.2. The spin groups show up in physics in the following way. A classical mechan-
ical system with rotational symmetry, e.g., a planet orbiting around a sun, has a phase space
on which the rotation group SO(3) acts. This might lead one to suspect that in a quantum
system with rotational symmetry, e.g., the electron orbiting the proton in a hydrogen atom,
the symmetry group SO(3) should act on the mathematical object describing the states of
this quantum mechanical system, which is given by a Hilbert space and operators on that
Hilbert space. The intriguing fact is that in general SO(3) does not act on the relevant
Hilbert space, but only its double covering group Spin(3) = SU(2).

Let X be an oriented riemannian n-manifold. Then its oriented frame bundle is the
smooth fiber bundle p : SO(X)→ X is given by

SO(X) := {(x, f) | x ∈ X, f : Rn → Tx orientation preserving isometry}

and p(x, f) = x. Notice that if {e1, . . . , en} is the standard basis of Rn and f : Rn → Tx is
an orientation preserving isometry, then {f(e1), . . . , f(en)} is an oriented orthonormal basis
of TxX, which is the more traditional way to think of “frames”. The advantage of thinking
in terms of isometries f : Rn → TxX is that there is an evident right action:

SO(X)× SO(n) −→ SO(X) given by (x, f), g 7→ (x, f ◦ g).

This action is free, and its orbits are the fibers of p : SO(X) → X; in other words, the
oriented frame bundle is a principal SO(n)-bundle.

Definition 2.3. Let X be an oriented riemannian n-manifold. A spin structure on X is a
double covering

π : Spin(X) −→ SO(X)

with the property that for each fiber SO(X)x the restriction

π : Spin(X)x := π−1(SO(X)x) −→ SO(X)x

is a non-trivial double covering of SO(X)x ∼= SO(n) for n ≥ 2.
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2.2 Principal bundles and associated vector bundles

Definition of principal bundle
Examples of principal bundles: frame bundle of a vector bundle, oriented frame bundle,

orthogonal frame bundle, SO(X), Spin(X), etc
Classification of principal bundles
Homotopy theoretic interpretation of spin structure
Associated vector bundle construction
Examples of associated vector bundles (giving the sense that it is compatible with ”linear

algebra” constructions).
Generalizing the argument that the group structure on SO(n) induces a group structure

on the total space of the double covering Spin(n) → SO(n), it can be shown that the right
SO(n)-action on SO(X) can be lifted to an action of Spin(n) on Spin(X) in the sense that
the diagram

Spin(X)× Spin(n) Spin(X)

SO(X)× SO(n) SO(X)

is commutative. The action of Spin(n) on Spin(X) is again free and transitive on the
fibers of the projection map Spin(X) → X; in other words, Spin(X) → X is a principal
Spin(n)-bundle. This motivates the notation Spin(X) for the total space of the double
covering Spin(X)→ SO(X).

Remark 2.4. The homotopy theoretic take on orientations and spin structures via maps to
BO(n), BSO(n), BSpin(n).

A spin structure on a manifold X enables us to construct new vector bundles on X using
the principal Spin(n)-bundle Spin(X)→ X via the following construction.

The associated vector bundle construction. Let G be a Lie group, G × V → V a
representation of G, and π : P → X a principal G-bundle over X. Then

P ×G V := {(p, v) | p ∈ P, v ∈ V }/ ∼−→ X [p, v] 7→ π(p)

is a vector bundle over X of rank dimV . Here the equivalence relation ∼ on P × V is
defined by (pg, v) ∼ (p, gv) for all p ∈ P , g ∈ G, v ∈ V (notice the formal similarity with the
definition of the tensor product M ⊗A N of a right A-module M and a left A-module N).
To check that for x ∈ X the fiber (P ×G V )x = π−1(x) is isomorphic to the vector space V ,
we pick an element p ∈ Px and note that the map

V −→ (P ×G V )x v 7→ [p, v]

is a vector space isomorphism.
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Example 2.5. (Examples of associated vector bundles)

1. Let X be an oriented riemannian manifold and let SO(X) → X be the oriented or-
thonormal frame bundle, principal SO(n)-bundle. Consider Rn, (Rn)∗ and Λk(Rn)∗ as
representations of SO(n) given by the standard action of SO(n) on Rn. Then

SO(X)×SO(n) Rn ∼= TX

SO(X)×SO(n) (Rn)∗ ∼= T ∗X

SO(X)×SO(n) Λk(Rn)∗ ∼= ΛkT ∗X.

2. Consider Rn as a representation of Spin(n) via the double covering map Spin(n) →
SO(n). Then the associated bundle Spin(n) ×Spin(n) Rn ∼= SO(n) ×SO(n) Rn ∼= TX.
More generally, if for any SO(n)-representation V there is an isomorphism of vector
bundles

Spin(X)×Spin(n) V ∼= SO(X)×SO(n) V.

In other words, we don’t get any “new” vector bundles associated to the principal
bundle Spin(X)→ X as long as we use representations of Spin(n) which factor through
SO(n).

3. There is a complex representation ∆ of Spin(n) called the complex spinor representation
where the non-trivial element −1 ∈ π−1(1) ⊂ Spin(n) acts by multiplication by −1. In
particular, the representation does not factor through SO(n). The representation ∆ is
irreducible for n odd; for n even it splits as a sum ∆ = ∆+⊕∆− of two non-isomorphic
irreducible representations ∆±. If X is a riemannian spin n-manifold, the associated
vector bundle

S := Spin(X)×Spin(n) ∆

is called the spinor bundle. If n is even, this bundle has a direct sum decomposition
S = S+ ⊕ S−, where S± := Spin(X)×Spin(n) ∆±.

The spinor bundle on a spin manifold X is a much more subtle vector bundle then the
usual vector bundles that we built from the tangent bundle by using direct sums, dualizing,
tensoring or forming symmetric/exterior powers of bundles. Ultimately, the spinor bundle
is constructed from the tangent bundle TX, but via a detour through principal bundles:

1. We associate to the tangent bundle TX the oriented orthonormal frame bundle SO(X)→
X, a principal SO(n) bundle.

2. A spin structure on X allows us to pass to the principal bundle Spin(X)→ X for the
double covering group Spin(n)→ SO(n).

3. The spinor bundle is the vector bundle S = Spin(X)×Spin(n) ∆ associated to the spinor
representation ∆.
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The crucial property of the spinor bundle relevant for the construction of the Dirac
operator is that there is a vector bundle map

T ∗X ⊗ S c−→ S (2.6)

called Clifford multiplication since (as we will see later this semester), it is constructed using
Clifford algebras. With respect to the decomposition S = S+ ⊕ S− for n even, Clifford
multiplication by a cotangent vector ξ ∈ T ∗xX is an odd endomorphism of the fiber Sx =
S+
x ⊕ S−x , i.e., it maps elements in S+

x to S−x and vice versa.

2.3 Connections

The Dirac operator on a spin manifold X will be a first order differential operator

D : Γ(X;S) −→ Γ(X;S)

acting on the sections of the spinor bundle S = Spin(X)×Spin(n)∆, where ∆ is the spinor rep-
resentation of Spin(n). Besides the Clifford multiplication (2.6) the other essential ingredient
in the construction of the Dirac operator is a connection on the spinor bundle.

We review the notion of a connection on a vector bundle, first motivating it by discussing
“directional derivatives” of a smooth function h ∈ C∞(X). The differential of f is the
1-form dh ∈ Ω1(X) = Γ(X;T ∗X). Given a tangent vector v ∈ TxX, the differential ds can
be evaluated on v to obtain a real number ds(v) ∈ R. Geometrically, ds(v) is the derivative
of s at x in the direction of the tangent vector v. If V is a vector field on X, i.e., a section
of the tangent bundle TX, then we can evaluate ds on V to obtain the function

dV s := ds(V ) ∈ C∞(X),

which we think of as the derivative of s in the direction of the vector field V . More generally,
if s : X → E is a smooth map with values in a (finite dimensional) vector space E, then
ds ∈ Ω1(X;E) := Γ(X;T ∗X ⊗ E) (where we abuse notation by using the symbol E also
to refer to the trivial vector bundle over X with fiber E), and hence dV s ∈ C∞(X;E). We
observe the following algebraic properties of dV s with respect to the V -slot and the s-slot:

(i) for fixed s ∈ C∞(X;E), the map Γ(X;TX) −→ C∞(X;E) is a map of C∞(X)-modules,
i.e.

dV1+V2s =dV1s+ dV2s for V1, V2 ∈ Γ(X;TX), s ∈ C∞(X;E)

dfV s =fdV f for V ∈ Γ(X;TX), f ∈ C∞(X), s ∈ C∞(X;E).

(ii) for fixed vector field V ∈ Γ(X;TX) the map C∞(X;E) −→ C∞(X;E) has the prop-
erties

dV (s1 + s2) =dV s1 + dV s2 for V ∈ Γ(X;TX), s1, s2 ∈ C∞(X;E)

dV fs =(dV f)s+ fdV s for V ∈ Γ(X;TX), f ∈ C∞(X), s ∈ C∞(X;E).
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Thinking of the section s ∈ Γ(X;E) of a vector bundle E as a generalization of a vector
valued smooth function, one would like to talk about the derivative of s in the direction of
a vector field V . Unlike for vector valued functions, there is no distinguished way to make
sense of the derivative of a section s in the direction of a vector field V .

Definition 2.7. Let E be vector bundle over the manifold X. A covariant derivative on E
is a map

∇ : Γ(TX)× Γ(E) −→ Γ(E) (V, s) 7→ ∇V s

which shares the algebraic properties of differentiation of vector-valued functions, i.e.,

∇V1+V2s = ∇V1s+∇V2s

∇fV s = fs

∇V (s1 + s2) = ∇V s1 +∇V s2

∇V fs = (dV f)s+ f∇V s

for V, V1, V2 ∈ Γ(TX), s, s1, s2 ∈ Γ(E), f ∈ C∞(X).

We note that for fixed s ∈ Γ(E), the first two properties say that the map

∇s : Γ(TX)→ Γ(E) given by V 7→ ∇V s

is a map of C∞(X)-modules. Equivalently, this means it is induced by a map of vector
bundles TX → E, which in turn is a section of the vector bundle Hom(TX,E) ∼= T ∗X ⊗E.
Abusing notation, we call this section of T ∗X ⊗E again ∇s. The first two properties of the
covariant derivative can then by recast in terms of the map

∇ : Γ(E) −→ Γ(T ∗X ⊗ E) given by s 7→ ∇s,

namely,

1. ∇ is a linear map of vector spaces (over R resp. C depending on whether E is a real
or a complex vector bundle);

2. ∇ satisfies the Leibnitz rule ∇(fs) = df ⊗ s+ f∇s.
Definition 2.8. A connection on a vector bundle E is a map ∇ : Γ(E) −→ Γ(T ∗X ⊗ E)
satisfying these two properties.

So a covariant derivative and a connection are just two different way to think about the
same mathematical concept, and we will always pass back and forth between these two. Any
smooth vector bundle E has a connection; they can be constructed local trivializations, and
combining these via partitions of unity. Much more precisely, the space of connections on E
is a torsor for Γ(T ∗X ⊗ End(E)), i.e., this abelian group acts freely and transitively on the
space of connections.

If the vector bundle E has additional structures, then we can require connections to be
compatible with these structures. Here are some examples.
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1. Suppose E is equipped with a bundle metric 〈 , 〉. Then the point-wise inner product
〈s1, s2〉 of two sections s1, s2 ∈ Γ(E) is a smooth function on X. We can require that
a connection ∇ is compatible with the bundle metric in the sense that we have the
“product rule”

d〈s1, s2〉 = 〈∇s1, s2〉+ 〈s1,∇s2〉

for all sections s1, s2. Such a connection is called a metric connection.

2. The tangent bundle of a manifold has additional structure provided by the Lie bracket
[V,W ] of vector fields V,W ∈ Γ(TX). We can require that a connection ∇ on TX is
compatible with this structure in the sense that

[V,W ] = ∇VW −∇WV.

Such a connection ∇ is called torsion free.

3. If X is a Riemannian manifold, there is a unique connection on the tangent bundle
TX which is metric and torsion free. This is the Levi-Civita connection.

If E, F are vector bundles with connections ∇E, ∇F , then all the bundles “built from E
and F by linear algebra”, e.g., E⊕F , E⊗F , E∗, Hom(E,F ) ∼= E∗⊗F , ΛkE have connections
∇ built from ∇E and ∇F . For example if s ∈ Γ(E) and t ∈ Γ(F ), then (s, t) ∈ Γ(E ⊕ F )
and s⊗ t ∈ Γ(E ⊗ F ). Then

∇(s, t) :=(∇Es,∇F t) ∈ Γ(T ∗X ⊗ (E ⊗ F )) = Γ(T ∗X ⊗ E ⊕ T ∗X ⊗ F )

∇(s⊗ t) :=(∇Es)⊗ t+ s⊗∇F t ∈ Γ(T ∗X ⊗ E ⊗ F ).

As discussed above, the spinor bundle S on a riemannian spin manifold X is “built from
the tangent bundle”. Hence it might be expected that the Levi-Civita connection on TX
induces a connection ∇S on the spinor bundle. This is in fact true, but alas the construction
of that connection is harder and proceeds by carrying along the connection in each of the steps
in the construction of the spinor bundle. In particular, it requires talking about connections
on principal bundles. We will do that later this semester.

Definition 2.9. Let X be a riemannian spin manifold with spinor bundle S. Then the Dirac
operator on X is the first order differential operator given by the composition

Γ(S) Γ(T ∗X ⊗ S) Γ(S),∇S c

where ∇S is the connection on the spinor bundle induced by the Levi-Civita connection on
TX, and c is Clifford multiplication. If E is a vector bundle with connection over X, then
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the connection on E and the connection on S combine to define a connection ∇ on the tensor
product S ⊗ E. The composition

Γ(S ⊗ E) Γ(T ∗X ⊗ S ⊗ E) Γ(S ⊗ E),∇ c⊗idE

is a first order differential operator called twisted Dirac operator or Dirac operator twisted
by E.

Later this semester when we construct the group Spin(n) and the spinor representation ∆
using Clifford algebras, we will also construct the Clifford multiplication map c : T ∗X⊗S → S
and calculate the principal symbol of the Dirac operator. In particular, it will turn out that
the Dirac operator and twisted Dirac operators are elliptic operators.

3 The Index Theorem for Dirac operators

In this section we state the Index Theorem for (twisted) Dirac operators, which expresses
the index of the twisted Dirac operator DE on a closed even-dimensional riemannian spin
manifold X in terms of topological invariants of X and E. In fact, we give two versions, a
K-theory version, where the topological invariant is expressed in terms of the K-theory of
X, and a cohomological version where the topological invariant is expressed in terms of the
cohomology ring H∗(X;Q) and characteristic classes of TX and E (which are elements of
H∗(X;Q)).

Theorem 3.1. Index Theorem for Dirac operators, K-theory version Let X be
a closed riemannian spin n-manifold, n even. Let E be a complex vector bundle over X
equipped with a connection, and let DE be the Dirac operator on X twisted by E. Then

index(D+
E) = p!([E]) ∈ K(pt) = Z,

where [E] ∈ K(X) is the K-theory class represented by E, and p! : K(X) → K(pt) is the
pushforward map in K-theory induced by the projection map p : X → pt.

Theorem 3.2. Index Theorem for Dirac operators, cohomology version With the
same hypothesis as above,

index(D+
E) = 〈Â(TX) ch(E), [X]〉,

where

• Â(TX) ∈ H∗(X;Q) is the A-roof class of the tangent bundle, which is a polynomial
(with rational coefficients) in the Pontryagin classes pi(TX) ∈ H4i(X;Z);
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• ch(E) ∈ H∗(X;Q) is the Chern character of the complex vector bundle E, which is a
polynomial (with rational coefficients) in the Chern classes ci(E) ∈ H2i(X;Z);

• 〈Â(TX) ch(E), [X]〉 ∈ Q is the evaluation of Â(TX) ch(E) ∈ H∗(X;Q) (the cup prod-

uct of Â(TX) and ch(E)) on the fundamental class [X] ∈ Hn(X;Z) (which ignores all

but the degree n part of Â(TX) ch(E)).

Our next goal is the construction of the K-theory umkehr map p! : K(X)→ K(pt) used
in the K-theory formulation of the index theorem. In section ?? we will discuss K-theory
and the umkehr map p!. While the construction of the umkehr map in K-theory is not
particularly involved, it is hard to motivate, and hence to understand conceptually. For
motivational reasons, we prefer to discuss umkehr maps first in ordinary cohomology. For a
closed oriented n-manifold X, there is a map

p! : H
∗(X) −→ H∗−n(pt) given by a 7→

{
〈a, [X]〉 ∈ Z = H0(pt) for deg(a) = n

0 otherwise

where 〈a, [X]〉 is the evaluation of a on the fundamental class [X] ∈ Hn(X;Z). This is quite
straightforward, but it requires talking about the fundamental class, which is a homology
class. The same strategy works in principle for K-theory, but it would require to talk not
only about K-cohomology (the usual thing one has in mind when talking about K-theory),
but K-homology and the K-homology fundamental class. There is a beautiful analytic
description of K-homology, including a construction of the K-theory fundamental class of
spin manifold in terms of its Dirac operator. Alas, that’s a long story...

Fortunately, there is one setting in which the description of the pushforward map is
straightforward, namely in de Rham cohomology. The map

p! : H
∗
dR(X) −→ H∗−n(pt) is given by [α] 7→

{∫
X
α ∈ R = H0

dR(pt) deg(α) = n

0 deg(α) 6= n

So our strategy will be to start with the umkehr map in de Rham cohomology, and then to
show that p! can be written as a composition of maps all of which involving just de Rham
cohomology of auxiliary spaces. Those maps can then be generalized to other cohomology
theories, and their composition will serve then as the definition of p! there. So the next section
is purely motivational; the impatient reader is welcome to go straight to the definition of p!

in K-theory in section ??.

3.1 The umkehr map in de Rham cohomology

The construction of the pushforward map in K-theory (or in any other generalized cohomol-
ogy theory) is based on the Thom isomorphism. The Thom isomorphism in K-theory in turn
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is based on the construction of the spinor representation Λ of Spin(n) via Clifford algebras,
which we will do later this semester. The representation Λ is also crucial for the construction
of the spinor bundle S = Spin(X) ×Spin(n) ∆, and hence for the construction of the Dirac
operator. In fact, I think of the Dirac operator as the geometric/analytic incarnation of
the Thom class in K-theory, since the principal symbol of the Dirac operator represents the
K-theory Thom class of the cotangent bundle.

While the construction of the pushforward map is pretty straightforward once the Thom
isomorphism has been established (see ??), I feel that construction is not well-motivated. By
contrast, the pushforward map in de Rham cohomology has a great geometric interpretation
as “integration over the manifold”. For that reason, it seems better to first define the
pushforward via integration, and then show that this integration map can equivalently be
formulated via the Thom isomorphism in de Rham cohomology.

Let X be an oriented n-manifold (without boundary), and for k ∈ Z let Ωk
c (X) be the

vector space of k-forms on X with compact support (by definition, Ωk
c (X) is the trivial vector

space for k < 0 or k > n). Integration gives a linear map

Ωn
c (X) −→ R given by α 7→

∫
X

α.

If α = dβ for some form β ∈ Ωn−1
c (X), then

∫
X
α = 0 by Stokes’ Theorem. This can be

interpreted cohomologically as follows. For k ∈ Z, let Hk
dR,c(X) be the de Rham cohomology

with compact support of degree k, defined to be the real vector space

Hk
dR,c(X) :=

{closed k-forms with compact support}
{exact k-forms with compact support}

=
ker d : Ωk

c (X)→ Ωk+1
c (X)

im d : Ωk−1
c (X)→ Ωk

c (X)
.

As usual, let H∗dR,c(X) be the Z-graded vector space obtained as the direct sum

H∗dR,c(X) :=
⊕
k∈Z

Hk
dR,c(X)

Definition 3.3. For an oriented n-manifold X, let

p! : H
n
dR,c(X) −→ R be the linear map defined by p!([α]) :=

∫
X

α

Abusing notation, we will also write

p! : H
∗
dR,c(X) −→ H∗−ndR (pt)

for the linear map of Z-graded vector spaces which in degree n is the map p! above, with R
identified with H0

dR(pt), the degree 0 de Rham cohomology of the point, and which is trivial
in degrees k 6= n. This map is called the integration map or umkehr map associated to the
projection map p : X → pt.
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To motivate the terminology, we note that a smooth map f : X → Y induces maps
f ∗ : Ω∗(Y )→ Ω∗(X) on differential forms and f ∗ : H∗dR(Y )→ H∗dR(X) on de Rham cohomol-
ogy. The map p! goes in the opposite direction of the induced map p∗, which is the origin of
the terminology umkehr map (umkehr is the German word for reversion).

We want to generalize this integration map from a single oriented manifold to a family
of oriented manifolds. Later for us the parameter space will be the n-manifold X, and so
from the outset we look at a family E of oriented k-manifolds parametrized by X. In other
words,

π : E −→ X

be a smooth fiber bundle with k-dimensional fibers such that the vertical tangent bundle V E
(also known as tangent bundle along the fibers) is oriented. This is a vector bundle over the
total space E whose fiber at a point e ∈ E is given by

VeE = ker π∗ : TeE → Tπ(e)X = TeEx,

where π∗ is the differential of π, and Ex = π−1(x) ⊂ E is is fiber over a point x ∈ X. In
particular, an orientation on V E restricts to an orientation on the tangent bundle on each
fiber TEx = V E|Ex , thus giving an orientation on each fiber. However, orientability of each
fiber does not guarantee orientability of the vertical tangent bundle.

For example, a diffeomorphism g : F → F on an k-manifold F yields a smooth fiber
bundle

π : (F × R)/Z −→ R/Z = S1 [z, t] 7→ [t] for z ∈ F , t ∈ R,
where n ∈ Z acts on R by t 7→ t + n, and on F × R by (z, t) 7→ (gn(z), t + n). Hence each
fiber is diffeomorphic to F and hence orientable if F is, but the tangent bundle along the
fibers turns out to be orientable if and only if the diffeomorphism g is orientation preserving.

Given a fiber bundle π : E → X with k-dimensional fibers and oriented vertical tangent
bundle, we want to construct an integration map

π! : Ω∗cv(E) −→ Ω∗−k(X),

where the subscript cv stands for compact vertical support, meaning that Ω∗cv(E) consists
of all forms α ∈ Ω∗(E) such that supp(α) ∩ Ex, the intersection of the support of α and
the fiber Ex is compact for all x ∈ X. In particular, if X is compact, this amounts to the
requirement that α has compact support.

Let α ∈ Ωn
cv(E). To describe π!α ∈ Ωn−k

c (X) we need to specify (π!α)x(w1, . . . , wn−k) ∈ R
for any point x ∈ X and tangent vectors w1, . . . , wn−k ∈ TxX. Let

αw1,...,wn−k ∈ Ωk
c (Ex)

be the differential form determined by

(αw1,...,wn−k)x(v1 . . . , vk) = αx(v1 . . . , vk, w̃1, . . . , w̃n−k),
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for e ∈ Ex and v1, . . . , vn ∈ TeEx. Here the w̃i ∈ TeE are lifts of wi ∈ TxX in the sense that
π∗(w̃i) = wi for i = 1, . . . , n − k. We note that this is independent of the choice of the lifts
w̃i, since if w̃′i is another choice of lift, then w̃′i = w̃i+ui for vertical tangent vectors ui. If the
vertical tangent vectors v1, . . . , vk form a basis for the vertical tangent space VeE = TeEx,
then ui is a linear combination of the vj’s and hence

αe(v1 . . . , vn, w̃1, . . . , w̃
′
i, . . . , w̃n−k)− αe(v1 . . . , vn, w̃1, . . . , w̃i, . . . , w̃n−k)

=αe(v1 . . . , vn, w̃1, . . . , u
′
i, . . . , w̃n−k)

=0.

If the vi are not linearly independent, then αe(v1 . . . , vk, w̃1, . . . , w̃i, . . . , w̃n−k) vanishes in
any case. We define p!α ∈ Ωn−k

c (Y ) by

(p!α)x(w1, . . . , wn−k) :=

∫
Ex

αw1,...,wn−k ∈ R. (3.4)

This is a multilinear and alternating function of the tangent vectors w1, . . . , wn−k ∈ TxX,
and hence p!α ∈ Ωn−k

c (X).

Proposition 3.5. The umkehr map π! : Ω∗cv(E) −→ Ω∗−k(X) has the following properties.

1. π! is chain map, i.e., it commutes with the de Rham differential and hence induces an
Umkehr map of de Rham cohomology with compact support

p! : H
∗
dR,c(E) −→ H∗−kdR,c(X)

2. π!(α ∧ π∗β) = π!α ∧ β for α ∈ Ω∗cv(E), β ∈ Ω∗(X).

3. The Umkehr map is compatible with compositions in the sense that if π : E → X and
p : X → Y are fiber bundles with oriented vertical tangent bundles, then (p◦π)! = p!◦π!.

Let V be a real oriented vector space of dimension k. Then it is not hard to construct a
compactly supported n-form ω ∈ Ωn

c (V ) with
∫
V
ω = 1. More generally, if π : V → X is an

oriented vector bundle with n-dimensional fibers, one can construct an n-form with compact
vertical support ω ∈ Ωn

cv(V ) such that

• dω = 0.

•
∫
Vx
ω = 1 for any x ∈ X (Vx = π−1(x) is the fiber over x); in particular, π!ω = 1 ∈

Ω0(X) = C∞(X).
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Such a form ω is called a Thom form. Using a bundle metric on V and a metric connection,
there are explicit formulas for such forms.

Now assume that X is compact and choose an embedding X ↪→ Rn+k of the n-manifold
X into the Euclidean space of sufficiently large dimension (k = n will do by Whitney’s
embedding theorem). Let V → X be the normal bundle of X, a vector bundle of rank k.
Regarding X as a subspace of V (namely, the zero section), by the tubular neighborhood
theorem, the embedding X ↪→ Rn+k extends to an embedding i : V ↪→ Rn+k. Consider the
following commutative diagram of smooth maps

V Rn+k

X pt

π

i

q

p

We claim that this (really dumb) commutative diagram induces a commutative diagram of
de Rham complexes

Ω∗+kc (V ) Ω∗+kc (Rn+k)

Ω∗(X) Ω∗−n(pt)

π!

i!

q!

p!

Here i! is the map given by extending a form α with compact support on V ⊂ Rn+k to a form
on all of Rn+k which vanishes outside the support of α. The commutativity of this diagram
is easy to prove (but not tautological as the commutativity of the previous diagram). To

prove it, let β ∈ Ωn+k
c (V ) (for all other degrees, the target Ω

∗−(n+k)
c (pt) is trivial). Then

p!π!β = (p ◦ π)! =

∫
V

β =

∫
Rn+k

i!β = q!i!β.

Let ω be a Thom form for the normal bundle V → X. Our assumption that X is compact
implies that ω has not only compact vertical support, but indeed compact support, i.e.,
ω ∈ Ωk

c (V ). By the definition of the Thom class we have π!ω = 1 ∈ Ω0(X), and by property
(2) of Proposition 3.5 it follows that

π!(ω ∧ π∗α) = (π!ω) ∧ α = α.

Hence the commutativity of the previous diagram applied to β = ω ∧ π∗α for α ∈ Ω∗(X)
implies the commutativity of the diagram

Ω∗+kc (V ) Ω∗+kc (Rn+k)

Ω∗(X) Ω∗−n(pt)

i!

q!ω∧π∗( )

p!
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All of these maps are chain maps, and so we obtain a commutative diagram of de Rham
cohomology groups

H∗+kdR,c(V ) H∗+kdR,c(Rn+k)

H∗dR(X) H∗−ndR (pt)

i!

q![ω]∪π∗( )

p!

We note that integration map q! is an isomorphism. Its inverse can be described explicitly
by

H∗−ndR (pt) −→ H∗+kdR,x(R
n+k) given by [β] 7→ [ωn+k ∧ q∗(β)] = [ωn+k] ∪ q∗([β]).

Here ωn+k ∈ Ωn+k
c (Rn+k) is a differential form with

∫
Rn+k

ωn+k = 1; this determines its de

Rham cohomology class [ωn+k] ∈ Hn+k
dR,c(Rn+k) ∼= R. In other words, ωn+k is a Thom form

for the trivial vector bundle q : Rn+k → pt.
We write ∪ for the cup-product for de Rham cohomology which is induced by the wedge

product of forms.
Summarizing the discussion we state the following result.

Lemma 3.6. Let X be closed oriented n-manifold. The umkehr map p! in de Rham coho-
mology can be written as the composition

H∗dR(X) H∗+kdR,c(V ) H∗+kdR,c(Rn+k) H∗−ndR (pt)
[ω]∪π∗( ) i! [ωn+k]∪q∗( )

∼= (3.7)

3.2 The umkehr map for a generalized cohomology theory

The goal of this section is to mimic the description of the umkehr map in de Rham cohomol-
ogy given by the composition (3.7) in a generalized cohomology theory. In the next section,
we will specialize the generalized cohomology theory to be K-theory. There are essentially
two ways to describe the umkehr map, one via generalized cohomology with compact sup-
port, the other via generalized cohomology of Thom spaces. The latter is the more common
point of view in algebraic topology, but working with compactly supported cohomology, as
we did with de Rham cohomology in the previous section, is well adapted to describe Thom
classes in K-theory which we wil do in the next section.

Definition 3.8. A generalized cohomology theory E is a contravariant functor that associates
to a pair (X,A) of topological spaces a graded abelian group

E∗(X,A) =
⊕
k∈Z

Ek(X,A)
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and to each continuous map f : (X,A)→ (Y,B) a homomorphism

f ∗ : E∗(Y,B) −→ E∗(X,A)

of graded abelian groups (which has degree 0, i.e., f ∗ maps Ek(Y,B) to Ek(X,A)). It is
required to have the following properties:

homotopy invariance: If two maps f, g : (X,A)→ (Y,B) are homotopic, then f ∗ = g∗.

long exact sequence of a pair: For any pair (X,A), the sequence

. . . Ek(X,A) Ek(X) Ek(A) Ek+1(X,A) . . .
j∗ i∗ δ j∗

Here Ek(X) is shorthand for Ek(X, ∅), and i : A→ X and j : (X, ∅)→ (X,A) are the
evident inclusion maps. The map δ is a natural transformation from the functor given
by (X,A) 7→ Ek(A) to the functor given by (X,A) 7→ Ek+1(X,A).

Excision Let (X,A) be a pair of spaces and let U ⊂ A be a subspace whose closure Ū
is contained in A. Then the inclusion map i : (X \ U,A \ U) → (X,A) induces an
isomorphism

i∗ : E∗(X,A)
∼=−→ E∗(X \ U,A \ U).

The group Ek(X,A) is called the E-cohomology group of (X,A) in degree k. The graded
group E∗(pt) is called the coefficient group of the generalized cohomology theory.

Strictly speaking, the natural transformation δ is a datum and hence it is more precise
to say that the pair (E∗, δ) consisting of the functor E∗ and the natural transformation δ is
a generalized cohomology theory.

The basic example of a generalized cohomology theory is the singular cohomology theory
H∗(X,A;R) with coefficients in an abelian group R. The coefficient group for this cohomol-
ogy group is Hk(pt;R) = 0 for k 6= 0 and H0(pt;R) = R. Conversely, if E∗ is a generalized
cohomology theory with trivial coefficient groups Ek(pt) for k 6= 0, then there is a natural
isomorphism

E∗(X,A) ∼= H∗(X,A;R) with R = E0(pt).

Another example of a generalized cohomology theory is K-theory, which we will discuss in
the next section.

For a pointed space X, the reduced E-cohomology is defined to be

Ẽ∗(X) := ker(E∗(X)→ E∗(pt)),

where the map is the induced by the inclusion pt→ X of the basepoint. There is an obvious
splitting

Ek(X) ∼= Ẽk(X)⊕ Ek(pt).

There are number of useful consequences of the axioms:
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1. If X = U ∪ V is the union of two open subspaces U , V , then there is a long exact
sequence called the Mayer-Vietoris sequence

Ek(X) Ek(U)⊕ Ek(V ) Ek(U ∩ V ) Ek−1(X) . . .δ (j∗U ,j
∗
V ) i∗U−i

∗
V δ

where the maps are induced by the evident inclusion maps in the commutative diagram

U ∩ V U

V X

iU

iV jU

jV

2. The long exact sequence of the pair (Dk, Sk−1), excision, and the homeomorphism

Dk/Sk−1 ≈ Sk results in the isomorphism E∗(pt) ∼= Ẽ∗+k(Sk). More generally, we
have an isomorphism E∗(X) ∼= E∗+k(X+ ∧ Sn), called suspension isomorphism.

With the goal of mimicking the composition (3.7) in de Rham cohomology for a general-
ized cohomology theory E∗, we will construct for a closed n-manifold X, embedded in Rn+k

with normal bundle π : V → X the following homomorphisms:

E∗(X) E∗+kc (V ) E∗+kc (Rn+k) E∗−n(pt)
UV ∪π∗( ) i! Un+k∪q∗( )

∼= (3.9)

The construction of these maps involves four ingredients:

1. A cup product in E-cohomology (see definition 3.10);

2. The definition of E-cohomology groups with compact support, indicated by the sub-
script c (see definition 3.11).

3. The construction of the map i! induced by the inclusion i : V ↪→ Rn+k of the total space
of the normal bundle of X as a tubular neighborhood of X in Rn+k (see definition 3.12).

4. The isomorphism E∗(pt) ∼= E∗+n+k
c (Rn+k), which is a form of the suspension isomor-

phism (see diagram (3.16)); the class Un+k ∈ En+k
c (Rn+k) corresponds to the unit

1 ∈ E0(pt).

5. The class UV ∈ Ek
c (V ), called an E-Thom class or E-orientation (see definition 3.23).

Definition 3.10. A multiplicative cohomology theory is a cohomology theory E∗ equipped
with a natural cup-product pairing

∪ : E∗(X,A)⊗ E∗(X,B) −→ E∗(X,A ∪B)

which is associative, graded commutative and has a unit 1 ∈ E0(X).
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The basic example of a multiplicative cohomology theory is H∗(X,A;R), singular coho-
mology with coefficients in a commutative ring R, equipped with the ordinary cup-product.
In the next section we will use the tensor product of vector bundles and vector bundle maps
to produce a cup-product on K-theory (at least on K0).

Definition 3.11. (Compactly supported E-cohomology). Let E be a generalized co-
homology theory. Then the E-cohomology of a topological space X is defined by

E∗c (X) := lim−→
K ⊂ X compact

E∗(X,X \K).

We note that if K ⊂ K ′ are compact subsets of X, then we have inclusion maps X \K ′ →
X \K, hence a map of pairs (X,X \K ′)→ (X,X \K), which in cohomology induces a map

E∗(X,X \K) −→ E∗(X,X \K ′),

allowing us to take the direct limit above. More generally, if A ⊂ X is a subspace of X, the
relative E-cohomology with compact support of the pair (X,A) is defined by

E∗c (X,A) := lim−→
K ⊂ X compact

E∗(X,A ∪ (X \K)).

Definition 3.12. (Construction of i! : E
∗
c (V ) → E∗c (Rn+k).) A compact subset K ⊂

V ⊂ Rn+k leads to an inclusion map (V, V \K) → (Rn+k,Rn+k \K). The induced map in
E-cohomology

E∗(Rn+k,Rn+k \K) E∗(V, V \K)
∼=

is an isomorphism by excision. Hence the inverse of this map gives a homomorphism

i! : E
∗
c (V ) = lim−→

K ⊂ V compact

E∗(V, V \K) −→ lim−→
L ⊂ Rn+k compact

E∗(Rn+k,Rn+k \ L) = E∗c (Rn+k)

Example 3.13. (Compactly supported E-cohomology of Rk). For calculating E∗c (Rk)
we note that by Heine-Borel every compact subset K ⊂ Rk is contained in some closed k-ball
Dk
ε of radius ε > 0 around the origin. Hence

E∗c (Rk) = lim−→
K ⊂ Rk compact

E∗(Rk,Rk \K) = lim−→
ε

E∗(Rk,Rk \Dk
ε ) (3.14)

We claim that for any ε > 0 the inclusion map (Rk,Rk \ Dk
ε ) → (Rk,Rk \ {0}) induces an

isomorphism in cohomology

E∗(Rk,Rk \ {0})
∼=−→ E∗(Rk,Rk \Dk

ε ).
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To see this, we note that the inclusion map Rk \ {0} ↪→ Rk \Dk
ε is a homotopy equivalence,

and hence induces an isomorphism in cohomology. The map of pairs induces the following
commutative diagram whose rows are the long exact cohomology sequences of these pairs.

E∗(Rk) E∗(Rk \ {0}) E∗+1(Rk,Rk \ {0}) E∗+1(Rk) E∗+1(Rk \ {0})

E∗(Rk) E∗(Rk \Dk
ε ) E∗+1(Rk,Rk \Dk

ε ) E∗+1(Rk) E∗+1(Rk \Dk
ε )

∼= ∼=

By the 5-Lemma the middle vertical map is an isomorphism as claimed. Since the connecting
maps in the direct limit of the cohomology groups E∗(Rk,Rk \Dk

ε ) are compatible with these
isomorphisms, this yields the isomorphism

lim−→
ε

E∗(Rk,Rk \Dk
ε )
∼= E∗(Rk,Rk \ {0}).

There are further isomorphisms

E∗(Rk,Rk \ {0}) ∼= E∗(Rk,Rk \Bk
1 ) ∼= E∗(Dk, ∂Dk) ∼= Ẽ∗(Dk/∂Dk) ∼= Ẽ∗(Sk);

the first one follows with the same argument as above, the second one is excision, and the
third one holds since the inclusion ∂Dk = Sk−1 ↪→ Dk of the boundary of the closed k-disk
is a cofibration. Composing all these isomorphisms, we obtain an isomorphism

E∗c (Rk) ∼= Ẽ∗(Sk) (3.15)

The composition of this isomorphism and the suspension isomorphism then yields the
desired isomorphism

E∗(pt) ∼= E∗+k(Sk) ∼= E∗+kc (Rk).

Let Uk ∈ E∗+kc (Rk) be the class corresponding to the unit 1 ∈ E0(pt) of the multiplicative
cohomology theory E. The graded groups above are modules over the coefficient ring E∗(pt)
and the isomorphisms above are isomorphisms of modules over E∗(pt). It follows that the
above isomorphism

E∗(pt)
∼=−→ E∗+kc (Rk) is given by a 7→ Uk ∪ q∗(a) (3.16)

There is a useful variant of compactly supported cohomology for fiber bundles.

Definition 3.17. Let π : X → Y be a fiber bundle. A subset K ⊂ X is vertically compact
if for each y ∈ Y the intersection K ∩Xy with the fiber Xy = π−1(y) is compact. Then

E∗cv(X) := lim−→
K ⊂ X vertically compact

E∗(X,X \K)

is the E-cohomology of X with compact vertical support.
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Example 3.18. Let π : V → X be a vector bundle of dimension k, equipped with a bundle
metric. Given a function ε : X → (0,∞), the ε-disk bundle

Dε(V ) = {(x, v) | x ∈ X, v ∈ Vx, ||v|| ≤ ε(x)}

is vertically compact (but not compact, unless X is). In fact, if K ⊂ V is any vertically
compact subset, then K is contained in some disk bundle Dε(V ) and hence the direct limit
over all vertically compact subsets can be replaced by the limit of the groups E∗(X,X \
Dε(V )), where the limit is taken over all functions ε : X → (0,∞). Analogous to the Example
3.13 we note that E∗(V, V \Dε(V )) is isomorphic to E∗(V, V0), where V0 is the complement
of the zerosection of V . This gives the first of the following isomorphisms

E∗cv(V ) ∼= E∗(V, V0) ∼= E∗(V, V0 \B1(V )) ∼= E∗(D(V ), S(V )) ∼= Ẽ∗(D(V )/S(V ))

Here
D(V ) = {(x, v) | x ∈ X, v ∈ Vx, ||v|| ≤ 1} ⊂ V

is the unit disk bundle, and

S(V ) = {(x, v) | x ∈ X, v ∈ Vx, ||v|| = 1} ⊂ V

is the unit sphere bundle. The other isomorphisms are again analogous to the isomorphisms
discussed in example 3.13. The quotient space D(V )/S(V ) is called the Thom space of V ; a
common notation is XV := D(V )/S(V ). Summarizing, there is an isomorphism

E∗cv(V ) ∼= E∗(XV ). (3.19)

If V is the trivial vector bundle X × Rk → X, then the Thom space XV can be identified
with the suspension Sk ∧ X+ where X+ denotes the pointed topological space obtained by
adding a disjoint basepoint to X. Specializing the above isomorphisms we obtain

E∗cv(Rk ×X) ∼= Ẽ∗(Sk ∧X+). (3.20)

Specializing further to X = pt, we obtain the isomorphism (3.15).

The homomorphism i! : E
∗
c (V ) → E∗c (Rn+k) was constructed in Definition 3.12. Here

V → X is the normal bundle of the compact n-manifold X in Rn+k. Due the compactness
of X, vertically compact subsets of V are in fact compact, and hence E∗cv(V ) = E∗c (V ).
After identifying the domain of i! with E∗(XV ) by equation (3.19) and the codomain with

Ẽ∗(Sn+k) by equation (3.15), it is a natural question whether there is a map from Sn+k

to the Thom space XV which induces i!. The answer is yes, and the collapse map c which
corresponds to i! is described in the following lemma. We will not use this result, but it seems
useful to state this result, since algebraic topologists typically describe the umkehr map in
terms of the Thom space XV and the collapse map. The collapse map is also important for
other construction, e.g., it is the essential ingredient in the Pontryagin-Thom construction.
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Lemma 3.21. Let V → X be the normal bundle of a compact n-manifold embedded in
Rn+k, and let i : V → Rn+k be the embedding of V as tubular neighborhood of X in Rn+k.
Let c : Sn+k = Rn+k ∪ {∞} → XV be the collapse map defined by

c(x) :=

{
∗ if x /∈ i(V ) or x =∞
v if x = i(v)

(3.22)

Then the following diagram commutes:

E∗c (V ) E∗c (Rn+k)

Ẽ∗(XV ) Ẽ∗(Sn+k)

i!

∼= ∼=

c∗

Generalizing the argument leading to the isomorphism (3.16), we obtain the following
commutative diagram of isomorphisms.

E∗c (X) E∗+kcv (Rk ×X)

E∗c (X) E∗c (S
k ∧X+)

p∗1Uk∪p∗2( )

∼=
suspension

isomorphism

∼=

Our goal is to generalize this diagram to the more general situation where the trivial vector
bundle Rk × X → X is replaced by a general vector bundle π : V → X of dimension k.
Looking to generalize the top horizontal map, the projection map p2 to the base X is simply
replaced by the projection map π : V → X. The problem is that for a non-trivial bundle V ,
there is no projection map p1 to the fiber Rk. We note that the class p∗1Uk ∈ Ek

cv(Rk ×X)
restricts on each fiber Rk to Uk ∈ Ek

c (Rk). This motivates the following definition.

Definition 3.23. Let π : V → X be a k-dimensional vector bundle overX. An E-orientation
or E-theory Thom class is an element UV ∈ Ek

cv(V ) with the property that its restriction
to each fiber Vx corresponds to the suspension class Uk ∈ Ek

c (Rk) via the isomorphism
Ek
c (Vx) ∼= Ek

c (Rk) induced by some vector space isomorphism Vx ∼= Rk.

Theorem 3.24. Thom Isomorphism Theorem. Let V → X be a vector bundle of rank
k over a topological space X and let UV ∈ Ek

cv(V ) be an E-oriention on V . Then the maps

E∗(X) E∗cv(V )
UV ∪π∗( )

and E∗c (X) E∗c (V )
UV ∪π∗( )

are isomorphisms of Z-graded abelian groups, called the E-theory Thom isomorphisms.
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Example 3.25. 1. Every vector bundle has a canonical E-orientation if E is ordinary
cohomology with Z/2-coefficients.

2. Let V → X be a vector bundle and let E ordinary cohomology with Z-coefficients.
Then there is a natural bijection between the set of orientations on V and the set of
E-orientations on V .

Remark 3.26. Via the isomorphisms E∗cv(V ) ∼= E∗(V, V0) ∼= Ẽ∗(XV ) the Thom class UV
can also be seen as an element in Ek(V, V0) or Ẽk(XV ), which is more common in algebraic
topology. The Thom isomorphism is then seen as the isomorphism

E∗(X) ∼= E∗+k(V, V0) or E∗(X) ∼= Ẽ∗+k(XV ).

Both of these isomorphisms are also described as an appropriate cup product with the Thom
class.

Now we have established all the ingredients for the construction of the umkehr map in
E-theory for a closed n-manifold X as the composition (??). For future reference, we state
this as the definition of p!.

Definition 3.27. Let X be a closed n-manifold embedded in Rn+k with normal bundle V .
Assume that V has an E-orientation UV ∈ Ek

cv(V ). Then the umkehr map

p! : E
∗(X)→ E∗−n(pt)

is the composition

E∗(X) E∗+kc (V ) E∗+kc (Rn+k) E∗−n(pt)
UV ∪π∗( ) i! Un+k∪q∗( )

∼= (3.28)

Here the first map is the Thom isomorphism in E-cohomology given by the cup-product
with the Thom class UV (Theorem 3.24, the second is the extend by zero map i! (Definition
3.12), and the third the suspension isomorphism (given by the cup-product with Un+k, see
(3.16)).

As mentioned, all of the maps of the composition above can be described alternatively in
terms of E-theory rather than E-theory with compact support, which is the more common
description in algebraic topology. The following commutative diagram relates both points
of view.

E∗(X) E∗+kc (V ) E∗+kc (Rn+k) E∗−n(pt)

E∗(X) Ẽ∗+k(XV ) Ẽ∗(Sn+k) E∗−n(pt)

UV ∪π∗( )

∼=

i!

∼= ∼=

Un+k∪q∗( )

∼=

∼=
Thom

isomorphism

∼=
c∗

suspension
isomorphism

∼=

, (3.29)

where c : Sn+k → XV is the collapse map (see equation (3.22)).
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3.3 The umkehr map in K-theory

K-theory is a generalized cohomology theory; in particular, it associates to a pair (X,A),
consisting of a topological space X and a subspace A, a Z-graded abelian group

K∗(X,A) =
⊕
n∈Z

Kn(X,A).

This cohomology theory is 2-periodic in the sense that

Kn+2(X,A) = Kn(X,A). (3.30)

There is a simple geometric description of K0(X) for compact X in terms of vector bundles
over X, and more generally, for K0

c (X), K0
c (X,A), the compactly supported K-theory of X

resp. (X,A). Fortunately, this is sufficient for our purposes, since we are interested in the
umkehr map p! given by specializing the composition (3.28) to the generalized cohomology
theory K∗ in degree ∗ = 0 and for n = dimX even.

K∗(X) K∗+kc (V ) K∗+kc (Rn+k) K∗−n(pt)
UV ∪π∗( ) i! Un+k∪q∗( )

∼=

We note that we choose k = dimV to be even. In that situation, thanks for the 2-periodicity
of the K-theory groups the above simplifies to

K(X) Kc(V ) Kc(Rn+k) K(pt)
UV ∪π∗( ) i! Un+k∪q∗( )

∼=

where we write K( ) instead of K0( ).
Let Vect(X) be the set of isomorphism classes of finite dimensional vector bundles over

the compact space X. The direct sum of vector bundles gives Vect(X) the structure of an
abelian semi-group. Let K(X) be the abelian group obtained by the group completion of the
semi-group Vect(X). This is the procedure used to construct to abelian group Z from the
abelian semigroup N0 (the non-negative integers). Here is the formal definition.

Definition 3.31. For a compact topological space X, the set K(X) consists of equivalence
classes of pairs (E+, E−) of vector bundles, where the equivalence relation is defined by

(E+, E−) ∼ (F+, F−)

if and only if there is some V ∈ Vect(X) such that

E+ + F− + V = F+ + E− + V

The set K(X) is an abelian group with addition defined by [(E+, E−)] + [(F+, F−)] :=
[(E+ + F+, E− + F−0)], unit element [(V, V )] for any V ∈ Vect(X), and inverse given by
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−[(E+, E−)] = [(E−, E+)]. In particular, a vector bundle E → X represents an element
[E] := [(E, 0)] in K(X), where 0 denotes the 0-dimensional vector bundle. Its inverse is
given by −[E] = −[(E, 0)] = [(0, E)]. Any element [(E+, E−)] ∈ K(X) can then be written
in the form

[(E+, E−)] = [(E+ ⊕ 0, 0⊕ E−)] = [(E+ ⊕ 0)] + [(0⊕ E−)] = [E+]− [E−],

i.e., as a difference of element in K(X) represented by vector bundles.

Remark 3.32. Unlike N0, the abelian semi-group Vect(X) does not have the cancellation
property, i.e., E ⊕ V = F ⊕ V does not imply E = F . For example, let TSn be the tangent
bundle of the n-sphere Sn. It can be shown that TSn is not isomorphic to the trivial vector
bundle Rn of dimension n, unless n = 1, 3 or 7 (this is easy to see for n even, since the
Euler class χH(TSn) ∈ Hn(Sn;Z) is non-trivial, see ??). The normal bundle ν(Sn,Rn+1) of
Sn ↪→ Rn+1 is isomorphic to the trivial bundle R1 = Sn×R; an isomorphism from R1 to the
normal bundle is given by sending (x, 1) ∈ Sn×R to the outward pointing unit normal vector
at x. The direct sum of TSn ⊕ ν is isomorphic to the tangent bundle TRn+1 restricted to
Sn, which is the trivial bundle Rn+1 of dimension n+ 1 on Sn. This implies that in Vect(Sn)
we have

TSn + R1 = TSn + ν = TRn+1
|Sn = Rn+1 = Rn + R1,

but TSn 6= Rn.
For abelian semi-groups that have the cancellation property, the definition of the equiv-

alence relation can obviously simplified to (E+, E−) ∼ (F+, F−) if and only if E+ + F− =
F+ + E−. For an abelian semi-group with cancellation property, the simplified relation is
not an equivalence relation since it lacks transitivity.

When describing relating the umkehr map and the Thom isomorphism in de Rham co-
homology, it was convenient for us to use relative de Rham cohomology H∗dR(X,A) and de
Rham cohomology with compact support H∗dR,c(X). Similarly, it will be useful to utilise
relative K-theory K(X,A) and K-theory with compact support Kc(X). We recall that
H∗dR(X,A) and H∗dR,c(X) were defined in terms of the support of differential forms represent-
ing de Rham cohomology classes. Similarly, the definition of K(X,A) and Kc(X) will be
based on a the notion of support of the geometric objects representing K-theory classes.

The objects used so far to represent elements in K(X) are pairs (E+, E−) of vector bun-
dles E±. We know that such a pair represents 0 ∈ K(X) if there is an isomorphism between
these vector bundles, but there is no way to assign to (E+, E−) a subset supp(E+, E−) ⊂ X
in a functorial way such that supp(E+, E−) = ∅ implies [(E+, E−)] = 0 ∈ K(X).

The idea is to replace the simple-minded pairs (E+, E−) with slightly more sophisticated
triples (E+, E−, α+), where as before E± are finite dimensional vector bundles on X, and
α+ : E+ → E− is a vector bundle morphism. The support of (E+, E−, α+) is defined by

supp(E+, E−, α+) := closure of {x ∈ X | α+
x : E+

x → E−x is not an isomorphism}.
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We observe that supp(E+, E−, α+) = ∅ implies that α+ is a vector bundle isomorphism, and
hence [(E+, E−)] = 0 ∈ K(X) as desired. Based on these triples, we give a new definition of
K-theory.

Definition 3.33. (K-theory with compact support) Let X be a topological space (not
required to be compact), and let A ⊂ X be a subspace. Then the K-theory with compact
support of X resp. (X,A) is the abelian group defined by

Kc(X) :={(E+, E−, α+) | supp(E+, E−, α+) is compact}/ ∼
Kc(X,A) :={(E+, E−, α+) | supp(E+, E−, α+) is compact, supp(E+, E−, α+) ⊂ X \ A} ∼

Here E+, E− are finite dimensional vector bundles on X, and α+ : E+ → E− is a vector
bundle morphism. The equivalence relation ∼ is generated by the following relations:

An isomorphism between (E+, E−, α+) and (F+, F−, β+) consists of vector bundle iso-
morphisms f± : E± → F± such that the diagram

E+, E−

F+ F−

f+∼=

α+

f−∼=

β+

is commutative.

A homotopy between (E+, E−, α+
0 ) and (E+, E−, α+

1 ) is a path α+
t : E+ → E− of vector

bundle morphisms connecting α+
0 and α+

1 such that for all t ∈ [0, 1] the relevant support
condition for the triple (E+, E−, α+

t ) is satisfied.

Adding a trivial triple A triple (F+, F−, β+) is called trivial if supp(F+, F−, β+) = ∅.
The sum of (E+, E−, α+

0 ) and (F+, F−, β+) is defined by

(E+, E−, α+
0 ) + (F+, F−, β+) := (E+ ⊕ F+, E− ⊕ F−, α+ ⊕ β+).

If (F+, F−, β+) is trivial, this sum is declared to be equivalent to (E+, E−, α+
0 ).

The sum of these triple gives Kc(X) and Kc(X,A) the structure of an abelian group.

Example 3.34. (The Bott class). Let E± be the trivial complex line bundle over C. So
an element of the total space is a pair (v, w) ∈ C×C; our convention is the bundle projection
map sends (v, w) to v, i.e., v is a point in the base space, and w is an element in the fiber.
Let

α+ : E+ → E− be given by (v, w) 7→ (v, vw)

This bundle map is clearly an isomorphism for v 6= 0 ∈ C; in other words, supp(E+, E−, α+) =
{0} ⊂ C. In particular, this triple B represents an element [B] ∈ Kc(C), called the Bott
class. It turns out that [B] is a generator of Kc(C) ∼= Z.
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The statement Kc(C) ∼= Z is a very special case of a much more general theorem known
as Bott periodicity.

Theorem 3.35. (Bott periodicity). For any space X there is an isomorphism

Kc(X)
∼=−→ Kc(X × C)

which is given by sending an element [E] ∈ Kc(X) represented by a triple E = (E+, E−, α+)
to the product [p∗2B ⊗ p∗1E]. Here p1 : X × C→ X, p2 : X × C→ C are the projection maps
onto the factors, and p∗1B resp. p∗2E are the triples over X × C obtained by pulling back the
vector bundles. The tensor product is constructed in Definition 3.38 below.

Addendum. There is a variant of the above definition using Hermitian triples, i.e., triples
(E+, E−, α+) as above, where the complex vector bundles E± are equipped with hermitian
bundle metrics. The only modification necessary in the definition of the equivalence relation
for these triples is that that isomorphism of hermitian triples involves bundle isomorphisms
f± that are fiberwise isometries.

Exercise 3.36. (a) Show that the forgetful map from hermitian triples to general triples
induces a bijection on equivalence classes.

(b) Show that for a hermitian triple (E+, E−, α+) the inverse of [E+, E−, α+] ∈ Kc(X,A)
is given [E−, E+, (α+)∗], where (α+)∗ : E− → E+ is the adjoint of α+ with respect to
the Hermitian bundle metrics on E±. In more detail, (α+)∗ is a vector bundle map
whose restriction (α+)∗x : E−x → E+

x to fibers over x ∈ X is the adjoint to the linear map
α+
x : E+

x → E−x with respect to the hermitian inner product on E±x . This show a technical
advantage of working with Hermitian triples: there is a canonical representative for the
inverse of the class represented by a given Hermitian triple.

(c) Show that for compact X this new definition of K(X) agrees with the classical one as
the group completion of Vect(X).

There is a way to repackage Hermitian triples (E+, E−, α+) that is very convenient for
the construction of the tensor product of such triples. We recall that a Z/2-graded vector
bundle can be defined as

• a vector bundle E together with a decomposition E = E+ ⊕ E− as a sum of two
complementary subbundles, or

• as a vector bundle E together with an involution τ : E → E (i.e., a vector bundle map
τ with τ 2 = idE).
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Definition 3.37. A graded Hermitian triple is a triple (E, τ, α), where E is a Z/2-graded
Hermitian vector bundle with grading involution τ (where E+ and E− are perpendicular
with respect to the Hermitian metric), and α : E → E is an odd self-adjoint vector bundle
morphism.

Given a decomposition E = E+⊕E−, the corresponding grading involution τ : E → E as

a 2× 2-matrix has the form
(

idE+
0

0 − idE−

)
. Conversely, an involution τ : E → E determines

a vector bundle decomposition E = E+ ⊕ E−, where the fiber E±x is the ±1-eigenspace of
the involution τx : Ex → Ex.

Given a Hermitian triple (E+, E−, α+), let (E, τ, α) be the triple consisting of the Z/2-graded
vector bundle E = E+ ⊕ E− with grading involution τ . The vector bundle map α : E → E
with respect to the decomposition E = E+ ⊕ E− is given by the 2× 2-matrix

α =

(
0 (α+)∗

α+ 0

)
,

where (α+)∗ : E− → E+ is the adjoint of α+ with respect to the bundle metrics on E±. We
note that α : E → E is an odd endomorphism of E (i.e., it sends vectors in E± to vectors
in E∓, or, equivalently, it anti-commutes with the grading involution τ , i.e., τα = −ατ).
Moreover, α is self-adjoint with respect to the bundle metric on E = E+ ⊕ E− determined
by the bundle metrics on E±.

Conversely, if (E, τ) is a Z/2-graded hermitian vector bundle (the bundle metric is re-
quired to be compatible with the grading in the sense that E+

x is perpendicular to E−x ), and
α : E → E is an odd, self-adjoint endomorphism, then (E+, E−, α+) is a Hermitian triple,
where α+ : E+ → E− is the restriction of α to E+ (which maps to E− since α is odd). In
other words, there is a natural bijection between the Hermitian triples (E+, E−, α+) and
(E, τ, α).

We will use this to move freely between these two descriptions, since there are pro’s and
con’s for both points of view. The graded Hermitian triples (E, τ, α) are very convenient for
the construction of a tensor product of such triples which will induce a product on K-theory.

Definition 3.38. (Tensor product of graded hermitian triples.) Let (E1, τ1, α1) and
(E2, τ2, α2) be graded hermitian triples over the same space X. Their tensor product is the
hermitian triple defined by

(E1, τ1, α1)⊗ (E2, τ2, α2) := (E1 ⊗ E2, τ1 ⊗ τ2, idE1 ⊗α2 + α1 ⊗ idE2). (3.39)

A number of comments are in order.

• Hermitian inner products on vector spaces V , W induce a hermitian inner product
on V ⊗W defined by 〈v1 ⊗ w1, v2 ⊗ w2〉 := 〈v1, v2〉〈w1, w2〉. If these hermitian inner
products on V , W are compatible with gradings on V resp. W , then so is the product
on V ⊗W . If E1, E2 are vector bundles , these remarks apply to the fibers to show
that hermitian bundle metrics on E1, E2 determine a bundle metric on E1 ⊗ E2.
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• It is easy to check that τ1 ⊗ τ2 is again an involution. Suppose v±i ∈ E±i . Then

(τ1 ⊗ τ2)(v+
1 ⊗ v+

2 ) = τ1(v+
1 )⊗ τ2(v+

2 ) = v+
1 ⊗ v+

2

(τ1 ⊗ τ2)(v−1 ⊗ v−2 ) = τ1(v−1 )⊗ τ2(v−2 ) = (−v−1 ⊗ (−v−2 ) = v−1 ⊗ v−2

which shows that (E+
1 ⊗ E+

2 )⊕ (E−1 ⊗ E−2 ) belongs to the positive eigenspace of τ1 ⊗
τ2. Similarly, (E+

1 ⊗ E−2 ) ⊕ (E−1 ⊗ E+
2 ) belongs to the negative eigenspace of τ1 ⊗

τ2, which shows that this construction of the tensor product of Z/2-graded vector
spaces/bundles in terms of grading involutions agrees with the more definition in terms
of a decomposition into E+ and E−.

• Some care has to be taken when dealing with tensor products of maps between graded
vector spaces. Suppose V , V ′, W , W ′ are Z/2-graded vector spaces and f : V → V ′

and g : W → W ′ are linear maps which are either odd or even (f and g don’t need to
have the same parity). Then their tensor product

f ⊗ g : V ⊗W −→ V ′ ⊗W ′

is defined by

(f ⊗ g)(v ⊗ w) := (−1)|g||v|f(v)⊗ g(w)

for homogeneous elements v ∈ V , w ∈ W . Here |v| ∈ {0, 1} is the degree of v (i.e.,
|v| = 0 for v ∈ V + and |v| = 1 for v ∈ V −), and |g| ∈ {0, 1} is the degree of g, i.e.,
|g| = 0 if g is even, and |g| = 1 if g is odd.

• An explicit calculation is needed to determine the support of the tensor product (3.39).
We need to determine for which x ∈ X the linear map

idE1 ⊗α2 + α1 ⊗ idE2 : (E1)x ⊗ (E2)x −→ (E1)x ⊗ (E2)x

is an isomorphism, or – equivalently its square – is an isomorphism. Simplifying nota-
tion, let α := α1 ⊗ 1 + 1⊗ α2 : (E1)x ⊗ (E2)x → (E1)x ⊗ (E2)x. Then

α2 =(α1 ⊗ 1)(α1 ⊗ 1) + (α1 ⊗ 1)(1⊗ α2) + (1⊗ α2)(α1 ⊗ 1) + (1⊗ α2)(1⊗ α2)

=α2
1 ⊗ 1 + α1 ⊗ α2 − α1 ⊗ α2 + 1⊗ α2

2

=α2
1 ⊗ 1 + 1⊗ α2

2

Here the minus sign in the equation (1 ⊗ α2)(α1 ⊗ 1) = −α1 ⊗ α2 is due to the
transposition of the two odd endomorphisms α1, α2. It is a consequence of the definition
of the tensor product (??) of linear maps between graded vector spaces. We recall that
αi, i = 1, 2 is self-adjoint, and hence its eigenvalues are real. It follows that the
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eigenvalues of α2
i are non-negative (denoted by writing α2

i ≥ 0, and α2
i is invertible if

and only if all its eigenvalues are positive (denoted α2
i > 0). Using that notation, the

calculation above shows that α2
1 ≥ 0 and α2

2 ≥ 0 implies α2 ≥ 0 and

α2 > 0 ⇐⇒ α2
1 > 0 or α2

2 > 0

Equivalently, α is not invertible if and only if α1 is not invertible and α2 is not invertible.
It follows that

supp((E1, τ1, α1)⊗ (E2, τ2, α2)) = supp(E1, τ1, α1) ∩ supp(E2, τ2, α2)

Our next goal is to construct a Thom class for K-theory. To motivate the upcoming
construction, we recall that the principal symbol of the de Rham operator

d+ d∗ : Ω∗(X) −→ Ω∗(X) = Γ(X; Λ∗T ∗X)

is given by

σd+d∗

ξ (x) = i(ξ ∧ − ιξ) : Λ∗T ∗xX −→ Λ∗T ∗xX for ξ ∈ T ∗xX. (3.40)

Here ξ∧ is given by ω 7→ ξ∧ω and ιξ : Λ∗T ∗xX → Λ∗T ∗xX is the graded derivation of degree
−1 that is determined by ιξ(ω) = 〈ξ, ω〉 for ω ∈ Λ1T ∗xX = T ∗xX where 〈ξ, ω〉 ∈ R is the inner
product of ξ, ω ∈ T ∗xX. Earlier, in Lemma 1.15, we proved that the de Rham operator is
elliptic, i.e., we showed that the map (3.40) is an isomorphism for ξ 6= 0 (by showing that
its square is simply multiplication by ||ξ||2).

This example serves as an inspiration for the following construction.

Definition 3.41. (K-Thom class for complex vector bundles). Let π : V → X be
a complex vector bundle equipped with a hermitian metric. Let UK

C (V ) be the following
hermitian triple over the total space of V :

α : Λ∗(π∗V ) −→ Λ∗(π∗V )

which at a point (x, v) ∈ V is the linear map

αv : Λ∗Vx −→ Λ∗Vx given by αv := i(v ∧ − ιv)

Here the vector spaces are complex, so the exterior algebra Λ∗Vx has to be understood over
the base field C. A little care is needed to ensure that ιv is complex linear: for ω ∈ Λ1Vx = Vx,
it is defined by ιv(ω) = 〈v, ω〉. Hence to ensure complex linearity in ω, we require our
hermitian inner products to be complex linear in the second slot, and complex anti-linear in
the first (due to the Koszul sign convention, I try hard to minimize unnecessary permutations
of symbols).
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Theorem 3.42. [UK
C (V )] ∈ Kc(V ) is a Thom class.

Remark 3.43. The factor of i in the definition above is convenient, but not essential. It is
necessary if we wish to think in terms of hermitian triples: without the factor i the operator
is skew-adjoint rather than self-adjoint. However, if we just extract the corresponding triple
α+ : E+ → E− there is no requirement on α+ to be self- or skew-adjoint, and in fact the
triples (E+, E−, α+) and (E+, E−, iα+) represent the same K-theory class.

Exercise 3.44. Prove Theorem 3.42, i.e., show that the restriction of UK
C (V ) to each fiber

Vx is a generator of Kc(Vx). Hint:

(a) Show that for dimV = 1 the class [UK
C (V )] ∈ Kc(V ) restricts to the Bott class [B] ∈

Kc(Vx) on each fiber.

(b) Show that the Thom class UK
C (V ) is exponential in the sense that for complex vector

bundles V,W → X

[UK
C (V ⊕W )C] = [p∗1U

K
C (V )⊗ p∗2UK

C (W )] ∈ Kc(V ⊕W ),

where p1 : V ⊕W → V , p2 : V ⊕W → W are the projection maps. In particular, if V
is an n-dimensional bundle, then the restriction of the Thom class UK

C (V ) to the fiber
Vx = Cn is the tensor product of n copies of the Bott class. This is the generator of
Kc(Cn) by the Bott Periodicity Theorem.

The limitation of the Thom class UK
C (V ) ∈ Kc(V ) is that it requires V to be a complex

vector bundle. Since the Thom class for the normal bundle V of a compact manifold X in
Euclidean space is the crucial ingredient for the construction of the umkehr map p! : K(X)→
K−n(pt), this is an unwelcome restriction to the manifolds we can construct p! for. It turns
out that a spin structure (or spinc structure) on an even dimensional real vector bundle V
determines a Thom class UK(V ) (which does not agree with the Thom class UK

C (V ) if V
happens to be a complex vector bundle whose underlying real vector bundle is equipped with
a spin structure). The construction of UK(V ) for a real vector bundle of dimension 2n for
n > 1 will have to wait until we discuss Clifford algebras, but here is the construction for
n = 1.

Definition 3.45. Let π : V → X be an oriented real vector bundle of dimension 2, equipped
with a bundle metric. Note that equivalently, V can be viewed as a complex 1-dimensional
vector bundle with hermitian metric. A spin structure on V can be interpreted as a square

root of V , i.e., as a pair (L, β), where L is a complex line bundle and β : L⊗2
∼=−→ V is a

vector bundle isomorphism (exercise: prove this!). Abusing language, we write V 1/2 for the
square root of V determined by its spin structure, and V −1/2 := (V 1/2)∗ for its dual vector
bundle. Then

Hom(V −1/2
x , V 1/2

x ) ∼= (V −1/2
x )∗ ⊗ V 1/2

x
∼= V 1/2

x ⊗ V 1/2
x
∼= Vx,
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and hence we can construct the vector bundle map

α+ : π∗V −1/2 −→ π∗V 1/2 given by (v, w) 7→ (v, v · w)

for v ∈ Vx, w ∈ V −1/2
x . Since the support of this triple is the zero section in V , this triple

represents an element in Kc(V ). Restricted to each fiber of V it is isomorphic to the Bott
triple, and hence it is a Thom class which we denote UK(V ) ∈ Kc(V ).

3.4 Chern classes

For general vector bundles it is difficult to decide whether two vector bundles over the same
topological space X are isomorphic; for example the result that the tangent bundle TSn

of the n-sphere is isomorphic to the trivial bundle if and only if n = 1, 3, or 7 is a result
that is relatively hard to prove. Fortunately, complex line bundles are easy to classify up to
isomorphism due to the following two facts:

• Let CP∞ the complex projective space, and let γ → CP∞ be the tautological line
bundle. For a topological space X, let [X,CP∞] be the homotopy classes of maps
f : X → CP∞. Then the map

[X,CP∞] −→ {complex line bundles over X}/isomorphism given by [f ] 7→ f ∗γ

is a bijection. This statement motivates calling CP∞ the classifying space for complex
line bundles, and γ the universal complex line bundle.

• Let x ∈ H2(CP∞;Z) ∼= Z be the generator characterized by 〈x, [CP1]〉 = 1. Here
[CP1] ∈ H2(CP1;Z) is the fundamental class of CP1 ⊂ CP∞ with respect to the
orientation given by the complex structure on CP1, and 〈x, [CP1]〉 ∈ Z is the evaluation
of x on [CP1]. Then the map

[X,CP∞] −→ H2(X;Z) given by [f ] 7→ −f ∗x

is also a bijection. So we could also refer to CP∞ as the classifying space for 2-dimensional
cohomology classes and to x ∈ H2(CP∞;Z) as the universal 2-dimensional cohomology
class.

The composition of these two bijections then gives a bijection

{complex line bundles over X}/isomorphism ←→ H2(X;Z).

This is actually an isomorphism of abelian groups, with the obvious group structure on
H2(X;Z), and the group structure on the left given by tensor products of line bundles. The
cohomology class associated to a complex line bundle L→ X is called the first Chern class,
denoted c1(L) ∈ H2(X;Z).
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Remark 3.46. Why is there a minus sign in the definition of c1(L)? For a closed surface
Σ, we would like to have

〈c1(TΣ), [Σ]〉 = χ(Σ), the Euler characteristic of Σ. (3.47)

Let’s check this for Σ = S2 = CP1 with tangent bundle TS2 ∼= (γ∗)⊗2 (prove this!).

c1(TS2) = c1(γ∗ ⊗ 2γ∗) = 2c1(γ∗) = −2c1(γ),

and hence 〈c1(TS2), [S2]〉 = −2〈c1(γ), [S2]〉 = 2 = χ(S2).

T For complex vector bundles E → X, there are characteristic classes called Chern
classes ci(E) ∈ H2i(X;Z) for i = 0, 1, . . . , which only depend on the isomorphism class of
E. They have the following properties:

vanishing c0(E) ∈ H0(X;Z) is the unit in the cohomology ring H∗(X;Z) (we denote the
unit by 1), and ci(E) = 0 for i > dimCE (the dimension of the fibers of E).

naturality If f : Y → X is a continuous map, then ci(f
∗E) = f ∗ci(E) ∈ H2i(Y ;Z).

Exponential property Let c(E) := 1+ c1(E)+ c2(E)+ · · · ∈ H∗(X;Z) be the total Chern
class of E → X. If F is another complex vector bundle over X, then the total Chern
class of the direct sum E ⊕ F is given by the formula

c(E ⊕ F ) = c(E)c(F ) ∈ H∗(X;Z),

where c(E)c(F ) is the cup product of these classes.

Normalization For the tautological line bundle γ → CP1,

〈c1(γ), [CP1]〉 = −1.

In other words, the first Chern class for complex line bundles agrees with our earlier
construction at the beginning of this section.

Theorem 3.48. Axiomatic characterization of Chern classes. There are cohomology
classes ci(E) ∈ H2i(X;Z) for complex vector bundles E. They are uniquely characterized by
the four properties above.

Exercise 3.49. 1. Show that for the trivial bundle Ck, its total Chern class is c(Ck) =
1 ∈ H∗(X;Z). Hint: use naturality for the projection map p : X → pt.

2. Show that c(E ⊕ Ck) = c(E).

3. Show that if L1, L2 are complex line bundle over X, then c1(L1⊗L2) = c1(L1)+c1(L2).
Hint: Use naturality of c1 for the diagonal map ∆: X → X ×X, x 7→ (x, x).
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A little later, we will construct the Chern classes ci(E) ∈ H2i(E;Z), but we won’t show
that the cohomology classes constructed we construct have all the properties listed above.
There is an additional property of Chern classes: If X is a closed complex manifold of
complex dimension n, then

〈cn(TX), [X]〉 = χ(X).

This is the generalization of our earlier statement (3.47) for n = 1

The Grassmann manifold Gk(W ) and its tangent bundle. Let W be a complex vector
space of dimension n equipped with a Hermitian metric, and for 0 ≤ k ≤ n, let Gk(W ) be
the Grassmann manifold defined by

Gk(W ) := {V ⊂ W | V is a k-dimensional linear subspace of W}.

In particular, G1(Cn) = CPn−1 is the complex projective space of 1-dimensional subspaces
of Cn. For V ∈ Gk(W ), let V ⊥ ⊂ W be the orthogonal complement of V , and let

φV : Hom(V, V ⊥) −→ Gk(W ) be the map defined by f 7→ graph(f).

Here graph(f) ⊂ V × V ⊥ = W is the graph of the linear map f : V → V ⊥, which is a
k-dimensional subspace of W . It can be shown that φV is a homeomorphism, and that the
collection of these homeomorphisms provides a holomorphic atlas for Gk(W ), thus giving
the Grassmann manifold Gk(W ) the structure of a complex manifold. In particular,

dimCGk(W ) = dimC Hom(V, V ⊥) = dimC V dimC V
⊥ = k(n− k).

Moreover, for V ∈ Gk(W ) the tangent space TVGk(W ) can be expressed in terms of V and
V ⊥ via the vector space isomorphism

TVGk(W ) Hom(V, V ⊥)
∼= (3.50)

given by mapping f ∈ Hom(V, V ⊥) to the tangent vector at V given by the equivalence class
of the path R→ Gk(W ), t 7→ graph(tf).

The tautological vector bundle over Gk(W ) is the k-dimensional subbundle γ of the trivial
bundle W := Gk(W )×W given by

γ := {(V,w) | V ∈ Gk(W ), w ∈ V } ⊂ Gk(W )×W.

Similarly, we define a n− k-dimensional subbundle γ⊥ by

γ⊥ := {(V,w) | V ∈ Gk(W ), w ∈ V ⊥} ⊂ Gk(W )×W.

By construction, γ and γ⊥ are complementary subbundles of the trivial bundle W and hence
the inclusion maps give a vector bundle isomorphism

γ ⊕ γ⊥ ∼= W.
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Moreover, the vector space isomorphism (3.50) depends smoothly (actually holomorphically)
on V , and hence leads to an isomorphism of complex vector bundles

TGk(W ) Hom(γ, γ⊥).
∼= (3.51)

Putting these vector bundle isomorphisms together, we obtain the following isomorphism

TGk(W )⊕ Hom(γ, γ) ∼= Hom(γ, γ⊥)⊕ Hom(γ, γ) ∼= Hom(γ, γ ⊕ γ⊥) ∼= Hom(γ,W ).

For k = 1, the vector bundle Hom(γ, γ) has dimension 1, and the identity section provides
a trivialization, allowing us to identify it with the trivial line bundle C1. Hence for the
complex projective space CPn−1 = CP(Cn) = G1(Cn) we have the bundle isomorphism

TCPn−1 ⊕ C1 ∼= Hom(γ,Cn) = γ∗ ⊕ · · · ⊕ γ∗︸ ︷︷ ︸
n

, (3.52)

where γ∗ = Hom(γ,C) is the complex line bundle dual to γ.

Example 3.53. The total Chern class of the tangent bundle of CPn−1. We recall
that the cohomology ring H(CPn−1;Z) is the truncated polynomial ring Z[x]/(xn), where
x ∈ H2(CPn−1;Z) is the element characterized by 〈x, [CP1]〉 = 1, and (xn) is the ideal
generated by xn. Let γ → CPn−1 be the tautological bundle and γ∗ → CPn−1 its dual. Then

γ∗ ⊗ γ ∼= Hom(γ, γ)

is trivializable (via the nowhere vanishing identity section), and hence by Exercise ??,

0 = c1(γ∗ ⊗ γ) = c1(γ∗) + c1(γ)

and hence the normalization condition (and the fact that the bundles γ, γ∗ over CPn−1

restrict to the bundles over CP1 with the same names) implies

〈c1(γ∗), [CP1]〉 = −〈c1(γ), [CP1]〉 = 1.

Hence c1(γ∗) = x, and c(γ∗) = 1 + x ∈ H∗(CPn−1).
Using the bundle equation (3.52) we can calculate the total Chern class of the tangent

bundle TCPn−1:

c(TCPn−1) =c(TCPn−1 ⊕ C1) = c(nγ∗) = c(γ∗)n = (1 + x)n =
n∑
k=0

(
n

k

)
xk

The Chern class ck(TCPn−1) ∈ H∗(CPn−1;Z) is the degree 2k component of the total Chern
class, and hence

ck(TCPn−1) =

(
n

k

)
xk.
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In particular, the top Chern class of this n− 1-dimensional tangent bundle evaluated on the
fundamental class gives

〈cn−1(TCPn−1), [CPn−1]〉 = 〈nxn−1,CPn−1〉 = n

which agrees with the Euler characteristic of CPn−1.

Example 3.54. Let E → X be a complex vector bundle which is a sum of complex line
bundles L1, . . . , Ln. Let xi := c1(Li) ∈ H2(X). Then by the exponential property of the
total Chern class, we have

c(E) =c(L1) · · · c(Ln) = (1 + x1) · · · (1 + xn)

=1 + σ1(x1, . . . , xn) + σ2(x1, . . . , xn) + · · ·+ σn(x1, . . . , xn)

Here σi(x1, . . . , xn) is a homogeneous polynomial of degree i in the variables x1, . . . , xn, called
the i-th elementary symmetric polynomial. Explicitly,

σ1(x1, . . . , xn) =
∑

1≤j≤n

xj

σ2(x1, . . . , xn) =
∑

1≤j<k≤n

xjxk

σ3(x1, . . . , xn) =
∑

1≤j<k<l≤n

xjxkxl

...

σn(x1, . . . , xn) =x1x2 . . . xn

This is a very useful statement and for future reference we state it as a lemma.

Lemma 3.55. Let L1, . . . , Ln be complex line bundles over a space X and let xi := c1(Li) ∈
H2(X;Z) be the first Chern class of Li. Then

ck(L1 ⊕ · · · ⊕ Ln) = σk(x1, . . . , xn) ∈ H2k(X;Z),

where σk(x1, . . . , xn) is the k-th elementary symmetric function of x1, . . . , xn.

3.5 The Leray-Hirsch Theorem and the splitting principle

Let π : (E,E0) → X be a fiber bundle with fiber (F, F0). Then the cohomology of the
total space H∗(E,E0) is a module over the cohomology of the base space H∗(X), where the
module structure

H∗(E,E0)⊗H∗(X) −→ H∗(E,E0) is given by a⊗ b 7→ a ∪ π∗(b).
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If E is an oriented vector bundle of dimension k and E0 is its complement of the zero-
section, the Thom isomorphism implies that H∗(E,E0) is a free module over H∗(X) of rank
1 with basis element given by the Thom class U ∈ Hk(E,E0). The following result is a
generalization of the Thom isomorphism.

Theorem 3.56. (Leray-Hirsch Theorem). Let π : (E,E0) → X be a fiber bundle with
fiber (F, F0). Let R be a commutative ring, and assume that the cohomology with R-coefficients
H∗(F, F0;R) is a free R-module. Assume further that there are (homogeneous) elements
U1, . . . , Un ∈ H∗(E,E0;R) whose restriction to each fiber (E,E0)x is an R-basis for the
R-cohomology of this pair. Then the cohomology H∗(E,E0;R) is a free module over H∗(X;R)
with basis {U1, . . . , Un}. In particular, any element a ∈ H∗(E,E0;R) can uniquely be written
in the form

a = U1a1 + U2a2 + · · ·+ Unan for ai ∈ H∗(X;R).

For notational simplicity we suppress here the cup product and the pullback π∗.

We will apply the Leray-Hirsch Theorem to the complex projective space bundle

π : CP(W )→ X

associated to a complex n-dimensional vector bundle W → X. The total space of this bundle
is

CP(W ) := {(x, V ) | x ∈ X, V ⊂ Wx 1-dimensional subspace of the fiber Wx},

and the projection map π sends the pair (x, V ) to x ∈ X. So the fiber CP(W )x = π−1(x)
is the complex projective space CP(Wx). In other words, we can think of this bundle as a
family of complex projective spaces parametrized by X.

The construction of the vector bundles γ and γ⊥ over projective space extend to this
parametrized situation. The bundles γ → CP(W ), γ⊥ → CP(W ) are now complementary
subbundles of the pullback bundle π∗W → CP(W ) defined by

γ :={(x, V, w) | x ∈ X, V ⊂ Wx, w ∈ V }
γ⊥ :={(x, V, w) | x ∈ X, V ⊂ Wx, w ∈ V ⊥}

These vector bundles generalize what we did for a single complex projective space, and on
each fiber CP(W )x = CP(Wx), these bundles restrict to the bundles constructed earlier.
In particular, the cohomology class x := c1(γ∗) ∈ H2(CP(W ) restricts to the generator
of H2(CP(W );Z). Hence the cohomology classes {1, x, x2, . . . , xn−1} restrict to a basis of
H∗(CP(W );Z). Then the Leray-Hirsch Theorem implies the following result.

Corollary 3.57. Let W → X be complex vector bundle of dimension n, and let π : CP(W )→
X be the associated complex projective space bundle. Let x := c1(γ∗) ∈ H2(CP(W );Z) be
the first Chern class of the dual of the tautological line bundle γ. Then H∗(CP(W );Z) is
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a free module over H∗(X;Z) with basis {1, x, . . . , xn−1}. In particular, any element a ∈
H∗(CP(W );Z) can uniquely be written in the form

a = a0 + xa1 + x2a2 + · · ·+ xn−1an−1 with ai ∈ H∗(X;Z).

Corollary 3.58. (The splitting principle.) Let W → X be a complex vector bundle of
dimension n. Then there exists a continuous map f : Y → X with the following properties

• the pullback f ∗W is isomorphic to L1 ⊕ · · · ⊕ Ln, a sum of complex line bundles.

• the induced map f ∗ : H∗(X;Z)→ H∗(Y ;Z) is injective.

Proof. By the previous corollary, the bundle map π : CP(W )→ X induces an injective map
on cohomology. The pullback π∗W splits as the direct sum γ ⊕ γ⊥ of the complementary
subbundles γ, γ⊥. If dimW = 2, then γ⊥ has dimension one, and map π does the job. If
dimW > 2, we consider the projective bundle CP(γ⊥) → CP(W ) associated to the vector
bundle γ⊥ → CP(W ) of dimension n− 1. So applying this procedure repeatedly, we end up
with a sequence of maps, each of which is injective in cohomology, such that W pulled back
via their composition splits as a sum of line bundles.

3.5.1 Construction of the Chern classes

Another application of the Leray-Hirsch Theorem, or more precisely its corollary ??, is a
construction of the Chern classes. A little care is required to avoid logical loops, since we
used Chern classes to argue that the powers of x = c1(γ∗) form a basis of H∗(CP(W );Z) as
a module over H∗(X;Z).

The construction of the vector bundles γ and γ⊥ over projective space extend to this
parametrized situation. The bundles γ → CP(W ), γ⊥ → CP(W ) are now complementary
subbundles of the pullback bundle π∗W → CP(W ) defined by

γ :={(x, V, w) | x ∈ X, V ⊂ Wx, w ∈ V }
γ⊥ :={(x, V, w) | x ∈ X, V ⊂ Wx, w ∈ V ⊥}

These vector bundles generalize what we did for a single complex projective space. In
particular, on each fiber CP(W )x = CP(Wx) these bundles restrict to the bundles constructed
earlier. Let VCP(W )→ CP(W ) be the vertical tangent bundle, which restricts to the tangent
bundle on each fiber CP(Wx). The vector bundle isomorphism (3.51) generalizes to the
parametrized situation to give a vector bundle isomorphism

VCP(W ) ∼= Hom(γ, γ⊥).

Next we want to generalize the vector bundle isomorphisms (3.52) to the parametrized
version. The only difference is that γ, γ∗ are no longer complementary subbundles of a
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trivial bundle, but rather of the pullback bundle π∗W , which leads to the isomorphism
γ ⊕ γ∗ ∼= π∗W . Hence

VTCP(W )⊕ C1 ∼= Hom(γ, γ ⊕ γ⊥) ∼= Hom(γ, π∗W )

Let us calculate the total Chern class of the vertical tangent bundle. Let us assume that the
n-dimensional complex vector bundle W splits as a sum of complex line bundles

W ∼= L1 ⊕ · · · ⊕ Ln

and let xi := c1(Li) ∈ H2(X;Z). Then the total Chern class of the vertical tangent bundle
VCP(W ) is

c(VCP(W ) =c(VCP(W )⊕ C1)

=c(γ∗ ⊗ π∗W )

=c(γ∗ ⊗ (π∗WL1 ⊕ · · · ⊕ π∗WLn))

=c(γ∗ ⊗ π∗L1) · · · c(γ∗ ⊗ π∗Ln)

=(1 + x+ x1) · · · (1 + x+ xn)

In particular, the n-th Chern class of VCP(W ) is given by

cn(VCP(W )) = (x+ x1) · · · (x+ xn) = xn + xn−1σ1 + xn−2σ2 + · · ·+ xσn−1 + σn (3.59)

where σi = σi(x1, . . . , xn) is the i-th elementary symmetric function of the xi, e.g.,

σ1 = x1 + · · ·+ xn σ2 =
∑

1≤i<j≤n

xixj σn = x1 · · ·xn

We note that the (complex) dimension of the vertical tangent bundle is equal to the dimension
of the fibers of CP(W ) → X. These are complex projective spaces CP(Wx) of (complex)
dimension n− 1, and hence cn(VCP(W )) = 0. Hence

− xn = π∗cn(W ) + xπ∗cn−1(π∗(W ) + · · ·+ xn−1π∗c1(W ) (3.60)

This equation shows one way to construct the Chern classes of a complex vector bundle
W → X of dimension n:

• form the projective bundle π : CP(W ) → X. By the Leray-Hirsch Theorem, its coho-
mology H∗(CP(W );Z) is a free module over H∗(X;Z) with basis {1, x, x2, . . . , xn−1}
where x = c1(γ∗) ∈ H2(CP(W );Z) is the first Chern class of the dual of the tautological
complex line bundle γ.

• Expressing the cohomology class −xn ∈ H2n(CP(W );Z) in terms of this basis, the
coefficient of the basis element xn−i is the Chern class ci(W ) ∈ H2i(X;Z).
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3.5.2 The Chern character

Let E, F be complex vector bundles over a space X. Then the total Chern class of the
direct sum E ⊕ F is given by the simple formula c(E ⊕ F ) = c(E)c(F ). By contrast, it is
cumbersome to calculate the total Chern class of the tensor product E ⊗ F :

• if E, F are line bundles, then c1(E ⊗ F ) = c1(E) + c1(F ) by Exercise 3.49(3);

• If E and F are sum of line bundles, so is E ⊗ F , and for each summand we can use
(1) to calculate its total Chern class; multiplying them gives the total Chern class of
E ⊗ F ;

• By the splitting principle, it is ok to assume that E, F split as a sum of line bundles.

The Chern character ch(E) ∈ Hev(X;Q) of a complex vector bundle is much more pleasant
for calculations; it is designed to have the properties

1. ch(E ⊕ F ) = ch(E) + ch(F ) and

2. ch(E ⊗ F ) = ch(E) ch(F ).

Let’s reverse engineer ch(E), first defining ch(L) for a complex line bundle L. Since L is
determined by its first Chern class x := c1(L) ∈ H2(X;Z), the cohomology class ch(L) should
be some function f(x) of x. If L1, L2 are two line bundles over X with xi = c1(Li) ∈ H2(X),
then the desired property (2) and c1(L1 ⊗ L2) = x1 + x2 forces

f(x1 + x2) = ch(L1 ⊗ L2) = ch(L1) ch(L2) = f(x1)f(x2).

This shows that defining

ch(L) := ex =
∞∑
k=0

1

k!
xk ∈ Hev(X;Q) for a complex line bundle L→ X with x = c1(L)

satisfies property (2). If E = L1⊕· · ·⊕Ln is a sum of line bundles Li with xi = c1(Li), then
property (1) requires to define

ch(E) = ch(L1 ⊕ · · · ⊕ Ln) = ch(L1) + · · ·+ ch(Ln) = ex1 + · · ·+ exn ∈ Hev(X;Q).

Can we express ch(E) in terms of the Chern classes ck(E) ∈ H2k(X;Z) of E? According to
Lemma 3.55

ck(E) = σk(x1, . . . , xn),

the k-th elementary symmetric function of the xi. Let ch(E)2k ∈ H2k(X;Q) be the degree
2k part of ch(E), which is a homogeneous polynomial of x1, . . . , xn of degree k. It is a
symmetric polynomial, i.e., invariant under permuting the variables xi. Then according to
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the fundamental theorem of symmetric polynomials ch(E)2k can be expressed as a polynomial
of σ1, . . . , σn, i.e.,

ch(L1 ⊕ · · · ⊕ Ln)2k = P n
k (σ1, . . . , σn).

Here the polynomial P n
k is independent of the line bundles Li at hand. For example,

ex1 + ex2 =1 + x1 +
1

2
x2

1 + · · ·+ 1 + x2 +
1

2
x2

2 + . . .

=2 + (x1 + x2) +
1

2
(x2

1 + x2
2) + . . .

=2 + σ1 + (
1

2
σ2

1 − σ2) + . . .

Here the last equality follows from σ2
1 = (x1 +x2)2 = x2

1 +x2
2 + 2x1x2 = (x2

1 +x2
2) + 2σ2. This

shows that

P 2
0 = 2 P 2

1 = σ1 P 2
2 =

1

2
σ2

1 − σ2.

Definition 3.61. Let E → X be a complex vector bundle over X with Chern classes
ck(E) ∈ H2k(X). Then the Chern character ch(E) ∈ Hev(X;Q) is the cohomology class
whose degree 2k part ch(E)2k ∈ H2k(X;Q) is given by

ch(E)2k := P n
k (c1(E), . . . , cn(E)).

By construction of the Chern character, it is clear that it has the desired properties (1)
and (2). For future reference, we state this as a lemma.

Lemma 3.62. The Chern character of a complex vector bundle E → X is an element
ch(E) ∈ Hev(X;Q), which has the properties

ch(E ⊕ F ) = ch(E) + ch(F ) ch(E ⊗ F ) = ch(E) ch(F )

for complex vector bundles E,F over X.

Remark 3.63. If E = L1 ⊕ · · · ⊕ Ln is a sum of line bundles Li, then by construction

ch(E) = ex1 + · · ·+ exn for xi = c1(Li)

Motivated by the equation

(1 + x1) · · · · · (1 + xn) = c(L1 ⊕ · · · ⊕ Ln) = c(E),

the classes xi ∈ H2(X) are often referred to as Chern roots of E. This terminology is used
even in cases where E does not split as a sum of line bundles: in that case, the splitting
principle guarantees that a pullback of E via some map f : Y → X splits as a sum of line
bundles, and hence the Chern roots of E don’t live in the cohomology of X, but rather
the cohomology of Y . The injectivity of the induced homomorphism f ∗ : H∗(X) → H∗(Y )
guarantees that this is good enough for calculations in cohomology. In particular, since the
properties (1) and (2) of the Chern character hold by construction for sum of line bundles,
by the splitting principle they hold in general.
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3.6 Comparing Orientations in K-theory and ordinary cohomol-
ogy

We recall that for a compact topological space X the elements of the K-theory group K(X)
are of the form [E] − [F ] where E, F are complex vector bundles over X (see Definition
3.31). Let

ch: K(X) −→ Hev(X;Q) be defined by [E+]− [E−] 7→ ch(E+)− ch(E−).

The additive property ch(E ⊕ F ) = ch(E) + ch(F ) of the Chern character guarantees that
the above map is a well-defined homomorphism. The multiplicative property ch(E ⊗ F ) =
ch(E) ∪ ch(F ) implies that the Chern Character is a ring homomorphism, with the product
in K-theory given by the tensor product of vector bundles, and the product in cohomology
given by the cup product.

We recall that we constructed K-theory orientations (also known as K-theory Thom
classes) for suitable vector bundles V → X. In fact, we mentioned two different K-theory
orientations:

(i) If V → X is a complex vector bundle of (complex) dimension n, we constructed a
K-theory orientation UK

C (V ) ∈ Kc(V ), see Definition 3.41;

(ii) if V → X is a real vector bundle of real dimension 2n with spin structure, there is a
K-theory orientation UK(V ) ∈ Kc(V ). This orientation we have so far only constructed
for n = 1, i.e., if V is a complex line bundle with spin structure, see Definition 5.16.
The general construction will be done later.

The goal of this section is compare the images of our K-theory orientations UK
C (V ), UK(V )

under the Chern character map with the usual orientation class UH(V ) ∈ H∗c (V ;Z) in
ordinary cohomology. We will first do this in the case where the vector bundle V is a
complex line bundle; later we will deal with the general case.

Proposition 3.64. Let π : V → X be a complex line bundle over a compact space X, and
let x = c1(V ) ∈ H2(X;Z) be the first Chern class of V . Then

1.

ch(UK
C (V )) = UH(V ) ∪ π∗

(
1− ex

x

)
∈ Hev

c (V ;Q) (3.65)

2. If V is equipped with a spin structure, then

ch(UK(V )) = UH(V ) ∪ π∗
(
−sinh(x/2)

x/2

)
∈ Hev

c (V ;Q) (3.66)
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Before delving into the proof, we start with some general remarks. Both sides of the
equation above are compatible with pullback in the sense that for a map f : Y → X both
sides of the above equation for the bundle f ∗V are pullbacks of the corresponding side for
the bundle V . In particular, if equation (3.65) holds for V , then it also holds for f ∗V .

The complex line bundle V → X is the pullback of the tautological line bundle γ → CP∞
via some map X → CP∞. Alas, we don’t want to work directly with CP∞ due to its non-
compacness. Fortunately, since X is compact, this map in factors in the form

X CPk CP∞f

for some sufficiently large k. Hence it suffices to prove the proposition in the case of the
tautological line bundle γ → CPk.

The proof of the proposition is further simplified by the following result.

Lemma 3.67. Let π : γ → CPk be the tautological complex line bundle and let i : CPk → γ
be the zero section. Then the induced map in cohomology i∗ : H∗c (γ;Z) → H∗(CPk;Z) is
injective in degree ∗ < 2k + 2.

Exercise 3.68. Prove this lemma. Hints:

• as discussed earlier this semester, the compactly supported cohomology H∗c (V ) of a
vector bundle V → X over a compact base X can be identified with the reduced
cohomology H̃∗(XV ) of the Thom space XV . Moreover, if i : X ↪→ V and j : X ↪→ XV

are given by the inclusion of the zero section, then the diagram

H∗c (V ) H∗(X)

H∗(XV )

∼=

i∗

j∗

is commutative.

• Show that the Thom space (CPk)γ of the tautological bundle γ → CPk is homeomorphic
to CPk+1 such that the diagram

H∗((CPk)γ) H∗(CPk)

H∗(CPk+1)

∼=

j∗

ι∗

is commutative, where ι : CPk → CPk+1 is the inclusion map.
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Hence to prove Proposition 5.17 it suffices to calculate the image of both side under the
map i∗.

Remark 3.69. Let V → X be a vector bundle and UE
V ∈ E∗c (V ) an E-theory orientation

of V . Then the cohomology class χEV := i∗UE
V is referred to as E-theory Euler class of V . It

is an obstruction to the existence of a nowhere vanishing section s of the vector bundle V .
In other words, if such a section exists, then i∗UE is trivial. This is evident, since the zero
section i is homotopic to the section s, and hence i∗UE

V = s∗UE
V . By scaling, the section s

can be modified such that its image is disjoint from the compact support of UE
V and hence

i∗UE
V = 0.

Exercise 3.70. 1. Show that for the tautological complex line bundle γ → CPk its Euler
class χH(γ) = i∗UH(γ) ∈ H2(CPk;Z) in ordinary cohomology is given by i∗UH(γ) =
c1(γ). Use the second hint for the previous exercise.

2. More generally, show that for any complex vector bundle V → X of dimension n
the Euler class of V is equal to the n-th Chern class cn(V ) ∈ H2n(X;Z). Hint: The
orientation UH is exponential in the sense that for oriented vector bundles V , W over
X

UH(V ⊕W ) = UH(V ) ∪ UH(W ) ∈ H∗c (V ⊕W ). (3.71)

Here we suppress the projection maps from V ⊕W to V resp. W in the notation. Show
the statement assuming at first that V is a sum of complex line bundles, then use the
splitting principle to deal with the general case.

Proof of Proposition 5.17. We recall from Definition 3.41 that for the complex vector bundle
π : V → X over a compact space X the K-theory orientation UK

C (V ) ∈ Kc(X) is given by
the Hermitian triple of the form α : π∗Λ∗(V )→ π∗Λ∗(V ), where Λ∗(V ) is the exterior algebra
bundle generated by the vector bundle V , and π∗Λ∗(V ) is its pullback via the projection map
π : V → X. This implies that i∗(π∗Λ∗(V )), the restriction of π∗Λ∗(V ) to the zero section
X ↪→ V is the Z/2-graded vector bundle Λ∗V . Over the compact base space X the vector
bundle map α becomes irrelevant, and so the K-theory element i∗UK

C (V ) ∈ K(X) is just
given by the formal difference of the even and the odd part of the exterior algebra bundle:

i∗UK
C (V ) = ΛevV − ΛoddV ∈ K(X).

In particular, if V is a line bundle, then ΛevV = Λ0V = C is the trivial line bundle, and
ΛoddV = Λ1V = V . Now we specialize to V = γ → CPk and set x := c1(γ). Then

i∗(chUK
C (γ)) = ch(i∗UK

C (γ)) = ch(C− γ) = ch(C)− ch(γ) = 1− ec1(γ) = 1− ex

Since by Exercise 3.70(1) i∗UH
γ = c1(γ) = x, it follows that

i∗(chUK
C (γ)) = x ∪ 1− ex

x
= i∗UH

γ ∪
1− ex

x
= i∗

(
UH(γ) ∪ π∗

(
1− ex

x

))
.
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Since i∗ is injective, this implies ch(UK
C (γ)) = UH(γ) ∪ π∗

(
1−ex
x

)
, thus proving the first

part of the Proposition.
The second part of the proposition is proved similarly, but some care is needed due to

the fact that the tautological line bundle γ → CPk does not have a spin structure. We recall
from Definition 5.16 that a spin structure on a line bundle V amounts to a “square root”

of V , i.e., a complex line bundle L and an isomorphism β : L⊗2
∼=−→ V . In particular, this

implies that c1(V ) = c1(L⊗2) = 2c1(L) must be divisible by 2; this is not the case for the
tautological line bundle γ for which c1(γ) ∈ H2(CPk;Z) is a generator.

Let f : X → CPk be a map that classifies the line bundle L → X in the sense that f ∗γ
is isomorphic to L. Then f ∗γ⊗2 is isomorphic to V , and hence it suffices to prove part (2)
for the spin bundle V = γ⊗2 with square root V 1/2 = γ. Setting x := c1(V ), we have

c1(V ) = x c1(V 1/2) = x/2 c1(V −1/2) = −x/2.

It follows that

i∗ ch(UK(V )) = ch(i∗UK(V )) = ch(V −1/2 − V 1/2) = ch(V −1/2)− ch(V 1/2)

=ec1(V −1/2) − ec1(V 1/2) = e−x/2 − ex/2 = −2 sinh(x/2)

=x ∪ −sinh(x/2)

x/2
= i∗UH(V ) ∪ −sinh(x/2)

x/2

=i∗
(
UH(V ) ∪ π∗

(
−sinh(x/2)

x/2

))
Since i∗ is injective, this implies

ch(UK(V )) = UH(V ) ∪ π∗
(
−sinh(x/2)

x/2

)
∈ Hev

c (V ;Q)

as claimed.

3.6.1 Exponential characteristic classes

The main result so far is Proposition 5.17, which compares the orientations ch(UK
C (V )),

ch(UK(V )) and UH(V ) for complex line bundle. The goal of this subsection is to do the
same for more general vector bundles V . In the literature this often goes under the name
multiplicative sequences (see for example that section in the excellent book Characteristic
Classes by Milnor and Stasheff), but I don’t like that terminology since I find it not very
descriptive.

As motivation, let us first calculate ch(UK
C (V )) in the special case where V is a sum of

complex line bundles V = L1⊕ · · · ⊕Ln. The K-theory orientation UK
C is exponential in the

sense that for complex vector bundles V , W over a compact space X we have

UK
C (V ⊕W ) = UK

C (V )⊗ UK
C (W ) ∈ Kc(V ⊕W ). (3.72)
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It follows that for xi := c1(Li)

ch(UK
C (V )) = ch

(
UK
C (L1)⊗ · · · ⊗ UK

C (Ln)
)

= ch(UK
C (L1)) · · · · · ch(UK

C (Ln))

=

(
UH(L1) ∪ π∗

(
1− ex1
x1

))
· · · · ·

(
UH(Ln) ∪ π∗

(
1− exn
xn

))
=UH(V ) ∪ π∗

(
1− ex1
x1

· · · · · 1− exn
xn

) (3.73)

Here the last line follows from the exponential property of the orientation UH in ordinary
cohomology. Now we can argue as we did in the case of the Chern Character in section 3.5.2
that the second factor of the right hand side can be expressed in terms of the Chern classes
of the complex vector bundle V .

Definition/Construction 3.74. Let q(x) = 1 + a1x + a2x
2 + . . . be a power series with

coefficients in a ring R. Then q determines an associated exponential characteristic class
Tq(V ) ∈ Hev(X;R) for complex vector bundles V → X with the following properties:

normalization: If V is a complex line bundle, then Tq(V ) = q(c1(V )) ∈ Hev(X;R).

naturality: For any map f : Y → X, Tq(f
∗V ) = f ∗Tq(V ).

exponential property: Tq(V ⊕W ) = Tq(V )Tq(W ) for complex vector bundles V , W .

Again, the argument used to construct the exponential characteristic class Tq(V ) is en-
tirely similar to the construction of the Chern Character of a complex vector bundle (despite
the fact that the Chern Character is not exponential, but rather additive in the sense that
ch(V ⊕ W ) = ch(V ) + ch(W )!). First assume that V is a sum of complex line bundles
V = L1 ⊕ · · · ⊕ Ln, and let xi := c1(Li). Then

Tq(V ) = Tq(L1) · · ·Tq(Ln) = q(x1) · · · q(xn).

Since the degree 2k-component Tq(V )2k ∈ H2k(X;R) is a polynomial of the xi which is
symmetric under permutation of the xi, the class Tq(V )2k is a polynomial of the elementary
symmetric functions σi(x1, . . . , xn). Since σi(x1, . . . , xn) = ci(V ), this can then be used as
the definition of Tq(V ) of a general complex vector bundle V .

Example 3.75. (Examples of exponential characteristic classes). Let V → X be a
complex vector bundle. Then the following characteristic classes are examples of exponential
exponential characteristic classes:

1. The Todd class Td(V ) := Tq(V ) ∈ Hev(X;Q) associated to q(x) = x
1−e−x ;
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2. The A-roof class Â(V ) := Tq(V ) ∈ Hev(X;Q) associated to q(x) = x/2
sinh(x/2)

.

3. The L-class L(V ) := Tq(V ) ∈ Hev(X;Q) associated to q(x) = x
tanh(x)

.

Proposition 3.76. Let V be a complex vector bundle of dimension k over a compact space
X. Then

1. ch(UK
C (V )) = UH(V ) ∪ π∗((−1)kTd(V̄ )−1).

2. If V has a spin structure, then ch(UK(V )) = UH(V ) ∪ π∗((−1)kÂ(V )−1).

Proof. If V is a sum complex line bundles V = L1 ⊕ · · · ⊕ Lk and let xi = c1(Li) ∈ H2(X).
Then the calculation (3.73) shows that

ch(UK
C (V )) =UH(V ) ∪ π∗

(
1− ex1
x1

· · · · · 1− exk
xk

)
=UH(V ) ∪ π∗

((
x1

1− ex1

)−1

· · · · ·
(

xk
1− exk

)−1
)

=UH(V ) ∪ π∗
(
(−Td(L̄1)−1) · · · · · (−Td(L̄k)

−1)
)

=UH(V ) ∪ π∗((−1)kTd(V̄ )−1)

The general case follows by applying the splitting principle.
The statement concerning the Chern character of the orientation class UK(V ) for com-

plex vector bundles with spin structure follows similarly. If V is a line bundle, part (2) of
Proposition 5.17 shows that

ch(UK(V )) = UH(V ) ∪ π∗(−Â(V )−1).

The exponential property of the orientions UK , UH as well as the exponential property for
the exponential characteristic class Â(V ) then implies the statement in the case where V is
a sum of line bundles. By the splitting principle the statement holds for any complex vector
bundle V .

3.7 Characteristic classes for real vector bundles

In the last section we showed that for a k-dimensional complex vector bundle π : V → X
with spin structure the Chern character of the K-theory orientation UK(V ) ∈ Kc(V ) is given
by

ch(UK(V )) = UH(V ) ∪ (−1)kπ∗Â(V )−1,

where Â(V ) ∈ Hev(X;Q) is the Â-class of V . Back when we first mentioned the orientation
class UK(V ) we emphasized that it can be constructed for even dimensional real vector
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bundles with spin structure. This leads to the question of how to extend the definition of the
characteristic class Â(V ) from complex bundles to real vector bundles such that the above
equation holds.

More generally, we can ask whether the exponential characteristic class Tq(V ) associated
to a power series q(x) ∈ R[[x]] (see Definition/Construction 3.74) can be extended from
complex vector bundles V to real vector bundles. More formally, we can consider Tq as the
map from VectC(X), the isomorphism classes of complex vector bundles overX toHev(X;R),
and we ask whether this map factors through VectR(X), the set of isomorphism classes of
real vector bundles over X. In other words, we ask whether there is a map TR

q (which is
natural in X, i.e., compatible with pullbacks) making the following diagram commutative.

VectC(X) VectR(X)

Hev(X;R)

Tq

( )R

TR
q

(3.77)

Here ( )R is the map that sends a complex vector bundle V to the real vector bundle VR
obtained by forgetting the complex structure on the fibers Vx, just regarding them as real
vector spaces.

Proposition 3.78. Let q(x) = 1+a1x+a2x
2 +· · · ∈ R[[x]] be a power series with coefficients

in a ring R. Assume that 2 ∈ R is invertible in R (R = Q is the case we will be most
interested in). Then there is a unique map TR

q making the diagram (3.77) commutative if
and only if q(x) is an even power series, i.e., the odd coefficients a2i+1 vanish. Moreover,
for q(x) even the map TR

q (and hence also Tq) has values in H4∗(X;R) :=
∏∞

i=0H
4i(X;R).

In Example 3.75 we mentioned three exponential characteristic classes Tq(V ) defined for

complex vector bundles V , namely the Todd class Td(V ) (for q(x) = x
1−e−x ), the Â-class

Â(V ) (for q(x) = x/2
sinh(x/2)

), and the L-class L(V ) (for q(x) = x
tanhx)

. The last two power
series are even, which implies that the corresponding exponential characteristic classes can
be defined for real vector bundles.

For reference purposes, we state this explicitly.

Definition 3.79. Let V → X be a real vector bundle. Then the

Â-class Â(V ) := TR
q (V ) ∈ H4∗(X;Q) is the exponential characteristic class determined by

the even power series q(x) = x/2
sinh(x/2)

∈ Q[[x]], and

L-class L(V ) := TR
q (V ) ∈ H4∗(X;Q) is the exponential characteristic class determined by

the even power series q(x) = x
tanhx

∈ Q[[x]].

In particular, now we can conclude:
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Proposition 3.80. Let π : V → X be real vector bundle of dimension n = 2k equipped with
a spin structure, and let UK(V ) ∈ Kc(V ) be the K-theory orientation. Then

ch(UK(V )) = UH(V ) ∪ (−1)kπ∗(Â(V )−1).

The Thom isomorphism in K-theory (resp. cohomology) is given by multiplication by the
K-theory orientation UK (resp. cohomology orientation UH). Hence the interplay between
these orientations via the Chern character expressed by the previous result allows us to
express how the Chern character interacts with the Thom isomorphisms.

Corollary 3.81. For π : V → X as above, the following diagram is commutative.

K(X) Kc(V )

H∗(X;Q) H∗(X;Q) H∗c (V ;Q)

ch

UK(V ) ∪ π∗( )

ch

(−1)kÂ(V )−1 ∪ UH(V ) ∪ π∗( )

Proof. Let E → X be a complex vector bundle and let [E] ∈ K(X) the element it represents
in K(X). Then

ch(UK(V ) ∪ π∗([E])) = ch(UK(V )) ∪ π∗(ch(E))

=UH(V ) ∪ π∗((−1)kÂ(V )−1) ∪ π∗(ch(E))

=UH(V ) ∪ π∗((−1)kÂ(V )−1 ∪ ch(E)),

where the second equation is a consequence of the proposition. It is evident that chasing [E] ∈
K(X) along the other path in the diagram (first down to H∗(X;Q) and then horizontally
to H∗(V ;Q)) we obtain the same element.

The rest of this section is devoted to the proof of Proposition 3.78. It is easy to see that
the requirement that q(x) is an even power series is a necessary condition for Tq to factor in
the form (3.77). We prove this now. Then we introduce characteristic classes for real vector
bundles known a Pontryagin classes and use them to construct TR

q .
Let γ → CP∞ be the tautological complex line bundle and γ̄ → CP∞ its complex

conjugate bundle. These two bundles are equal as real vector bundles, and hence assuming
that Tq factors through TR

q , then Tq(L) = TR
q (LR) = TR

q (L̄R) = Tq(L̄). But by construction
of Tq (see Definition/Construction 3.74), the exponential characteristic class Tq for the line
bundles γ, γ̄ is given by evaluating q on their first Chern classes. Let x = c1(γ); then
c1(γ̄) = −x and hence

Tq(γ) = q(x) ∈ H∗(CP∞;Q) = Q[[x]] and Tq(γ̄) = q(−x).
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It follows that q(−x) = q(x), i.e., the power series q(x) is even.

The basic idea for obtaining characteristic classes for a real vector bundle V → X is to
take the Chern classes of the complexfication VC = V ⊗R C of V . This is the complex vector
bundle whose fiber (VC)x over a point x ∈ X is the complexification (Vx)C := (Vx) ⊗R C of
the fiber Vx (which is a real vector space). We observe that the complex conjugate bundle
VC is isomorphic to VC; the isomorphism

VC −→ VC is given by v ⊗R z 7→ v ⊗R z̄.

Lemma 3.82. Let W → X be a complex vector bundle. Then the k-th Chern class of
the conjugate bundle W̄ is given by ck(W̄ ) = (−1)kck(W ) ∈ H2k(X;Z). In particular, if
W = VC, then 2ck(W ) = 0 ∈ H2k(X;Z) for k odd.

Proof. If W is a complex line bundle, then W̄ is isomorphic to the dual bundle W ∗ (via the
choice of a hermitian metric on W ), and hence c1(W̄ ) = c1(W ∗) = −c1(W ). If W is a direct
sum of complex line bundles W = L1⊕· · ·⊕Ln with xi := c1(Li), then the total Chern class
of W̄ is given by

c(W̄ ) = c(L̄1 ⊕ · · · ⊕ L̄n) = c(L̄1) · · · c(L̄n) = (1− x1) · · · (1− xn)

It follows that

ck(W̄ ) = σk(−x1, . . . ,−xn) = (−1)kσk(x1, . . . , xn) = (−1)kck(W ),

where the second equality follows from the fact that the elementary symmetric polynomial
σk(x1, . . . , xn) is a homogeneous polynomial of degree k in the variables xi.

Definition 3.83. Let V → X be a real vector bundle of dimension n. Then the characteristic
class pi(V ) := (−1)ic2i(VC) ∈ H4i(X;Z) is the i-th Pontryagin class of V . This implies
p0(V ) = 1 ∈ H0(X;Z) and pi(V ) = 0 for 2i > n from the corresponding properties of the
Chern classes. The total Pontryagin class p(V ) is defined by

p(V ) = 1 + p1(V ) + p2(V ) + · · · ∈ H4∗(X;Z).

The sign (−1)i in the definition of pi(V ) is motivated by a more pleasant formula for the
first Pontryagin class p1(LR) ∈ H4(X;Z) of a complex line bundle L → X in terms of its
first Chern class c1(L) ∈ H2(X;Z). Here LR is the complex line bundle L considered as a
real vector bundle of dimension 2. More precisely and generally, if W → X is a complex
vector bundle of dimension n, we can forget the complex structure on the fibers Wx, and can
regard W as real vector bundle of dimension 2n, which we denote by WR.

Exercise 3.84. Show that the complexification (WR)C is isomorphic to W ⊕ W̄ .
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Let L be a complex line bundle and let x := c1(L) be its first Chern class. Then

c((LR)C) = c(L⊕ L̄) = c(L)c(L̄) = (1 + x)(1− x) = 1− x2.

This implies p1(LR) = −c1((LR)C) = x2 and p(LR) = 1 + x2.

Exercise 3.85. Let V1, V2 be real vector bundles over X. Show that

p(V1 ⊕ V2) = p(V1)p(V2) modulo 2-torsion

Let V be a real vector bundle of the form V = (L1)R⊕ · · · ⊕ (Ln)R where Li are complex
line bundles. Let xi := c1(Li). Then

p(V ) =p((L1)R ⊕ · · · ⊕ (Ln)R) ≡ p((L1)R) · · · p((Ln)R)

=(1 + x2
1) · · · (1 + x2

n) = 1 + σ1 + σ2 + · · ·+ σn ∈ H4∗(X;Z)

where ≡ stands for equality modulo 2-torsion, and σi = σi(x
2
1, . . . , x

2
n) is the i-th elementary

symmetric function. It follows that for V = (L1)R ⊕ · · · ⊕ (Ln)R

pi(V ) ≡ σi(x
2
1, . . . , x

2
n) ∈ H4i(X;Z). (3.86)

Proof of Proposition 3.78. Let q(x) = 1 + a1x + a2x
2 + . . . be an even power series with

coefficients in a ring R with 2 ∈ R×. Our goal is to construct the characteristic class
TR
q (V ) ∈ H∗(X;R) for real vector bundles V making the diagram 3.77 commutative. In

other words, it should have the property that for any complex vector bundle W we have the
equality

Tq(W ) = TR
q (WR).

Let us use reverse engineering to find a formula for TR
q (WR) in terms of the Pontryagin classes

of WR. First assume that W = L is a line bundle with c1(L) = x. Then

Tq(L) = q(c1(L)) = q(x) = 1 + a2x
2 + a4x

4 + · · · = r(x2),

where r(x) ∈ R[[x]] is the power series

r(x) = 1 + a2x+ a4x
2 + . . . .

This shows that for real vector bundles of the form LR for a complex line bundle L, we can
express Tq(L) in terms of x2 = p1(LR), the first Pontryagin class of the real vector bundle
LR. Hence for real vector bundles of the form LR, we define

TR
q (LR) := r(p1(LR)).
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More generally, if W is the sum W = L1 ⊕ · · · ⊕ Ln of complex line bundles Li with
c1(Li) = xi ∈ H2(X;Z), then

TR
q (WR) = TR

q ((L1)R) · · ·TR
q ((Ln)R) = r(x2

1) · · · r(x2
n).

To define TR
q (V ) for a general real vector bundle V , we proceed as in the construction of

the Chern character in Definition 3.61. The component (r(x2
1) · · · r(x2

n))4k ∈ H4k(X;R) of
r(x2

1) · · · r(x2
n) of degree 4k is a polynomial of x2

i which is invariant under permuting the x2
i .

Hence by the fundamental theorem of symmetric functions,

(r(x2
1) · · · r(x2

n))4k = Qn
k(σ1, . . . , σn),

where Qn
k is a polynomial of the elementary symmetric functions σi = σi(x

2
1, . . . , x

2
n) of the

variables x2
i . By equation (3.86) and our assumption that 2 is invertible in the ring R, we

have
σi(x

2
1, . . . , x

2
n) = pi(V ) ∈ H4i(X;R).

This suggests to define for any real vector bundle V

(TR
q (V ))4k := Qn

k(p1(V ), . . . , pn(V )) ∈ H4k(X;R),

which generalizes what we have done above for real vector bundles of the form

V = (L1 ⊕ · · · ⊕ Ln)R.

3.8 Relating the umkehr maps in K-theory and cohomology

Theorem 3.87. Let X be a closed n-manifold, n even, with a spin structure. Let

p! : K(X)→ K(pt) = Z

be the umkehr map in K-theory, and let E → X be a complex vector bundle and [E] ∈ K(X)
the class represented by E. Then

p!([E]) = 〈Â(TX) ∪ ch(E), [X]〉,

where Â(TX) ∈ H4∗(X;Q) is the Â-class of the tangent bundle TX (see 3.79), ch(E) ∈
Hev(X;Q) is the Chern character of E (see 3.61), and the right hand side above is the
evaluation of the cup product of the classes on the fundamental class [X] ∈ Hn(X;Z).

We recall that at the beginning of section 3 we stated two versions of the Index Theorem
for twisted Dirac operators DE on a closed spin manifold X of dimension n = 2k
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K-theory version: index(D+
E) = (−1)kp!([E]) ∈ K(pt) = Z, where p! : K(X) → K(pt) is

the umkehr map in K-theory for spin manifolds;

Cohomology version: index(D+
E) = 〈Â(TX) ∪ ch(E), [X]〉

The K-theory formulation is the slick, abstract formulation good for generalizations and
the proof of the index theorem, the cohomological formulation is well-adapted to explicit
calculations. So the tremendous amount of time we spend to talk about characteristic
classes and the Chern character is well-spent, since it provides the necessary toolbox for
many explicit calculations. In particular, the theorem above shows that the K-theory version
of the Index Theorem is equivalent to its cohomological formulation.

Proof of Theorem 3.87. Let X ↪→ Rn+k be the imbedding of X into Euclidean space with k
even. Let πV → X be the k-dimensional normal bundle of this embedding, let i : V ↪→ Rn+k

be the embedding of the total space of V as a tubular neighborhood of X ⊂ Rn+k. Consider
the following commutative diagram.

K(X) Kc(V ) Kc(Rn+k) K(pt)

H∗(X;Q) H∗(X;Q) H∗+kc (V ;Q) H∗+kc (Rn+k) H∗−n(pt;Q)

ch

UK(V ) ∪ π∗( )

∼=

pK!

ch

i!

ch

∼=

ch

(−1)kÂ(V )−1 ∪ UH(V ) ∪ π∗( )

∼=

pH! =〈 ,[X]〉

i! ∼=

The top row is the definition of the umkehr map pK! in K-theory: the composition of the
Thom isomorphism for the normal bundle V → X, followed by the map i! induced on
K-theory with compact support by the proper embedding i : V ↪→ Rn+k, followed by the
(inverse of the) suspension isomorphism. Similarly, the composition of the last three maps
in the bottom row is the umkehr map pH! in ordinary cohomology, which alternatively can
be described as 〈 , [X]〉, i.e, as evaluation on the fundamental class [X] ∈ Hn(X;Z). The
vertical maps are given by the Chern character and the commutativity of the right two
squares is evident. The commutativity of the left part of this diagram is the statement of
Corollary 3.81.
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4 Calculations with characteristic classes

4.1 Hirzebruch’s Signature Theorem

Let X be a closed oriented manifold of dimension n = 2` with ` even. We recall from section
1.4.1 that

IX : H`
dR(X)×H`

dR(X) −→ R given by ([α], [β]) 7→
∫
X

α ∧ β

is a non-degenerate symmetric bilinear form. The signature of X sign(X) is defined to be
the signature of this symmetric bilinear form, i.e.,

sign(X) = dimH`
+ − dimH`

−,

where H`
+, H

`
− ⊂ H`

dR are complementary subspace such that the form IX is positive definite
on H`

+ and negative definite on H`
−.

Theorem 4.1. (Hirzebruch’s Signature Theorem). Let X be a closed oriented manifold
of dimension n ≡ 0 mod 4. Then the signature of X is equal to L(X) the L-genus of X,
defined by

L(X) = 〈L(TX), [X]〉.

Here L(TX) = TR
q (TX) ∈ H4∗(X;Q) is the exponential characteristic class associated to

the power series q(x) = x
tanhx

(which makes sense for the real vector bundles like TX since
q(x) is an even power series; see Proposition 3.78 and Definition 3.79).

We would like to emphasize the different flavors of both sides of the equation

sign(X) = L(X).

• The signature of X is an integer by construction, while L(X) = 〈L(TX), [X]〉 is a
priori only a rational number, since the construction of the L-class L(TX) involves
denominators (coming from the fact that the coefficients of the power series x

tanhx
are

rational), and hence its evaluation on the fundamental class [X] ∈ Hn(X;Z) can at
first only expected to be in Q.

• The signature of X depends only on the homotopy type of the n-manifold X (plus
a choice of the generator of Hn(X;Z) ∼= Z). By contrast, the construction of L(X)
involves the tangent bundle of TX, i.e., it a priori depends on the smooth structure of
X.

Proposition 4.2. The signature sign(X) of oriented closed manifolds of dimension divisible
by 4 has the following properties:
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1. sign(X q Y ) = sign(X) + sign(Y ), where X q Y is the disjoint union of the manifolds
X, Y of the same dimension.

2. sign(X × Y ) = sign(X) · sign(Y ).

3. If X is the boundary of an oriented manifold W , then sign(X) = 0.

For the proof of these properties of the signature, it will be useful to have a good criterium
for the vanishing of the signature of a non-degenerate symmetric bilinear form.

I : V × V −→ R

on a finite dimensional real vector space V .

Definition 4.3. Let I : V × V −→ R be a non-degenerate symmetric bilinear form on a
finite dimensional real vector space V .

1. A subspace L ⊂ V is isotropic if I(`, `′) = 0 for all `, `′ ∈ L. Equivalently, if

L ⊂ L⊥ := {v ∈ V | I(v, `) = 0 for all ` ∈ L}.

2. A subspace L ⊂ V is Lagrangian if L = L⊥.

Proposition 4.4. Let I : V × V → R and J : W ×W → R be non-degenerate symmetric
bilinear forms.

1. sign(V ⊕W, I ⊕ J) = sign(V, I) + sign(W,J).

2. sign(V ⊗W, I ⊗ J) = sign(V, I) · sign(W,J)

3. Let I : V × V → R be a non-degenerate symmetric bilinear form. If L ⊂ V is La-
grangian, then sign(I) = 0.

The proof of this lemma is left to the reader.

Proof of Proposition 4.4. The property sign(XqY ) = sign(X)+sign(Y ) follows from Lemma
5.40(1).

To prove the multiplicative property sign(X×Y ) = sign(X) ·sign(Y ), we need to analyze
the cup product pairing on the middle dimensional cohomology of the product X × Y .
For dimX = 2k and dimY = 2` with k, ` even, we decompose the middle dimensional
cohomology H := Hk+`(X × Y ) (working with coefficients in R throughout) as follows:

Hk+`(X × Y ) ∼=
⊕

i+j=k+`

H i(X)⊗Hj(Y )

=Hk(X)⊗H`(Y )︸ ︷︷ ︸
U

⊕
⊕

0≤i<k

H i(X)⊗Hk+`−i(Y )︸ ︷︷ ︸
V

⊕
⊕

k<i≤2k

H i(X)⊗Hk+`−i(Y )︸ ︷︷ ︸
W
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Let IX×Y = I : H ×H → R be the cup product pairing. We note that for u ∈ U the pairing
I(u, v) vanishes if v ∈ V or v ∈ W ; if u = u1 ⊗ u2 with u1 ∈ Hk(X), u2 ∈ H`(Y ), and
v = v1 ⊗ v2 with v1 ∈ H i(X), v2 ∈ Hk+`−i(Y ), then

I(u, v) = 〈u ∪ v, [X × Y ]〉 = 〈u1 ∪ v1, [X]〉 · 〈u2 ∪ v2, [Y ]〉 = 0,

since the cohomology class u1 ∪ v1 ∈ H∗(X) is in degree k + i < 2k = dimX. For v ∈ W
the class u1 ∪ v1 is in degree > 2k and hence again I(u, v) = 0. This shows that (H, I) splits
as a direct sum

(H, I) = (U, I|U) ⊕ (V ⊕W, IV⊕W ),

and hence sign(H, I) = sign(U, I|U) + sign(V ⊕ W, IV⊕W ). It should be emphasized that
(V ⊕ W, IV⊕W ) does not split as a direct sum of V and W equipped with the restriction
of the form I, since the pairing I(v, w) for v ∈ V , w ∈ W is typically non-zero. Rather,
we note that for v = v1 ⊗ v2 ∈ V and v′ = v′1 ⊗ v′2 ∈ V the pairing I(v, v′) vanishes
(again since v1 ∪ v′1 ∈ H∗(X) are in degree < 0). In fact, V is a Lagrangian subspace of
(V ⊕W, IV⊕W ), since if w belongs to V ⊥ ⊂ V ⊕W , then Poincaré duality implies that the
W -component of w must be trivial, i.e., w ∈ V . By part (3) of Lemma 5.40 this implies that
sign(V ⊕W, IV⊕W ) = 0, and hence

sign(X × Y ) =sign(H, I) = sign(U, I|U) + sign(V ⊕W, IV⊕W )

=sign(U, I|U) = sign(Hk(X)⊗H`(Y ), IX ⊗ IY )

=sign(Hk(X), IX) · sign(H`(Y ), IY ) = sign(X) · sign(Y )

Here the second to last equation follows from part (2) of Lemma 5.40.

To prove the third part, suppose the 2k-manifold X is the boundary of an oriented
2k + 1-manifold W . Consider the following commutative diagram, known as Poincaré-
Lefschetz duality whose rows are the portion of the long exact (co)homology sequence of the
pair (W,X), and whose top vertical isomorphisms are the Poincaré duality isomorphisms
and whose bottom vertical isomorphisms come from the universal coefficient theorem.

Hk(W ;R) Hk(X;R) Hk+1(W,X;R)

Hk+1(W,X;R) Hk(X;R) Hk(W ;R)

Hom(Hk+1(W,X),R) Hom(Hk(X),R) Hom(Hk(W ),R)

i∗

∼=

δ

∼= ∼=

∂

∼=

i∗

∼= ∼=

Unwinding the definitions, we can check that the compositions of the vertical isomorphisms
are given by the appropriate non-degenerate cup product pairings:

IX : Hk(X;R)×Hk(X;R) −→ R (α, α′) 7→ 〈α ∪ α′, [X]〉
IW : Hk(W ;R)×Hk+1(W,X;R) −→ R (β, γ) 7→ 〈β ∪ γ, [W,∂W ]〉
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Moreover, these pairings are related by

〈i∗β ∪ α, [X]〉 = 〈β ∪ δ(α), [W,∂W ]〉 α ∈ Hk(X;R), β ∈ Hk(W ;R).

We claim that L := im(i∗) is a Lagrangian subspace of Hk(X;R) which by part (3) of Lemma
5.40 then implies sign(X) = 0.

So let i∗β, i∗β′ ∈ L. Then

IX(i∗β, ı∗β′) = 〈ı∗β ∪ i∗β′, [X]〉 = 〈β ∪ δ(i∗β′), [W,∂W ]〉 = 0

shows that L is isotropic. To show that L is Lagrangian, let α ∈ L⊥, i.e.,

0 = IX(i∗β, α) = 〈i∗β ∪ α, [W,∂W ]〉 = 〈β ∪ δ(α), [W,∂W ]〉 for all β ∈ Hk(W ;R).

By the vertical isomorphisms on the right side, this implies δ(α) = 0 which by the exactness
of the top sequence implies that α is in the image of i∗, i.e., it belongs to L.

Proposition 4.5. Let q(x) = 1 + a2x
2 + a4x

4 + · · · ∈ R[[x]] be an even power series with
coefficients in a ring R with 2 ∈ R×. For a closed oriented manifold [X], let Tq(X) ∈ R be
the Tq-genus of X, defined by

Tq(X) := 〈Tq(TX), [X]〉 ∈ R.

The Tq-genus has the following properties:

1. Tq(X q Y ) = Tq(X) + Tq(Y )

2. Tq(X × Y ) = Tq(X) · Tq(Y )

3. If X = ∂W for a compact oriented manifold W , then Tq(X) = 0.

Exercise 4.6. Prove this proposition.

Definition 4.7. Let X, Y be closed oriented n-manifolds. They are bordant if there is an
oriented (n + 1)-manifold W whose boundary ∂W is diffeomorphism to the disjoint union
X q Ȳ as oriented manifold. Here the orientation on W induces an orientation on ∂W , and
Ȳ denotes the manifold Y , but equipped with the opposite orientation. Let Ωn be the set of
bordism classes of closed oriented n-manifolds.

Disjoint union of n-manifolds gives Ωn the structure of an abelian group, called the
oriented bordism group of dimension n. The unit of Ωn is represented by the empty set, and
the inverse of the bordism class [X] ∈ Ωn of a closed oriented n-manifold X is given by [X̄].
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Older source often use “cobordant” rather than “bordant”, and refer to Ωn as “cobordism
group”. Since bordism groups lead in a natural way to a homology rather than a cohomology
theory, the “bordism” terminology has become more prevalent.

The cartesian product of manifolds gives a bilinear map

Ωm × Ωn → Ωm+n defined by ([X], [Y ]) 7→ [X × Y ].

In other words, the cartesian product gives

Ω∗ :=
∞⊕
n=0

Ωn

the structure of a Z-graded ring. Then Proposition 4.5 implies.

Corollary 4.8. The map L : Ω∗ → Q defined by [X] 7→ L(X) is a ring homomorphism.

Similarly, we want to say that proposition 4.4 implies that assigning to a closed oriented
n-manifold X its signature sign(X) ∈ Z gives a ring homomorphism from Ω∗ to Z. This
is not clear at this point, since so far we have defined the signature of a closed oriented
manifold X only for manifolds of dimension n ≡ 0 mod 4. Now we extend this definition
to oriented closed n-manifolds for any n by declaring sign(X) = 0 if n 6≡ 0 mod 4.

Corollary 4.9. The map sign: Ω∗ → Z defined by [X] 7→ sign(X) is a ring homomorphism.

It should be pointed out that this result is not a corollary of proposition 4.4 alone. That
proposition does not exclude the possibility that there are manifolds X, Y of dimension 6≡ 0
mod 4 such that X × Y has dimension ≡ 0 mod 4 and sign(X × Y ) 6= 0. It turns out that
this is not possible as we will argue below.

The proof of Hirzebruch’s signature theorem is based on the calculation of Ω∗ ⊗ Q due
to Thom.

Theorem 4.10. (Thom). The rational oriented bordism ring Ω∗ ⊗Z Q is equal to the
polynomial algebra Q[[CP2], [CP4], . . . , [CP2n], . . . ] generated by the bordism classes [CP2n] ∈
Ω2n of even dimensional complex projective spaces.

Remark 4.11. The proof to this important result is based on the Pontryagin-Thom iso-
morphism

Ωn
∼= πn MSO

which expresses the oriented bordism groups as the homotopy groups of the Thom spectrum
MSO (which is a special case of a statement expressing very general bordism groups as
homotopy groups of associated Thom spectra). The k-th space MSOk in the spectrum MSO
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is the Thom space of the universal oriented vector bundle V k → BSO(k) of dimension k; the
universality of V k means that the map

[X,BSOk] −→ {vector bundles over X of dimension k}/isomorphism

which sends a map f : X → BSOk to the pullback bundle f ∗V k → X, is a bijection. In more
elementary terms, the Pontryagin-Thom construction yields an isomorphism

Ωn
∼= lim

k
πn+k BSO(k)V

k

,

where BSO(k)V
k

is the Thom space of V k → BSO(k).
Then the calculation of Ω∗ ⊗Z Q then boils down to calculating the rational homology

groups of BSO =
⋃
k BSO(k) thanks to the isomorphisms

Ω∗ ⊗Q ∼= π∗MSO⊗Q ∼= H∗(MSO;Q) ∼= H∗(BSO;Q)

the last which is the Thom isomorphism.

We note that Theorem 4.10 in particular implies that Ωn is a torsion group for n 6≡
0 mod 4, since all the generators of Ω∗ ⊗ Q have degree ≡ 0 mod 4. This implies that
sign: Ω∗ → Z is in fact a ring homomorphism as claimed in Corollary 4.9.

To show that sign(X) = L(X) for all oriented closed manifolds, we will now view sign
and L as ring homomorphisms from the oriented bordism ring Ω∗ ⊗ Q to Q, and hence it
suffices to show that sign(X) = L(X) for X = CP2n, the generators of the ring Ω∗ ⊗ Q.
Hence the Hirzebruch signature theorem follows from the following explicit calculations of
the signature and the L-genus for complex projective spaces.

Lemma 4.12. sign(CPn) = 1 for n even.

Proof. We recall that the cohomology ring of CPn is given by H∗(CPn;Z) = Z[x]/(xn−1),
where x ∈ H2(CPn;Z) and (xn−1) is the ideal generated by xn−1. As generator x we will
choose the first Chern class of γ∗, the dual of the tautological line bundle. We claim that
〈xn, [CPn]〉 = 1, where [CPn] ∈ Hn(CPn;Z) is the fundamental class of CPn determined by
the orientation of CPn as a complex manifold.

To prove this, we use the fact that for a complex manifold X of complex dimension n its
Euler characteristic χ(X) is given by

χ(X) = 〈cn(TX), [X]〉.

We recall from (3.52) that
TCPn ⊕ C ∼= γ∗ ⊕ · · · ⊕ γ∗︸ ︷︷ ︸

n+1

, (4.13)
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which implies

c(TCPn) = (1 + x)n+1 and hence cn(TX) = (n+ 1)xn.

On the other hand, χ(CPn) = n+ 1 and hence 〈xn, [X]〉 = 1 as claimed.
For n = 2`, the middle dimensional cohomology group Hn(CPn) is generated by x`, and

since 〈x` ∪ x`, [CPn]〉 = 1, it follows that the cup product pairing on Hn(CPn) is positive
definite, and hence sign(CPn) = 1.

Lemma 4.14. L(CPn) =

{
1 for n even

0 for n odd

Proof. To compute L(CPn) = 〈L(TCPn), [CPn]〉 ∈ Q, we recall that L = TR
q is the exponen-

tial characteristic class for real vector bundles associated to the power series q(x) = x
tanhx

.
Due to (3.52) we have

L(TCPn) = Tq(
⊕
n+1

γ∗) = Tq(γ
∗)n+1 = q(x)n+1 =

( x

tanhx

)n+1

Then

L(CPn) =〈
( x

tanhx

)n+1

, [CPn]〉

=coefficient of xn in
( x

tanhx

)n+1

=residue at 0 of

(
1

tanhx

)n+1

.

By the residue theorem

L(CPn) =
1

2πi

∮ (
1

tanhx

)n+1

where the contour integral is taken over a small circle with center the origin of the complex
x-line. Substituting z = tanhx and using dz = (1 − tanh2 x)dx = (1 − z2)dx, this integral
can be simplified to

1

2πi

∮
dz

(1− z2)zn+1
=

1

2πi

∮
1 + z2 + z4 + . . .

zn+1
dz

= coefficient of zn in 1 + z2 + z4 + . . .

=

{
1 for n even

0 for n odd
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4.2 The topology of the Kummer surface

The Kummer surface is defined by

K = {[z0, z2, z2, z3] ∈ CP3 | z4
0 + z4

1 + z4
2 + z4

3 = 0}.

It is easy to check that this a smooth complex hypersurface of the complex projective space
CP3. Hence it is a closed complex manifold of complex dimension 2 and real dimension 4.
Our goal here is to completely determine the (co)homology groups of K and in particular to
compute the intersection form of K. Many of the techniques we use can be applied to much
more general situations, and so where appropriate, we make more general statements than
necessary to analyze K.

Definition 4.15. Let f(z0, . . . , zn+1) be a homogeneous polynomial of degree d. Then

X(f) := {[z0, . . . , zn+k] ∈ CPn+1 | f(z0, . . . , zn+1) = 0}

is hyperplane of degree d. If X(f) is smooth, then it is a closed complex manifold of complex
dimension n.

Theorem 4.16. (Lefschetz hyperplane theorem). For a smooth hyperplane X the
embedding i : X ↪→ Cn+1 is an n-equivalence, i.e.,

i∗ : πjX −→ πjCPn+1 is an isomorphism for j < n and surjective for j + n.

There are different approaches to prove this. Appealing to topologists might be the proof
by Bott using Morse theory.

Now let us explore what the Lefschetz hyperplane theorem implies for the homology
groups of the hyperplane X. First off, the fact that i : X ↪→ CPn+1 is an n-equivalence
implies that

i∗ : Hj(X;Z) −→ Hj(CPn+1;Z) is an isomorphism for j < n and surjective for j + n.

It follows that

Hj(X;Z) =

{
Z 0 ≤ j < n, j even

0 0 ≤ j < n, j odd
.

Next, we determine the homology groups Hj(X;Z) for j > n by using Poincaré duality and
the universal coefficient theorem to obtain the isomorphisms

Hj(X;Z) ∼= H2n−j(X;Z) ∼= Hom(H2n−j(X;Z),Z).

We note that the term Ext(H2n−j−1(X;Z),Z) in the universal coefficient theorem vanishes
since the homology groups of X below the middle dimension n are either Z or 0.
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Finally, we look at the middle dimensional homology group Hn(X;Z):

Hn(X;Z) ∼= Hn(X;Z) ∼= Hom(Hn(X;Z),Z)⊕ Ext(Hn−1(X;Z),Z).

Here the first isomorphism is Poincaré duality and the second isomorphism comes from the
universal coefficient theorem. The latter is usually formulated as a short exact sequence,
which splits (not naturally), thus leading to the isomorphism above. Since Hn−1(X;Z) is Z
or 0 by our considerations above, the Ext-term vanishes. So we conclude

Hn(X;Z) ∼= Hom(Hn(X;Z),Z).

In particular, Hn(X;Z) is a finitely generated free Z-module, i.e., isomorphic to a direct
sum of copies of Z (but the Lefschetz theorem does give no information about the rank of
Hn(X;Z)).

Summarizing our discussion of the homology groups of the hyperplane X ↪→ CPn+1 we
have:

Hj(X;Z) =


Z 0 ≤ j ≤ 2n, j even, j 6= n

Zr j = n

0 otherwise

. (4.17)

Specializing to the Kummer surface K ⊂ CP3 we obtain

Hj(K;Z) =


Z j = 0, 4

Zr j = 2

0 otherwise

. (4.18)

Besides the Lefschetz hyperplane theorem we will need the following fact to evaluate
cohomology classes on the fundamental class [X] ∈ H2n(X;Z). Let γ → CPn+k be the
tautological line bundle and γ∗ its dual. Let x := c1(γ∗) ∈ H2(CPn+k;Z) the first Chern
class of γ∗ and y := i∗x ∈ H2(X;Z) its pullback to the hyperplane X. Then

〈yn, [X]〉 = d, (4.19)

where d is the degree of the hyperplane X = X(f), i.e., the degree of the homogeneous
polynomial f whose zero locus is X.

Question: What is the rank of the middle dimensional homology group Hn(X;Z)?

The idea is to look at the Euler characteristic of X. By the calculations of the homology
groups of X above

χ(X) =
2n∑
j=0

rkHj(X;Z) = n+ rkHn(X;Z).
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On the other hand, the Euler characteristic can be calculated in terms of the Euler class
χH(TX) ∈ H2n(X;Z), which for the complex vector bundle TX agrees with the the n-th
Chern class cn(TX). Hence

χ(X) = 〈χH(TX), [X]〉 = 〈cn(TX), [X]〉.

In order to calculate cn(TX) we need to understand the tangent bundle TX. Since X is a
submanifold of CPn+1, we have the vector bundle isomorphism

TX ⊕ ν(X ↪→ CPn+1) ∼= TCPn+1
|X ,

where ν(X ↪→ CPn+1) is the normal bundle of X in CPn+1. Previously we have determined
the tangent bundle of CPn+1 (in terms of γ∗, the dual of the tautological line bundle). So
our next goal is to determine the normal bundle ν(X ↪→ CPn+1).

We note that the homogenous polynomial f is not a function on CPn+1, but it can be
interpreted as a section sf of (γ∗)⊗d:

sf : CPn+1 → (γ∗)⊗d.

If L ∈ CPn+1, i.e., L ⊂ Cn+2 is a 1-dimensional complex subspace, then

sf (L) ∈ (γ∗L)⊗d = (L∗)⊗d = Hom(L⊗d,C)

is given by

sf (L) : L⊗d −→ C z ⊗ · · · ⊗ z︸ ︷︷ ︸
d

7→ f(z) for z = (z0, . . . , zn+1) ∈ L ⊂ Cn+2

We note that the assumption that f(z) is homogeneous of degree d implies that the map
z ⊗ · · · ⊗ z 7→ f(z) is a complex linear map, i.e., an element of (γ∗L)⊗d.

This means that the hypersurface X(f) can be interpreted as the vanishing locus of the
section sf : CPn+1 → (γ∗)⊗d. The assumption of f implying that X(f) is smooth translates
into requiring sf to be transversal to the zero section. This implies the vector bundle
isomorphism

ν(X(f) ↪→ CPn+1) ∼= (γ∗)⊗dX(f),

leading to
TX(f)⊕ i∗(γ∗)⊗d ∼= i∗TCPn+1.

We recall from (3.52) that
TCPn+1 ⊕ C ∼= γ∗ ⊕ · · · ⊕ γ∗︸ ︷︷ ︸

n+2
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Putting these isomorphisms together, we have

TX(f)⊕ i∗(γ∗)⊗d ⊕ C ∼= i∗(γ∗ ⊕ · · · ⊕ γ∗︸ ︷︷ ︸
n+2

). (4.20)

Specializing to the Kummer surface with of complex dimension n = 2 and degree d = 4 we
obtain

TK ⊕ i∗(γ∗)⊗4 ⊕ C ∼= i∗(γ∗ ⊕ · · · ⊕ γ∗︸ ︷︷ ︸
4

). (4.21)

This bundle equation allows us to calculate the total Chern class of the tangent bundle TK
in terms of the total Chern class of the line i∗γ∗ with c1(i∗γ∗) = y ∈ H2(K;Z). Using the
exponential property of the total Chern class we obtain

c(TK) =c(i∗γ∗)4c(i∗(γ∗)⊗4)−1

=(1 + y)4(1 + 4y)−1

=(1 + 4y + 6y2)(1− 4y + 16y2)

=1 + 6y2

(4.22)

In particular, c2(TK) = 6 and hence by (4.19)

χ(K) = 〈c2(TK), [K]〉 = 〈6y2, [K]〉 = 6〈y2, [K]〉 = 24.

From the calculation (4.18) of the homology groups of K it follows that

χ(K) = rkH0(K) + rkH2(K) + rkH4(K) = 2 + rkH2(K),

and hence rkH2(K) = 22.

Question: What is the signature of K?

By the signature theorem, it suffices to calculate the L-class L(TK). We recall that L(V )
is the exponential characteristic class TR

q (V ) for a real vector bundles associated to the even
power series

q(x) =
x

tanhx
= 1 +

1

3
x2 + . . .

In particular from the bundle isomorphism (4.21),

L(TK) =L(i∗γ∗)4L(i∗(γ∗)⊗4) = (1 +
1

3
y2)4(1 +

1

3
(4y)2)−1

=(1 +
4

3
y2)(1 +

16

3
y2)−1 = (1 +

4

3
y2)(1− 16

3
y2)

=1− 12

3
y3 = 1− 4y2
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Hence
sign(K) = 〈−4y2, [K]〉 = −4〈y2, [K]〉 = −16

Question: What is the intersection form IK on H2(K;Z) ∼= Z22?

Definition 4.23. A lattice is a free Z-module Λ equipped with a symmetric bilinear form

I : Λ× Λ→ Z.

The lattice (Λ, I) is

• unimodular if the map

Λ −→ Hom(Λ,Z) given by λ 7→ (λ′ 7→ I(λ, λ′))

is an isomorphism. Equivalently, (Λ, I) is unimodular if and only if for a basis {ei}1≤i≤n
of Λ then the associated n× n matrix I(ei, ej) has determinant ±1.

• even if I(λ, λ) ∈ 2Z for all λ ∈ Λ; otherwise it is odd.

• positive definite (resp. negative definite) if I(λ, λ) > 0 for all 0 6= λ ∈ Λ (resp. I(λ, λ) <
0 for all 0 6= λ ∈ Λ). If (Λ, I) is not (positive or negative) definite, then it is indefinite.

Example 4.24. (Examples of unimodular lattices).

1. The integers Z with the form I(m,n) := m · n. This is unimodular, positive definite
and odd.

2. The hyperbolic form H = (Z2, I) with matrix ( 0 1
1 0 ). This form is unimodular and even

(since its diagonal entries are even). It is indefinite since I(e1 + e2, e1 + e2) = 2 and
I(e1 − e2, e1 − e2) = −2.

3. The form E8 = (Z8, I) with matrix

I(ei, ej) =

{
2 for i = j

#{edges connecting vertices vi, vj in the graph E8} for i 6= j

This form is unimodular, even and positive definite.

v1 v2 v3 v4 v5 v6 v7

v8

The graph E8
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Theorem 4.25. Let (Λ, I) be an indefinite unimodular lattice of rank m + n and signature
m− n (i.e., on the real vector space Λ⊗R the associated R-valued symmetric bilinear form
is positive (resp. negative) definite on a subspace of dimension m (resp. n).

1. If (Λ, I) is odd, then (Λ, I) = Z⊕ · · · ⊕ Z︸ ︷︷ ︸
m

⊕ −Z⊕ · · · ⊕ −Z︸ ︷︷ ︸
n

2. If (Λ, I) is even, then m− n = ±8k for k ∈ N0, and

(Λ, I) =


E8 ⊕ · · · ⊕ E8︸ ︷︷ ︸

k

for m− n = 8k, k ∈ N0

−E8 ⊕ · · · ⊕ −E8︸ ︷︷ ︸
k

for m− n = −8k, k ∈ N0

In particular, any indefinite unimodular lattice is determined by its rank, signature and type
(i.e., even or odd).

For the lattice (H2(K;Z), IK) we have already calculated its rank to be 22 and its sig-
nature to be −16. Below we will argue that IK is even. Using the classification of indefinite
unimodular lattices we then obtain the main result of this section.

Theorem 4.26. The intersection form IK of the Kummer surface is isomorphic to −E8 ⊕
−E8 ⊕ 3H.

Proposition 4.27. Let X be a closed oriented manifold of dimension 2k. Let U, V ⊂ X
be oriented submanifolds of dimension k, and let u, v ∈ Hk(X) be the cohomology classes
Poincaré dual to the homology classes iU∗ [U ], iV∗ [V ] ∈ Hk(X). Here [U ] ∈ Hk(U) is the
fundamental class of U , and iU∗ : Hk(U) → Hk(X) is the homomorphism induced by the
inclusion map iU : U ↪→ X; and similarly for V .

1. If U and V intersect transversally, then IX(u, v) is the number of intersection points,
counted with signs.

2. If ν → U is the normal bundle of U ⊂ X, and s : U → ν is a section transverse to the
zero section, then IX(u, u) is the number of zeroes of s, counted with signs.

3. I(u, u) = 〈χH(ν), [U ]〉.

Any u ∈ H2(K) is Poincaré dual to iU∗ [U ] ∈ H2(K) for a codimension 2 oriented subman-
ifold U ⊂ K. This can be seen by using the fact that any 2-dimensional cohomology class u is
of the form u = f ∗x for some map f : K → CPn and x the generator of H2(CPk) ∼= Z. Then
making f smooth and transversal to CPn−1 ⊂ CPn then produces the oriented submanifold
U := f−1(CPn−1) with the desired properties.
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Let ν → U be the normal bundle of U ⊂ K, which inherits an orientation, and hence we
can regards it as complex line bundle. The same remark applies to the tangent bundle TU .
The bundle equation

TU ⊕ ν ∼= TK|U

then implies that c(TU)c(ν) = i∗Uc(TK) and hence

c1(TU) + c1(ν) = i∗Uc1(TK) = 0

by our calculation (4.22) of the total Chern class of TK. By Proposition 4.27 (3) it follows
that

I(u, u) = 〈χH(ν), [U ]〉 = 〈c1(ν), [U ]〉 = −〈c1(TU), [U ]〉 = −〈χH(TU), [U ]〉 = −χ(U)

Since the Euler characteristic of a Riemann surface is even, this implies that the intersection
form IK of the Kummer surface is even as claimed.

4.3 Exotic 7-spheres

The strategy for constructing exotic 7-spheres, that is, smooth manifolds Σ that are home-
omorphic, but not diffeomorphic to the 7-sphere S7, is as follows.

• Construct a smooth 8-manifold W and show that its boundary Σ := ∂W is homeo-
morphic to S7.

• Show that Σ is not diffeomorphic to S7 using proof by contradiction: If Σ were diffeo-
morphic to S7, we could construct a closed smooth 8-manifold

X = W ∪S7 D8

by attaching an 8-disk to the boundary ∂W . This leads to a contradiction by contem-
plating the L-genus L(X) and the Â-genus Â(X).

Warmup Construction. Let D(TS4) be the disk bundle of the tangent bundle of S4. This
is an 8-manifold whose boundary is the unit tangent bundle (aka sphere bundle) S(TS4).
Restricted to a disk D4 ⊂ S4 the vector bundle TS4 can be trivialized, which allows us to
identify the disk bundle D(TS4) restricted to D4 ⊂ S4 with the product D4 × D4. Here
the points (x, 0) ∈ D4 ×D4 correspond to points in the zero section of TS4, and (x, y) is a
point in the fiber TxS

4. Let i : D4×D4 ↪→ D(TS4) be the inclusion map. It is illustrated in
the picture below, where the diskbundle D(TS4) is drawn as a band with the zero section
represented by the red circle (so the picture in an honest representation of the disk bundle of
the 1-dimensional vector bundle TS1). The blue line represents the fiber of the disk bundle
over the origin of the disk D4 ⊂ S4, and the darker square is the disk bundle restricted to
D4, which is diffeomorphic to D4 ×D4.
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D4 ×D4

D(TS4)

i

Let W be the smooth 8-manifold with boundary constructed by gluing two copies of D(TS4)
by identifying a point i(x, y) in the first copy of D(TS4) with the point i(y, x) in the second
copy of D(TS4). In other words, W is constructed as pushout in the diagram

D4 ×D4 D(TS4)

D(TS4) W

i

j (4.28)

where j : D4 × D4 → D(TS4) is given by (x, y) 7→ i(y, x). Strictly speaking, the manifold
W has corners, consisting of the subset

S3 × S3 ⊂ D4 ×D4 ⊂ D(TS4)

(note that via gluing the two copies of D(TS4), this subspace of the first copy of D(TS4) is
identified with this subspace in the second copy).

Here is an illustration of the situation. We note that the fiber over the origin of the disk
in the first copy of D(TS4) (drawn as a blue line) corresponds in W to the zero section of
the second copy of S(TS4) restricted to the disk D4 ⊂ S4 and vice versa.
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D4 ×D4

D(TS4) D(TS4)

W =

i j

Construction of W as a pushout

Proposition 4.29. 1. The smooth 8-manifold W is homotopy equivalent to the wedge
S4 ∨ S4; its intersection form is given by the matrix(

2 1
1 2

)
.

2. The boundary ∂W is a simply connected smooth manifold with homology groups

Hk(∂W ) =


Z for k = 0, 7

Z/3 for k = 3

0 otherwise
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Proof. Let S4 ⊂ D(TS4) be the zero section. The two copies of S4 inside W (shown as
red resp. blue circle in the picture above) intersect in one point. In other words, S4 ∨ S4

embeds into W such that its image is the union of these two 4-spheres. We claim that
S4 ∨S4 ⊂ W is a deformation retract of W ; that deformation is literally given by collapsing
the disk bundles in radial direction to the zero section (a little care is needed to write down
the correct deformation of D4 ×D4 into the subspace D4 × {0} ∪ {0} ×D4).

It follows that H4(W ) = H4(S4 ∨ S4) ∼= Z2 has a basis {e1, e2}, where e1 resp. e2 is
the homology class represented by the zero sections of the two copies of TS4 used in our
construction of W . From the construction of W and the geometric interpretation of the
intersection pairing given by Proposition 4.27, it is easy to see that the intersection form for
this basis is given by the matrix (

2 1
1 2

)
Here the diagonal entry 2 comes from the fact that the normal bundle ν of S4 ↪→ TS4 is the
tangent bundle of S4 and hence

〈χH(ν), [S4]〉 = 〈χH(TS4), [S4]〉 = χ(S4) = 2.

To show that the boundary ∂W is simply connected, we note that ∂W is a deformation
retract of W \ (S4 ∨ S4). Explicitly, for a point w ∈ W \ (S4 ∨ S4) the deformation path
connecting w with a point in ∂W is given as follows. For w = (x, y) ∈ D4×D4 \ (D4×{0}∪
{0}×D4), take the straight line connecting it with (x/||x||, y/||y||) ∈ S3×S3 (S3×S3 ⊂ ∂W
are the original corner points of W ; smoothing the corners does not change the underlying
topological space). For a point w in one of the copies of D(TS4)\S4, but away from (D4×D4)
the path starting at w goes radially outward until it reaches the unit sphere bundle S(TS4).

Let γ : S1 → ∂W be a based loop. Since W ∼ S4 ∨ S4 is simply connected, γ extends
to a map Γ: D2 → W . By a small deformation this is homotopic (as a map of pairs
(D2, S1) → (W,∂W )) to a smooth map, which after another small deformation can be
assumed to be transversal to both submanifolds S4 ⊂ W (given by the zero sections of
the two copies of D(TS4)). Since dimD2 + dimS4 < dimW , there are no transversal
intersection points, and hence Γ maps D2 to W \ (S4 ∨ S4). Since ∂W is a deformation
retract of W \ (S4 ∨ S4), this map is then homotopic (without changing it on S1 ⊂ D2), to
a map D2 → ∂W . This shows that ∂W is simply connected.

To calculate the homology groups of ∂W we will first determine the homology groups
of W and (W,∂W ) and then use the long exact homology sequence of the pair (W,∂W ).
Since W is homotopy equivalent to S4 ∨ S4, the homology groups of W are trivial except
H0(W ) ∼= Z and H4(W ) ∼= Z2. By Poincaré duality and universal coefficient theorem we
obtain

Hq(W,∂W ) ∼= H8−q(W ) ∼= Hom(H8−q(W ),Z) ∼=

{
Z q = 8

Z2 q = 4
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Now we consider the long exact homology sequence of the pair (W,∂M):

Hq+1(W ) Hq+1(W,∂W ) Hq(∂W ) Hq(W ) Hq(W,∂W )∂

This implies that Hq(∂W ) = Z for q = 0, 7 and Hq(∂W ) = 0 for q 6= 0, 3, 4, 7. The interesting
portion of this sequence is:

0 H4(∂W ) H4(W ) H4(W,∂W ) H3(∂W ) 0

Hom(H4(W ),Z)

IW
∼= (4.30)

The nice feature here is that the map H4(W ) → H4(W,∂W ) in that sequence turns out
to be the intersection form IW on the manifold W after we use Poincaré duality and the
universal coefficient theorem to identify H4(W,∂W ) and Hom(H4(W ),Z). Exercise: prove
this. It follows that

H4(∂W ) ∼= ker IW H3(∂W ) ∼= coker IW (4.31)

The map IW : H4(W )→ Hom(H4(W ),Z) with respect to the basis {e1, e2} for H4(W ) con-
structed above and the dual basis for Hom(H4(W ),Z) is given by the matrix ( 2 1

1 2 ) as proved
in part (1) of the proposition. Since the determinant of this matrix is 3, the map IW is
injective with cokernel Z/3, which implies H4(∂W ) = 0 and H3(∂W ) ∼= Z/3 as claimed.

Proposition 4.29 shows that ∂W has rationally the homology groups of S7, but not
integrally. In particular, ∂W is not homeomorphic to S7. We observe that by (4.31) the
origin for the failure of ∂W to be a homology sphere is the failure of the intersection form
IW to be unimodular. So the idea is to tweak the construction above in order to produce an
8-manifold W with boundary whose intersection pairing IW is unimodular.

The construction above is known as plumbing construction. We note that the graph

v1 v2

can be thought of as blueprint for the construction above by taking for each vertex a copy of
the disk bundle D(TS4) and interpret the edge as the prescription to glue those two copies
in the way we did above. We further note that the same graph determines the matrix of
the intersection form of the manifold W thus produced by the recipe of Example 4.24 (i.e.,
I(ei, ei) = 2 and I(ei, ej) is the number of edges connecting the vertices vi and vj).

This suggests to start with a general graph Γ and use it as a “blue print” to construct
an associated smooth 8-manifold with boundary W (Γ) in the following way:

• Take the disjoint union
∐

iD(TS4)i of copies of the disk bundle D(TS4), one for each
vertex vi of the graph Γ;
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• let W (Γ) be the quotient of this disjoint union modulo the equivalence relation ∼
generated by the edges of Γ as follows. For each edge connecting vi and vj choose
embeddings D4 ×D4 ⊂ D(TS4)k for k = i and k = j given by choosing a disk D4 in
the base space S4 and trivializing the disk bundle over these (the images of all these
embeddings are chosen to be mutually disjoint). Then declare the point

(x, y) ∈ D4 ×D4 ⊂ D(TS4)i to be equivalent to (y, x) ∈ D4 ×D4 ⊂ D(TS4)j.

In our “warm-up” example, for the graph v1 v2
, this gives the manifold W (4.28) con-

structed above. For the E8-graph

v1 v2 v3 v4 v5 v6 v7

v8

E8 =

the manifold W = W (E8) is shown in the following picture.

Figure 1: The manifold W (E8) constructed via plumbing from the graph E8

In the picture each of the grey annuli represent one of the 8 copies of the disk bundle D(TS4),
and the red circles in the center of each annulus depict the zero section S4 ⊂ D(ST 4). As in
the previous example, the union of the 8 copies of S4 is a deformation retract of the manifold
W , and hence W is homotopy equivalent to a wedge S4 ∨ · · · ∨ S4 of eight copies of S4. In
particular,

Hq(W ) =


Z q = 0

Z8 q = 4

0 q 6= 0, 4

,
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and a basis {ei}i=1,...,8 of H4(W ) is given by the images of the fundamental class [S4
i ] ∈ H4(W )

under the homomorphism H4(S4
i ) → H4(W ) induced by the inclusion maps S4

i ↪→ W ,
i = 1, . . . , 8 of the eight copies of S4 ⊂ D(TS4).

It is straightforward to calculate the intersection form IW (ei, ej). As discussed in the
warmup example, the self-intersection number IW (ei, ei) = 0 for i = 1, . . . , 8, and the inter-
section number IW (ei, ej) for i 6= j is the number of intersection points between S4

i ⊂ W and
S4
j ⊂ W . From the construction of W is it clear that for each edge in the graph E8 connecting

vertices vi and vj, the corresponding gluing of D4×D4 ⊂ D(TS4)i and D4×D4 ⊂ D(TS4)j
results in an additional intersection point between the zero sections S4

i and S4
j (look at the

intersections of the red central circles in the pictures!). In other words, IW (ei, ej) is the
number of edges connecting vi and vj. Arguing as in the warmup example we then obtain
the following results.

Proposition 4.32. 1. The manifold W (E8) is a smooth simply connected 8-manifold with
boundary, which is homotopy equivalent to a wedge of 8 copies of S4 and its intersection
form IW (E8) is equal to the lattice I(E8) determined by the graph E8 (see 4.24(3)).

2. The boundary ∂W (E8) is a simply connected smooth 7-manifold which is a homology
7-sphere, i.e., its homology groups are isomorphic to those of S7.

Exercise 4.33. For a general graph Γ, what is the homotopy type of W (Γ)? What is the
intersection form of W (Γ)? What conditions on Γ guarantee that its boundary is a simply
connected homology sphere? Hint: which properties of Γ guarantee that W (Γ) is simply
connected?

Definition 4.34. A homotopy sphere of dimension n is a closed smooth n-manifold which
is homotopy equivalent to Sn.

Lemma 4.35. Any simply connected homology n-sphere is a homotopy sphere.

Proof. Let Σ be a homology n-sphere. Then the lowest degree non-trivial homology group
of Σ is Hn(Σ) ∼= Z. Since Σ is simply connected, the Hurewicz theorem implies that the
lowest degree non-trivial homotopy group of Σ is πn(Σ) ∼= Hn(Σ) ∼= Z. Let f : Sn → Σ be
a basepoint preserving map that represents a generator of πn(Σ). Then the induced map
f∗ on homology groups is an isomorphism. Since f is a map between simply connected
spaces, the Hurewicz theorem implies that then also the induced map on homotopy groups
is an isomorphism. Since manifolds can be given a CW structure, e.g., by Morse theory, the
Whitehead theorem then implies that f : Sn → Σ is in fact a homotopy equivalence.

It turns out that in dimension n ≥ 5 any homotopy sphere is homeomorphic to Sn. This
is a corollary of the h-cobordism theorem due to Smale. Let W be a bordism between smooth
n-manifolds M and N , i.e., the boundary of W is the disjoint union of M and N . A simple
example of a bordism is the product bordism W = M × I which is a bordism between M and
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itself. An obvious property of the product bordism is that the inclusion maps M ↪→ W of
either copy of M into W is a homotopy equivalence. More generally, any bordism W between
M and N is called an h-cobordism if both inclusion maps iM : M ↪→ W and iN : N ↪→ W
are homotopy equivalences. As a slogan we could say that a cobordism is an h-cobordism if
it looks homotopically (that’s what the h stands for) like a product cobordism.

Theorem 4.36. (h-cobordism theorem; Smale). Let W be an h-cobordism between
manifolds M and N which are simply connected and of dimension n ≥ 5. Then W is
diffeomorphic to the product bordism M × [0, 1]. More precisely, there is a diffeomorphism

F : M × [0, 1] −→ W

whose restriction to M×{0} is the identity on M , and whose restriction to M×{1} is some
diffeomorphism f : M → N .

The dimension restriction n ≥ 5 is crucial, while the assumption that M , N are simply
connected can be relaxed: there is a more result known as the s-cobordism theorem without
the simply connectivity assumption on M , N , but assuming that the maps iM : M ↪→ W
and iN : N ↪→ W are simple homotopy equivalences which means that they are homotopy
equivalences, but in addition their torsion, an element in the Whitehead group Wh(π) of the
fundamental of these manifolds, vanishes.

Corollary 4.37. If Σ is a homotopy sphere of dimension n ≥ 6, then Σ is homeomorphic
to Sn.

Proof. Let Dn
i ⊂ Σ, i = 1, 2 two disjoint disks in Σ, and let W be the manifold with boundary

obtained by removing the interiors of these disks. Then the boundary of W consists of two
copies of Sn−1; in other words, W is a bordism from Sn−1 to Sn−1. This is in fact an
h-cobordism (proof: exercise!). Then the h-cobordism theorem gives a diffeomorphism

W
F−→ Sn−1 × I

which on the boundary ∂W = Sn−1 q Sn−1 restricts to the identity of the first copy of Sn−1

and to some diffeomorphism f : Sn−1 → Sn−1 on the second copy. This shows

Σ = Dn
1 ∪id W ∪id D

n
2
∼= Dn

1 ∪id (Sn−1 × [0, 1])︸ ︷︷ ︸
Dn

∪fDn
2
∼= Dn ∪f Dn

This shows that every homotopy sphere of dimension n ≥ 6 is diffeomorphic to the manifold
Dn ∪f Dn obtained by gluing two disks via a diffeomorphism f : Sn−1 → Sn−1 of their
boundaries. So it suffices to produce a homomorphism

G : Sn = Dn ∪id D
n −→ Dn ∪f Dn.
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We take G to be the identity on the first disk; restricted to the second disk we let

G : Dn −→ Dn be defined by G(tv) := tf(v) for t ∈ [0, 1], v ∈ Sn−1

Note that this is a continuous bijection and hence a homeomorphism (since its domain is
compact and its codomain is Hausdorff), but it is not smooth (the differential at the origin
of the second disk is the problem).

Definition 4.38. Let Θn be the set of oriented homotopy n-spheres up to h-cobordism.
In other words, the elements of Θn are equivalence classes of oriented homotopy n-spheres,
where we declare oriented homotopy n-spheres Σ, Σ′ to be equivalent if there is an oriented
h-cobordism between them.

The connected sum of oriented homotopy n-spheres gives Θn the structure of an abelian
group. The unit element given by the standard n-sphere Sn, and the inverse of an oriented
homotopy n-sphere Σ is given by Σ̄, which is the homotopy n-sphere Σ equipped with the
opposite orientation.

The h-cobordism theorem implies that for n ≥ 5 two oriented homotopy n-spheres Σ, Σ′

represent the same element in Θn if and only if there is an orientation preserving diffeomor-
phism between them. So for n ≥ 5, the group Θn can alternatively be interpreted as the
group of oriented homotopy n-spheres up to oriented diffeomorphisms.

Next we want to understand the oriented homotopy sphere ∂W 8(E8). In particular, what
can we say about the order of [∂W 8(E8)] ∈ Θ7?

Theorem 4.39. The element [∂W 8(E8)] ∈ Θ7 generates a subgroup of Θ7 whose order is a
multiple of 28.

The main tool in the proof of this result will be calculations of the L-genus and the
Â-genus of certain closed 8-manifolds. For that calculation it will be necessary to have
explicit formulas for the associated characteristic classes L(V ), Â(V ) of a real vector bundle
V in term of the Pontryagin classes of V .

Proposition 4.40. Let V → X be a real vector bundle. Then the L-class L(V ) and the

Â-class Â(V ) are elements in H4∗(X;Q) which are polynomials in the Pontryagin classes
pi = pi(V ) ∈ H4i(X;Z). In degree ≤ 8, these are given explicitly by

L(V ) = 1 +
1

3
p1 +

1

45
(7p2 − p2

1) + . . .

Â(V ) = 1− 1

24
p1 +

1

27 · 32 · 5
(−4p2 + 7p2

1) + . . .
(4.41)
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Corollary 4.42. If X is a closed oriented manifold of dimension 4, then

L(X) =
1

3
〈p1(TX), [X]〉

Â(X) = − 1

24
〈p1(TX), [X]〉.

If X is a closed oriented manifold of dimension 8, then

L(X) =
1

45
〈7p2(TX)− p2

1(TX), [X]〉

Â(X) =
1

27 · 32 · 5
〈−4p2(TX) + 7p2

1(TX), [X]〉.

Proof. Let TRq (V ) ∈ H4∗(X;Q) be the exponential characteristic class for real vector bundles
V associated to an even power series

q(x) = 1 + a2x
2 + a4x

4 + · · · ∈ Q[[x]].

Then if L1, L2 are complex line bundles over X with first Chern class xi ∈ H2(X;Z) and
first Pontyagin class yi := x2

i ∈ H4(X;Z), then

TRq (Li) = 1 + a2x
2
i + a4x

4
i + · · · = 1 + a2yi + a4y

2
i + . . .

Hence by the exponential property

TR
q (L1 ⊕ L2) =(1 + a2y1 + a4y

2
1 + . . . )(1 + a2y2 + a4y

2
2 + . . . )

=1 + a2 (y1 + y2)︸ ︷︷ ︸
σ1

+a2
2 y1y2︸︷︷︸

σ2

+a4 (y2
1 + y2

2)︸ ︷︷ ︸
σ2
1−2σ2

+ . . .

Here σi = σ(y1, y2) are the elementary symmetric polynomials of yi = p1(L1), which are
equal to the Pontyagin class pi(L1 ⊕ L2) ∈ H4i(X;Z). Hence

TR
q (L1 ⊕ L2) = 1 + a2p1 +

(
(a2

2 − 2a4)p2 + a4p
2
1

)
+ . . . .

In particular, for the L-class,

q(x) =
x

tanhx
= 1 +

1

3
x2 − 1

45
x4 + . . . .

and hence

L(V ) = 1 +
1

3
p1 + (

1

9
− 2

45
)p2 −

1

45
p2

1 + . . .

= 1 +
1

3
p1 +

7

45
p2 −

1

45
p2

1 + . . .
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Similarly, the Â-class is associated to the even power series

q =
x/2

sinh(x/2)
= 1− 1

24
x2 +

7

27 · 32 · 5
x4 + . . .

and hence

Â(V ) = 1− 1

24
p1 +

(
1

26 · 32
− 2 · 7

27 · 32 · 5

)
p2 +

7

27 · 32 · 5
p2

1 + . . .

= 1− 1

24
p1 +

1

27 · 32 · 5
(−4p2 + 7p2

1) + . . .

Before proving theorem 4.39, let us prove the following simpler statement.

Proposition 4.43. The homotopy sphere ∂W (E8) is not diffeomorphic to S7.

Proof. Let W := W (E8) and assume that ∂W is diffeomorphic to S7. Let X := W ∪S7 D8

be the closed smooth 8-manifold obtained by gluing W and D8 along their boundaries. In
order to calculate the L-genus L(X) in terms of the Pontryagin classes of TX, we first show
p1(TX) = 0.

Since the inclusion i : W ↪→ X induces an isomorphism on H4, and i∗TX is isomorphic
to TW (via the differential of the embedding i), it suffices to show p1(TW ) = 0. Since W is
a homotopy equivalent to a wedge of 8 copies of S4, is suffices to show that the restriction
of TW to each of these eight spheres S4 ⊂ W is stably trivial. This follows from the vector
bundle isomorphisms

TW|S4
∼= TS4 ⊕ ν(S4 ↪→ W ) ∼= TS4 ⊕ TS4,

where ν(S4 ↪→ W ) is the normal bundle of S4 in W , which by construction is isomorphic to
TS4.

Due to the vanishing of p1(TX), the formula for the L-genus L(X) of Corollary 4.42
simplifies to L(X) = 7/45〈p2(TX), [X]〉. Using Hirzebruch’s signature theorem we then
obtain

7/45〈p2(TX), [X]〉 = L(X) = sign(X) = sign(W (E8)) = 8.

This is the desired contradiction since evaluating p2(TX) ∈ H4(X;Z) on the fundamental
class [X] ∈ H4(X;Z) results in an integer 〈p2(TX), [X]〉, but the above equation claims that
integer to be 8·45

7
.

The stronger statement about the order of the element of Θ7 represented by the homotopy
sphere Σ = ∂W (E8) will be proved in a similar way. It relies on the fact that the connected
sum of k-copies of Σ is the boundary of a manifold W that can be manufactured from k
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copies of W (E8). More generally, if M = ∂V and N = ∂W are manifolds of the same
dimension n, then the connected sum M#N is the boundary of a manifold V \W (called the
boundary connected sum of V and W ) manufactured from V and W .

We recall that some care is need when defining the connected sumM#N of two n-manifolds.
The reason is that the connected sum construction involves the choice of embeddings of discs
Dn ↪→ M and Dn ↪→ N . If M is connected and non-orientable, there is only one such em-
bedding up to isotopy, but if M is oriented, there are two such embeddings up to isotopy,
one of which is orientation preserving, and the other orientation reversing.

Similarly, the details of the construction of V \W depend on orientability assumptions.
Since we will be only interested in oriented manifolds, we define V \W only in that case.

Definition 4.44. Let V and W be oriented manifolds of dimension n + 1 with non-empty,
connected boundaries. Let

iV : (Dn × (−ε, 0], Dn × {0}) ↪→ (V, ∂V )

and
iW : (Dn × [1, 1 + ε), Dn × {1}) ↪→ (V, ∂V )

be orientation preserving embeddings (these are maps of pair; e.g., iV is an embedding of
Dn × (−ε, 0] into V , whose restriction to Dn × {0} is an embedding of Dn × {0} into ∂V ).
Let V \W be the quotient space

(V qDn × (−ε, 1 + ε)qW ) / ∼,

where the equivalence relation ∼ identifies a point (x, t) ∈ Dn× (−ε, 1 + ε) with iV (x, t) ∈ V
for t ∈ (−ε, 0] and with iW (x, t) ∈ W for t ∈ [1, 1 + ε). After smoothing the corners, V \W is
a smooth oriented manifold of dimension n+ 1 called the boundary connected sum of V and
W . Its boundary is

∂(V \W ) = ∂V#∂W

the connected sum of ∂V and ∂W .

Example 4.45. (Examples of boundary connected sums).

1. Here is a picture of the boundary connected sum V \W of (n+ 1)-manifolds V and W
for n = 1 . The darker shaded areas are those pieces of the strip Dn× (−ε, 1+ ε) where
it is glued with V resp. W . We are cheating here slightly in that the boundaries of V
and W in this example are not connected. Ideally, instead of drawing W as annulus, I
would love to draw T \ D̊2, a torus T with an open disk removed, but that is too hard
to draw. Similarly, use your imagination to remove the two interior boundary circles



4 CALCULATIONS WITH CHARACTERISTIC CLASSES 95

of V by gluing a copy of T \ D̊2 into each of these holes. By this move, V becomes a
surface of genus 2 with one boundary circle.

Dn × (−ε, 1 + ε)

Dn × (−ε, 0] Dn × [1, 1 + ε)

V

W

2. Let Σg be a surface of genus g. The standard picture of Σg in R3 shows that Σg is a
boundary of a compact 3-manifold Wg whose interior is the bounded component of the
complement of Σg in R3. Then the boundary connected sum Wg\Wh is diffeomorphic
to Wg+h with boundary Σg#Σh

∼= Σg+h. Here is a picture of the boundary connected
sum of the solid torus W1 and the solid double torus W2.

W2W1

D2 × [0, 1]

glue glue

W1\W2 =

Figure 2: The boundary connected sum W1\W2

Proof of Theorem 4.39. Assume that Σ := ∂W 8(E8) is an element of order k in Θ7, i.e., the
connected sum #kΣ of k copies of Σ is diffeomorphic to S7. Since #kΣ is the boundary ∂W
of the boundary connected sum

W := W 8(E8)\ . . . \W 8(E8)︸ ︷︷ ︸
k
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it follows that as before we obtain a closed smooth manifold X := W ∪S7 D8. There are
isomorphisms

H4(X) ∼= H4(W ) ∼= H4(W (E8))⊕ · · · ⊕H4(W (E8))︸ ︷︷ ︸
k

,

induced the inclusion maps W ↪→ X resp. W (E8)i ↪→ W , where W (E8)i, i = 1, . . . , k is the
i-th copy of W (E8). This implies that the intersection form on X is the direct sum of k
copies of the intersection form on W (E8) which is the lattice I(E8) associated to the graph
E8. In particular,

sign(X) = sign(W ) = ksign(W (E8)) = ksign(I(E8)) = 8k.

The argument as in the proof of Proposition 4.43 shows that the Pontryagin class p1(TX)
vanishes, and hence the formula for the L-genus of X (see Cor. 4.42) simplifies to L(X) =
7/45〈p2(TX), [X]〉. Using Hirzebruch’s signature theorem we then obtain

7/45〈p2(TX), [X]〉 = L(X) = sign(X) = 8k.

This implies 〈p2(TX), [X]〉 = 45·8k
7

, which shows that k must be a multiple of 7, since
〈p2(TX), [X]〉 is an integer! (the evaluation of the second Pontryagin class p2(TX) ∈
H8(X;Z) on the fundamental class [X] ∈ H8(X;Z)).

To obtain the stronger statement that k must be a multiple of 28, we bring the Â-genus
of X into the mix. Thanks to the vanishing of p1(TX), the Â-genus of X can be expressed
solely in terms of 〈p2(TX), [X]〉, which in turn can be expressed in terms of L(X) = sign(X).
This results in the following equalities:

Â(X) = − 1

25 · 32 · 5
〈p2(TX), [X]〉 = − 1

25 · 32 · 5
· 45

7
L(X)

= − 1

25 · 7
sign(X) = − 1

25 · 7
8k = − k

22 · 7

By the index theorem, Â(X) is equal to the index of the Dirac operator on X. In particular,

Â(X) is an integer, and hence we arrive at a contradiction unless k is a multiple of 28.

4.3.1 Survey on the group Θn of homotopy n-spheres

The goal of this section is to mention the main results on the groups Θn, where by results
of Kervaire-Milnor are intimately related to stable homotopy groups of spheres.

Proposition 4.46. (Kervaire-Milnor 1963). Let Σ be a homotopy n-sphere. Then its
tangent bundle is stably trivial, i.e., there is a vector bundle isomorphism

α : TΣ⊕ Rk ∼=−→ Rn+k

for some k.
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Definition 4.47. A framing for an n-manifold M is a vector bundle isomorphism

α : TM ⊕ Rk ∼=−→ Rn+k

for some k. More precisely, a framing is an equivalence class of such vector bundle isomor-
phisms. The equivalence relation is generated by

• a homotopy between vector bundle isomorphisms α, α′, and

• α is equivalent to the isomorphism α⊕ idR : TM ⊕ Rk+1 ∼=−→ Rn+k+1.

A framed manifold is a pair (M,α) consisting of a manifold M and a framing α.

Example 4.48. (Framings of Sn).

1. The n-disk Dn+1 has an obvious framing. The standard framing α0 for Sn is the
framing obtained as boundary of the framed manifold Dn+1. More explicitly, α0 is the
composition

TSn ⊕ R ∼= TSn ⊕ ν(Sn ↪→ Dn+1)
∼=−→ TDn+1

|Sn
∼= Rn+1

Here ν(Sn ↪→ Dn+1) is the normal bundle of Sn in Dn+1, which is isomorphic to the
trivial line bundle R by the choice of an outward pointing normal vector field on Sn

(this is unique up to homotopy).

2. Let f : Sn → O(n + k) be a smooth map to the orthogonal group. Let αf be the
new framing of Sn obtained by composing the standard framing α0 with the bundle
automorphism of the trivial bundle Rn+k determined by f . More explicitly, αf is the
composition

TSn ⊕ Rk = TSn ⊕ R1 ⊕ Rk−1 Rn+1 ⊕ Rk−1 = Rn+k Rn+kα0⊕idRk−1 f̂

Here f̂ : Sn×Rn+1 −→ Sn×Rn+1 is given by (x, v) 7→ (x, fx(v)), where fx ∈ O(n+ k)
is the image of x ∈ Sn under f : Sn → O(n+ k).

3. The framing αf depends only on the homotopy class [f ] ∈ πn(O(n+ k)) of f . In fact,
it depends only on the image in πn(O), where O =

⋃
k O(k) is the infinite orthogonal

group. Moreover, the map

πn(O) −→ {framings of Sn} given by [f ] 7→ αf

is a bijection. We note Bott showed that πn(O) =


Z for n = 3 mod 4

Z/2 for n = 0, 1 mod 4

0 otherwise

.
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Let
Jn : πn(O) −→ Ωfr

n be defined by f 7→ [Sn, αf ].

This is a homomorphism known as J-homomorphism in stable homotopy theory.
Let

Θn −→ Ωfr
n/ im Jn be the map given by Σ 7→ [Σ, α], (4.49)

where α is some framing on Σ. This map is well-defined and a homomorphism. Its kernel is
denoted by bPn+1, which stands for boundaries of parallelizable (n+ 1)-manifolds. Kervaire
and Milnor calculated the kernel and cokernel of the above map up to the Kervaire invariant
which is a homomorphism

Kn : Ωfr
n/ im Jn → Z/2

for n ≡ 2 mod 4. Like signature of a manifold, which was originally defined only for
manifolds of dimension n ≡ 0 mod 4, and later extended to n-manifolds for any n, we
declare Kn = 0 for n 6≡ 2 mod 4.

Theorem 4.50. (Kervaire-Milnor).

1. The sequence

0 bPn+1 Ωfr
n/ im Jn

{
Z/2 n ≡ 2 mod 4

0 n 6≡ 2 mod 4

Kn

is an exact sequence (note that there is no claim of surjectivity of Kn).

2. For k ≥ 2 the group bP4k is cyclic of order ak · 22k−2 · (22k−1− 1) ·Num(4B2k/k), where

• ak = 1 for k even, ak = 2 for k odd,

• B2k is the Bernoulli number (using number theorist conventions) defined via the
Taylor expansion

x

1− e−x
=

∞∑
m=0

Bm

m!
xm,

• Num(4B2k/k) is the numerator of the rational number 4B2k/k.

3. bPn+1 is trivial for n+ 1 even. For n+ 1 ≡ 2 mod 4 this group is Z/2 if the Kervaire
invariant homomorphism Kn+1 is trivial; otherwise bPn+1 is trivial.

Remark 4.51. Kn is known to be non-trivial for n = 2, 6, 14, 30, 62 (note that these numbers
are of the form n = 2k−2 for k = 2, 3, 4, 5, 6). Browder has shown that Kn = 0 for n 6= 2k−2,
and recently, Hill-Hopkins-Ravenel showed Kn = 0 for n = 2k − 2, k ≥ 8.
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5 Dirac operator, the index theorem and applications

Motivated by the dual goal of constructing the Dirac operator on spin manifolds and the
K-theory orientation of spin vector bundles, we introduce Clifford algebras in the first section
5.1 and use them to give an algebraic construction of the group Spin(n) and the double
covering Spin(n) → SO(n). In the second section 5.2 we use Clifford algebras to construct
the Dirac operator and the K-theory orientation for spin vector bundles. The Dirac operator
is then used in 5.3 to show that the index of the Dirac operator on a closed spin manifold X
is an obstruction to the existence of a Riemannian metric with positive scalar curvature. In
section 5.4 we state the Index Theorem for a general elliptic operator P on a closed manifold
X, which expresses the index of P in terms of principal symbol of P which represents an in
the K-theory group Kc(T

∗X) with compact support. In the last section 5.5 we outline the
proof of the Index Theorem for Dirac operators.

5.1 Constructions with Clifford algebras

The goal of this section and the next section is twofold:

1. The construction of the spinor bundle S → X and the Dirac operator D : Γ(S)→ Γ(S)
for an even dimensional spin manifold X.

2. The construction of the K-theory orientation (aka Thom class) UK(V ) ∈ Kc(V ) for
an even dimensional spin vector bundle V → X.

While these goals might sound very different from each other, they are very closely related
as the following result shows.

Proposition 5.1. Let X be spin manifold of dimension n = 2k and let D : Γ(S)→ Γ(S) be
the Dirac operator on X. Let π : T ∗X → X be the cotangent bundle, and let

σD : π∗S −→ π∗S

be the principal symbol of the Dirac operator (a vector bundle morphism which is an isomor-
phism for all 0 6= ξ ∈ T ∗X, since D is elliptic). Then the K-theory class

[π∗S, τ, σD] ∈ Kc(T
∗X)

represented by the graded Hermitian triple (π∗S, τ, σD) (see Definition 3.37) is equal to the
orientation class UK(T ∗X) ∈ Kc(T

∗X).

Slogan: The Dirac operator D is the square root of the Laplace operator ∆.

This is a very imprecise statement since D acts on the sections Γ(S) of the spinor bundle,
and we have not defined what we mean by the Laplace operator acting to Γ(S). Moreover,



5 DIRAC OPERATOR, THE INDEX THEOREM AND APPLICATIONS 100

this is statement is not true for the operators themselves, but rather for their principle
symbols. In other words, the principal symbol of D2 is equal to the principal symbol of the
Laplace operator ∆S acting on spinors.

Example 5.2. (Dirac and Laplace operators and their principal symbols).

1. Let X be a Riemannian spin manifold of dimension 2k, let S → X be the Z/2-graded
spinor bundle and let∇S be the connection on S induced by the Levi-Civita connection
on the tangent bundle TX. We recall that the Dirac operator is the first order elliptic
operator given by the composition

D : Γ(S) Γ(T ∗X ⊗ S) Γ(S),∇ c

where the Clifford multiplication map c is induced by a vector bundle map

T ∗X ⊗ S → S

which abusing notation we again denote by c. The principal symbol σDξ ∈ End(Sx) of
D for ξ ∈ T ∗xX is given by

σDξ = icξ,

where cξ : Sx → Sx is given by v 7→ c(ξ ⊗ v). The square D2 of the Dirac operator is a
second order elliptic differential operator whose principal symbol is then

σD
2

ξ = −c2
ξ .

2. Let X be a Riemannian manifold and let E → X be a complex vector bundle equipped
with a Hermitian metric and a metric connection ∇. Then

∇ : Γ(E) −→ Γ(T ∗X ⊗ E) and its adjoint ∇∗ : Γ(T ∗X ⊗ E) −→ Γ(E)

are both first order differential operators. The composition

∆E : Γ(E) Γ(T ∗X ⊗ E) Γ(E)∇ ∇∗

is then a second order differential operator called the (rough or Bochner) Laplacian
on E. If E is the trivial line bundle, ∆E is the usual Laplace operator on functions
on X (but it is not equal to the Laplace-Beltrami operator on Ωk(X) for k > 0!). Its
principal symbol is given by

σ∆E

ξ = ||ξ||2;

more precisely, for ξ ∈ T ∗xX, it is the endomorphism of Ex given by multiplication by
||ξ||2. In particular, σ∆E

ξ is an isomorphism for ξ 6= 0, and hence the Laplace operator
∆E is elliptic.
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This shows that for ξ ∈ T ∗xX the endomorphism cξ ∈ End(Sx) should have the property
c2
ξ = −||ξ||2; this would guarantee that the principal symbol of the Dirac operator D is the

square root of the principal symbol of ∆S. So we will do some reverse engineering to produce
the Clifford multiplication map c : T ∗xX ⊗ Sx → Sx.

Observation. Let V be the real inner product space V = T ∗xX, and let M be the Z/2-graded
vector space M := Sx. Then M is a module over the tensor algebra T (V ) :=

⊕∞
k=0 V

⊗k by
defining the action

T (V )⊗M −→M by ξ1 ⊗ · · · ⊗ ξk ⊗ ψ 7→ cξ1 . . . cξkψ.

Moreover, the relation c2
ξ = −||ξ||2 for ξ ∈ V implies that M is a module over the quotient

algebra of T (V ) modulo the ideal generated by ξ ⊗ ξ + ||ξ||2.

Definition 5.3. Let V be a real vector space equipped with a symmetric bilinear form
q : V ×V → R. Then the Clifford algebra C`(V, q) is the quotient of the tensor algebra T (V )
modulo the ideal generated by v⊗v+q(v, v). This is a Z/2-graded algebra, with the grading
induced from the Z-grading on the tensor algebra T (V ).

We note that for q ≡ 0, the Clifford algebra C`(V, q) is equal to the exterior algebra
Λ∗(V ). If {ei}i=1,...,n is a basis of V , then ei1 ∧ · · · ∧ eik for 1 ≤ i1 < · · · < ik ≤ n is a basis
for Λ∗(V ). In particular, the dimension of Λ∗(V ) is 2dim(V ). This is still true for the Clifford
algebra as the following result shows.

Lemma 5.4. The map

Λ∗(V ) −→ C`(V, q) given by v1 ∧ · · · ∧ vk 7→
1

k!

∑
σ∈Sk

sign(σ)vσ(1) · · · vσ(k)

is a vector space isomorphism. In particular, dimC`(V, q) = 2dimV .

Exercise 5.5. Prove this lemma. Hint: there is natural filtration F0 ⊂ F1 ⊂ Fk ⊂ . . . on
Λ∗(V ) resp. C`(V, q) by defining F0 to be the scalar multiples of the identity element, and
defining Fk to be the subspace spanned by the product of up to k elements of V . Show that
the map above is compatible with these filtrations and induces an isomorphism on filtration
quotients.

Let v, w ∈ V . Then for v, w ∈ V in C`(V, q), we have the relation

(v + w)2 = −q(v + w, v + w).

Expanding both sides we obtain

(v + w)2 = v2 + vw + wv + w2

−q(v + w, v + w) = −q(v, v)− 2q(v, w)− q(w,w)



5 DIRAC OPERATOR, THE INDEX THEOREM AND APPLICATIONS 102

Using the relations vv = −q(v, v) and ww = −q(w,w), the relation

vw + wv = −2q(v, w) (5.6)

follows. In particular, if v, w are perpendicular, i.e., q(v, w) = 0, then v and w anti-commute
as elements of the Clifford algebra C`(V, q).

From now on we assume that q is a positive definite inner product on V , which we
will typically denote as 〈 , 〉. We will suppress the form q in the notation, writing C`(V )
instead of C`(V, q) for the associated Clifford algebra. The considerations above show that
if {ei}i=1,...,n is an orthonormal basis for V , then C`(V ) is the algebra generated by elements

e1, . . . , en subject to the relations e2
i = −1 eiej + eje1 = 0 for i 6= j.

Example 5.7. (Examples of Clifford algebras). Let C`n = C`(Rn), where Rn is
equipped with its standard inner product.

1. C`1 is an algebra of dimension 2 generated by e1 with the relation e2
1 = −1. It follows

that C`1 is isomorphic to C by sending e1 ∈ C`1 to i ∈ C.

2. C`2 is an algebra of dimension 22 = 4 generated by e1, e2 with relations e2
1 = e2

2 = −1
and e1e2 = −e2e1. It follows that C`2 is isomorphic to the quaternions H by sending
e1 ∈ R2 ⊂ C`2 to i ∈ H and e2 ∈ R2 ⊂ C`2 to j ∈ H.

Let v ∈ V be a non-zero vector in V . Then in C`(V ) the relation vv = −||v||2 shows
that v belongs to the group C`(V )× of invertible elements of the Clifford algebra. Moreover,
its inverse v−1 ∈ C`(V ) is given by v−1 = −v/||v||2; in particular, if v is a unit vector, then
v−1 = −v.

Definition 5.8. Let Pin(V ) be the subgroup of C`(V )× generated by unit vectors in V , and
Spin(V ) := Pin(V ) ∩ C`(V )ev. The twisted adjoint action

Pin(V )× C`(V ) −→ C`(V ) is defined by (g, x) 7→ τ(g)xg−1,

where τ is the grading involution on C`(V ).

Lemma 5.9. The twisted adjoint action restricts to an action ρ of Pin(V ) on V ⊂ C`(V ).
For a unit vector v the map ρ(v) : V → V is reflection at the hyperplane perpendicular to v.

Proof. To calculate ρ(v)w for a vector w ∈ V , decompose w in the form w = w1 +w2, where
w1 belongs to the span of v and w2 is perpendicular to v. Then

ρ(v)(w) = τ(v)wv−1 = −vw(−v) = vwv = v(w1 + w2)v = vw1v + vw2v

= vvw1 − vvw2 = −||v||2w1 − (−||v||2)w2 = −w1 + w2

This is the reflection of w = w1 + w2 at the hyperplane v⊥ which proves the lemma.
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Proposition 5.10. The homomorphisms

ρ : Pin(V )→ O(V ) and ρ : Spin(V )→ SO(V )

are surjective with kernel {±1} ⊂ Spin(V ) ⊂ C`(V ). The space Spin(V ) is connected for
dimV ≥ 2, and hence ρ : Spin(V )→ SO(V ) is the universal covering for dimV ≥ 3.

Proof. It is well-known that every element of O(V ) can be written as a composition of
reflections at some hyperplanes of V , and hence ρ : Pin(V )→ O(V ) is surjective. Moreover,
the product v1 · · · vk ∈ Pin(V ) of k unit vectors vi ∈ V maps to an element in SO(V ) if and
only if k is even, in other words, if v1 · · · vk belongs to Spin(V ) = Pin(V ) ∩ C`(V )ev. This
shows that also ρ : Spin(V )→ SO(V ) is surjective.

Let x ∈ Pin(V ) be an element in the kernel of ρ. We will show that x = ±1 ∈ C`(V ) in
three steps (see below for definitions of unitary and graded center):

(1) x is a unitary element of C`(V );

(2) x belongs to the graded center of C`(V );

(3) The graded center of C`(V ) consists of the scalar multiples of the unit element 1 ∈ C`(V ),
and hence the unitary elements of the graded center are just ±1.

Concerning (1) we recall that a ∗-algebra is an algebra A together with an anti-involution
∗ : A → A; in other words, ∗ is a linear map which is an involution, i.e., (a∗)∗ = a for all
a ∈ A, and an anti-automorphism, i.e., (ab)∗ = b∗a∗ for a, b ∈ A. The prototypical example
is the algebra A = End(V ) of endomorphisms of a Hermitian vector space V , equipped with
the anti-involution that takes an Endomorphism a : V → V to its adjoint a∗. An element a
of a ∗-algebra is unitary if a∗a = 1 and aa∗ = 1.

Let ∗ : C`(V )→ C`(V ) be the anti-involution such that v∗ = −v for v ∈ V ⊂ C`(V ). For
a unit vector v ∈ V its inverse v−1 = −v and hence v∗v = (−v)v = v−1v = 1, which shows
that every unit vector in V is a unitary element. Since the product of unitary elements is
again unitary, it follows that every element of Pin(V ) ⊂ C`(V ) is unitary.

Concerning (2), let A be a Z/2-graded algebra. The (graded) commutator of homogeneous
elements a, b ∈ A of degrees |a|, |b| ∈ Z/2 is defined by

[a, b] := ab− (−1)|a||b|ba.

For non-homogeneous elements the graded commutator is determined by requiring that [ , ]
is linear in each slot. The (graded) center of A is defined by

Z(A) := {z ∈ A | [z, a] = 0}.

In other words, a element z ∈ A belongs to the center of A if za = (−1)|z||a|az for all a ∈ A,
i.e., z commutes in the graded sense with any a ∈ A.
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If x ∈ Pin(V ) is in the kernel of ρ : Pin(V )→ O(V ), then v = ρ(x)v = τ(x)vx−1 for any
v ∈ V . This implies

vx = τ(x)v = (−1)|x|xv = (−1)|v||x|xv,

where the first equation holds by definition of the grading involution τ , and the second holds
since |v| = 1 for any v ∈ V ⊂ C`(V ). The above equation says that x commutes in the
graded sense with any v ∈ V (and shows that what is generally called the “twisted adjoint
action” is the version of the adjoint action appropriate for Z/2-graded algebras). Since the
Clifford algebra C`(V ) is generated by V , this implies that x commutes with any element
a ∈ C`(V ) in the graded sense and hence x ∈ Z(C`(V )).

To prove statement (3) let x ∈ Z(C`(V )) be an element of the graded center of C`(V ),
which without loss of generality we may assume to be homogeneous. Let e1, . . . , en be an
orthonormal basis of V . Using the fact that the products ei1ei2 · · · eik for 1 ≤ i1 < i2 < · · · <
ik, k ≥ 0 form a basis for C`(V ), we can write x in the form

x = a+ e1b,

where a, b ∈ C`(V ) are linear combinations of the basis elements ei1ei2 · · · eik that do not
involve a factor of e1. Using that |x| = |a| = |b|+ 1 we obtain

xe1 = ae1 + e1be1 = (−1)|a|e1a+ (−1)|b|e1e1b = (−1)|a|e1a− (−1)|b|b = (−1)|x|(e1a+ b)

and e1x = e1a + e1e1b = e1a − b. It follows that [x, e1] = (−1)|x|2b, and hence b = 0 since
x belongs to the center. Thus x does not involve e1. Similarly, it does not involve any
other basis element, and hence it is a scalar. If x is unitary, then 1 = x∗x = x2 and hence
x = ±1.

5.2 Construction of spinor bundles

Definition 5.11. Let G be a Lie group, π : P → X a smooth principal G-bundle over a
manifold X, and V a representation of G. Then the vector bundle

E(V ) := P ×G V → X

is the associated vector bundle over X. Here P ×G V is the quotient of P × V given by the
equivalence relation (pg, v) ∼ (p, gv) for p ∈ P , g ∈ G and v ∈ V . The projection map
P ×G V → X is given by [p, v] 7→ π(p).

Let V , W be representations of G and let f : V → W be a G-equivariant linear map.
Then f induces a vector bundle map

E(f) : E(V ) = P ×G V −→ P ×GW = E(W ) given by [p, v] 7→ [p, f(w)].

Notice that the equivariance of f implies that the map E(f) is well-defined.
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Example 5.12. (Examples of associated vector bundles).

(i) Let F → X be an oriented real vector bundle of dimension n equipped with a metric,
and let

SO(F ) := {(x, f) | x ∈ X, f : Rn → Fx orientation preserving isometry} −→ X

be the oriented frame bundle of F . This is a principal SO(n)-bundle. The right action

SO(F )× SO(n) −→ SO(F ) is given by (x, f), g 7→ (x, f ◦ g).

Then the associated vector bundle SO(F ) ×SO(n) Rn is isomorphic to F . The isomor-
phism

SO(F )×SO(n) Rn ∼=−→ F is given by [(x, f), v] 7→ f(v).

(ii) Assume that F has a spin structure given by the double covering Spin(F )
q−→ SO(F ).

Then Spin(F ) is a principal Spin(n)-bundle, and we can form the associated vector
bundle Spin(F ) ×Spin(n) Rn → X where Spin(n) acts on Rn via the double covering
map ρ : Spin(n)→ SO(n). An isomorphism

Spin(F )×Spin(n) Rn ∼=−→ SO(F )×SO(n) Rn is given by [p, v] 7→ [q(p), v].

(iii) Let ∆ be a Z/2-graded module over the Clifford algebra C`n, and let Spin(F ) → X
be the principal Spin(n)-bundle of a spin vector bundle F . Then regarding ∆ as
a Z/2-graded representation of the group Spin(n) ⊂ C`×n , we obtain the associated
vector bundle

S∆(F ) := Spin(F )×Spin(n) ∆ −→ X

called the spinor bundle associated to F , ∆.

(iv) Specializing the previous example, if X is a Riemannian spin n-manifold, then

S∆ := Spin(T ∗X)×Spin(n) Rn −→ X

is the spinor bundle of X associated to the C`n-module ∆.

Lemma 5.13. Let ∆ be a Z/2-graded module over C`n. Then the map

c : Rn ⊗∆ −→ ∆ v ⊗ λ 7→ vλ,

given by the left C`n-module structure of ∆ is Spin(n)-equivariant, where Spin(n) acts on Rn

via the double covering map ρ : Spin(n) → SO(n) and on ∆ via the embedding Spin(n) ↪→
C`n.
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Corollary 5.14. Let F → X be a vector bundle with metric and spin structure of dimension
n and let Spin(F )→ X be the corresponding spin frame bundle. Then the Spin(n)-equivariant
map c induces a map of associated vector bundles

E(c) : E(Rn ⊗∆) = E(Rn)⊗ E(∆) −→ E(∆).

Via the vector bundle isomorphism discussed above, this yields a vector bundle map

c : F ⊗ S∆(F ) −→ S∆(F ),

that we will refer to as Clifford multiplication.

Proof of lemma 5.13. The group Spin(n) is a subgroup of Pin(n), and we observe that the ac-
tion of Spin(n) on Rn and ∆ extends to Pin(n) via the double covering map ρ : Pin(n)→ O(n)
resp. the inclusion Pin(n) ⊂ C`n. Let us check whether c : Rn⊗∆→ ∆ is Pin(n)-equivariant.
We recall that Pin(n) is generated by unit vectors v ∈ Rn. So let v ∈ Sn−1 and w⊗λ ∈ Rn⊗∆.
Then v acts on w ⊗ λ by

v(w ⊗ λ) = (τ(v)wv−1)⊗ (vλ) = (−vwv−1)⊗ (vλ).

Applying c, we obtain

c(v(w ⊗ λ)) = c((−vwv−1)⊗ (vλ)) = −vwv−1vλ = −vwλ ∈ ∆,

while v · c(w⊗λ) = v(wλ) = vwλ ∈ ∆. This shows that the map c is not Pin(n)-equivariant,
due to the minus sign. However, it is equivariant for the subgroup Spin(n) ⊂ Pin(n) whose
elements are products in C`n of an even number of unit vectors.

Definition 5.15. Let ∆ be a Z/2-graded module over the Clifford algebra C`n, and let X be
a Riemannian spin manifold of even dimension n. Then the Dirac operator on X associated
to ∆ is the operator

D∆ : Γ(S∆)
∇−→ Γ(T ∗X ⊗ S∆)

c−→ Γ(S∆)

where S∆ = Spin(X)×Spin(n) ∆ is the spinor bundle associated to ∆, ∇ is the connection on
S∆ induced by the Levi-Civita connection on TX, and c is Clifford multiplication.

Definition 5.16. Let X be a compact space and let π : V → X be a vector bundle of
even dimension n equipped with a metric and a spin structure. Let U∆(V ) ∈ Kc(V ) be the
element given by the odd vector bundle endomorphism

π∗S∆(F )
c−→ π∗S∆(F ) given by (x, v ∈ Fx, ψ ∈ Sx) 7→ (x, v, c(v, ψ)).
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The two constructions described in the definition above yields our goal of constructing
the Dirac operator on even dimensional spin manifolds, and the K-theory orientation class
for even dimensional spin vector bundles, provided we make the correct choice for the graded
Clifford module ∆. It is clear that we should use an irreducible module ∆, since the direct
sum of say two copies of ∆ in the construction of U∆(V ) would lead to U∆⊕∆(V ) = 2U∆(V ) ∈
Kc(V ) which would not be an orientation class.

Proposition 5.17. If ∆ is an irreducible Z/2-graded module over C`2k, then the class U∆(V )
constructed above is a K-theory orientation for real spin vector bundles V of dimension 2k.

Exercise 5.18. Prove the above statement using the following steps.

1. Show that the graded tensor product C`n ⊗ C`n′ is isomorphic as Z/2-graded algebra
to C`n+n′ .

2. Show that if ∆, ∆′ are irreducible Z/2-graded complex modules over C`2k resp. C`2k′ ,
then the graded tensor product ∆ ⊗∆′ is an irreducible Z/2-graded complex module
over C`2k ⊗ C`2k′

∼= C`2k+2k′ .

3. Prove the proposition above for k = 1. Hint: It suffices to show that the restriction of
UV

∆ to each fiber Vx ∼= R2 gives a generator of Kc(R2).

4. Prove the statement for general k by using part (2) to reduce to the case k = 1.

This leaves us with the question about the number of irreducible modules, addressed by
the next proposition.

Proposition 5.19. There are two irreducible Z/2-graded complex modules ∆ over C`2k up
to isomorphism. The dimension of both of them is 2k.

Example 5.20. We have observed before that the Clifford algebra C`n is isomorphic to the
quaternions H = C⊕ jC, but we want to pay attention to the Z/2-grading now, and would
like to set up the isomorphism such that C`0

2 corresponds to C ⊂ H and C`1
2 corresponds

to jC ⊂ H. We observe that the standard basis elements e1, e2 ∈ R2 ⊂ C`2 have degree 1,
while e1e2 and the unit 1 ∈ C`2 have degree 0. Hence defining

C`2 −→ H by e1 7→ j, e2 7→ ji

determines a graded algebra isomorphism. In particular, H is a graded left module over H.
In fact, this is a complex module if we are careful with the definition of the complex structure
on H: it commutes with the left action of the algebra on H if we us right multiplication by
z ∈ C to define the complex structure on H.
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Lemma 5.21. Let e1, . . . , e2k be the standard basis of R2k. Then the element ω := ike1 · · · ek ∈
C`2k ⊗ C has the properties

ω2 = 1 and ωv = −vω for all v ∈ R2k ⊂ C`2k.

In particular, the grading involution on C`2k⊗C is an inner involution, given by conjugation
by the element ω.

Lawson and Michelsohn refer to ω as complex volume element [LM, Ch. I, equation (5.12)].

Corollary 5.22. Every (ungraded) module ∆ over C`2k has a preferred grading involution,
given by multiplication by ω ∈ C`2k.

Combing this result with Proposition 5.19 we conclude the following statement.

Corollary 5.23. There is a unique irreducible Z/2-graded complex module ∆ over C`2k

whose Z/2-grading is given by multiplication by ω ∈ C`2k ⊗ C.

Lemma 5.24. There is a commutative diagram of group homomorphisms

S1 Spin(2)

S1 SO(2)

φ

∼=
π ρ

ψ

∼=

Here the vertical maps are double coverings with π defined by π(z) := z2, and ρ is the
double covering map of Lemma 5.9. The homomorphism φ sends z = a + ib ∈ S1 to
φ(a + ib) = a + be1e2 ∈ Spin(2) ⊂ C`2, and ψ sends eiθ ∈ S1 to the isometry ψ(θ) ∈ SO(2)
given by rotation by θ.

Proof. We note that for a+ ib = eiθ ∈ S1

φ(a+ ib) = a+ be1e2 = −ae2
1 + be1e2 = e1(−ae1 + be2) ∈ C`2

is the product in the Clifford algebra C`2 of the two unit vectors e1 and −ae1 + be2. Hence it
belongs to Pin(2), the group generated by products of unit vectors in C`×2 ; in fact it belongs
to Spin(2) = Pin(2) ∩ C`ev

2 . It follows that

ρ(φ(a+ ib)) = ρ(e1)ρ(v) ∈ SO(2), for v := −ae1 + be2 ∈ S1

the composition of the reflection at v⊥ followed by reflection at e⊥1 . Arguing either geomet-
rically (by drawing the situation), or by using the formula for the isometry given by the
reflection at a line in R2, it is easy to check that ρ(e1)ρ(v) is rotation by 2θ. This proves
the commutativity of the diagram. Since the bottom horizontal map is an isomorphism, and
the vertical maps are both double coverings, it follows that the top horizontal map is an
isomorphism.
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Corollary 5.25. Let ∆ = ∆+ ⊕ ∆− be the irreducible complex C`2-module (which has
complex dimension 2) whose grading involution is given by multiplication by ω = ie1e2 ∈
C`2⊗C. Then as complex 1-dimensional representations of S1 ∼= Spin(2), ∆± ∼= C∓1(where
Ck is the representation of S1 given by letting z ∈ S1 act on C by multiplication by zk).

Proof. The grading involution on ∆ is given by λ 7→ ωλ = ie1e2λ, and hence λ ∈ ∆± if and
only if ie1e2λ = ±λ. It follows that for z = a+ ib ∈ S1 and λ ∈ ∆±,

φ(z)λ = φ(a+ ib)λ = (a+ be1e2)λ = aλ− ibie1e2λ

= aλ− ib(±λ) = (a∓ ib)λ = z∓λ

Corollary 5.26. Let V → X be complex line bundle with spin structure and let Spin(V )→
X be the associated principal bundle with structure group Spin(2) ∼= S1. Let V 1/2 be the
square root of V determined by the spin structure on V ; in other words, V 1/2 is the associated
vector bundle V 1/2 = Spin(V ) ×Spin(2) C1. Then there are isomorphisms of complex line
bundles

Spin(V )×Spin(2) ∆+ ∼= V −1/2 Spin(V )×Spin(2) ∆− ∼= V 1/2.

Remark 5.27. An important reference for the use of modules over Clifford algebras for the
construction of K-theory orientations is the 1963 paper Clifford modules by Atiyah-Bott-
Shapiro [ABS]. In section 5 of that paper they analyze in detail modules over real and
complex Clifford algebras. In particular, their table 2 on page 12 shows the Grothendieck
groupsM(C`n) andM c(C`n) of real (resp. complex) graded modules over the Clifford algebra
C`n (which they denote by Cn). For example, our statement that there are two irreducible
complex graded modules over C`2k even means that the Grothendieck group M c(C`2k) ∼=
Z⊕ Z as shown in the table.

They distinguish the two irreducible complex Z/2 graded C`2k-modules M = M ev ⊕
Modd by the action of the element e1 · · · e2k ∈ C`2k on M ev, calling M an ε-module if
e1 · · · e2k acts on M ev by multiplication by ε ∈ C (see p. 16, paragraph after Theorem 6.10).
Since (e1 · · · e2k)

2 = (−1)k, the possible values of ε is ±ik, distinguishing the two irreducible
modules. They work with the module µck ∈ M c(C`2k) that is the irreducible ik-module.
Earlier, in Proposition 5.11 they show that the exterior algebra Λ(Ck) is an irreducible
Z/2-module over C`2k, which is an (−i)k-module.

In terms of the complex volume element ωC := ike1 · · · e2k that we use to distinguish the
two irreducible modules, it means that ωC acts on the even part M ev of such a module M

• by +1 for M = Λ(Ck) (with its standard Z/2-grading Λ = Λev ⊕ Λodd), and

• by (−1)k for the module M = µc2k.
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5.3 Scalar curvature and index theory

Let X be a Riemannian n-manifold. Then the scalar curvature is a smooth function s : X →
R which controls the volume of small balls. It is usually defined as a contraction of the
Riemannian curvature tensor, but here we describe s(x), the scalar curvature at the point
x ∈ X, in terms of the volume of balls

Br(x,X) := {y ∈ X | dist(x, y) < r}

of radius r centered at x. The volume volBr(x,M) of this ball can be compared to the
volume volBr(0,Rn) of the ball of the radius r in Euclidean space Rn. The scalar curvature
s(x) then appears as a coefficient in the Taylor expansion of the quotient of these two volumes
as a function of r:

volBr(x,M)

volBr(0,Rn)
= 1− s(x)

6(n+ 2)
r2 + . . .

In particular, if the volume of a small balls of radius r around x is smaller than the volume
of the balls of the same radius in Rn, then the volume ratio is smaller than 1, hence the
coefficient of r2 must be negative, and hence s(x) > 0. This is the case for example for
spheres with their standard metric. If the volume of small balls in X is larger, for example
if X is a hyperbolic space (mountain pass), then s(x) < 0.

Theorem 5.28. (Lichnerowicz, 1963) Let X be a closed Riemannian spin manifold of

dimension 4k with positive scalar curvature (i.e, s(x) > 0 of all x ∈ X). Then Â(X) = 0.

This result shows that the Â-genus is an obstruction for the existence of a positive scalar
curvature metric on spin manifolds. For example, the Kummer surface K is a spin manifold
with Â = 2, and hence there is no positive scalar curvature metric on K.

Proof. We recall that the Dirac operator on X is a first order differential operator D acting on
Γ(S), the sections of the spinor bundle. The principal symbol of the second order operator D2

by construction agrees with the principal symbol of the rough Laplacian ∇∗∇ = ∆: Γ(S)→
Γ(S) (see Example 5.2). This means that these two second order differential operators can
only differ by a differential operator of order 1. Lichnerowicz showed that the difference
between these two operators is actually of order 0, and simply given by multiplication by
the function s/4 (where s ∈ C∞(X) is the scalar curvature function). The equation

D2 = ∇∗∇+
s

4

is known as the Lichnerowicz formula (also as Weizenböck-Bochner-Lichnerowicz formula;
Weizenböck and Bochner proved analogous formulas comparing natural second order oper-
ators).
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We claim that s(x) > ε for all x ∈ X implies that the kernel of D is trivial. To prove
this, let

〈ψ, φ〉 :=

∫
X

〈ψ(x), φ(x)〉S volX

be the L2 inner product of spinors ψ, φ ∈ Γ(S), and let ||ψ||2 = 〈ψ, ψ〉 be the corresponding
L2-norm. Then for ψ ∈ kerD

0 = (Dψ,Dψ) = (D2ψ, ψ) = (∇∗∇ψ, ψ) + (
s

4
ψ, ψ)

≥ (∇ψ,∇ψ) +
ε

4
(ψ, ψ) ≥ ||∇ψ||2 +

ε

4
||ψ||2

implies ||ψ|| = 0 and hence ψ = 0.
Since the kernel of D is trivial, its super dimension

sdim kerD = dim kerD+ − dim kerD− = dim kerD+ − dim cokerD+ = index(D+)

is zero. Since index(D+) = Â(X) by the index theorem for the Dirac operator, it follows

that Â(X) = 0.

Theorem 5.29. (Hitchin, 1974) Let X be a closed spin manifold of dimension n with
positive scalar curvature metric. Then the Atiyah invariant

α(X) ∈ KO−n(pt) =


Z n ≡ 0 mod 4

Z/2 n ≡ 1, 2 mod 8

0 otherwise

vanishes.

Here KO∗(X) is the real K-theory which is defined completely analogous to complex
K-theory, but using real vector bundles instead of complex vector bundles. Real K-theory is
8-periodic. Using modules over Clifford algebras as in the construction of the K-orientation
UK(V ) (see Definition 5.16 and Proposition 5.17), Atiyah has constructed KO-theory orien-
tations for real vector bundles V of dimension ≡ 0 mod 8 with spin structure. This can be
used to define an umkehr map

p! : KO0(X) −→ KO−n(pt)

for closed spin n-manifolds X. The Atiyah invariant α(X) ∈ KO−n(pt) is the image of the
unit 1 ∈ KO0(X) (represented by the trivial real line bundle) under the umkehr map p!.
The Atiyah invariant α-invariant α(X) has a neat description as the Clifford index of the
Clifford linear Dirac operator on X [LM, Ch. III, section 10]. With that interpretation of

α(X), the argument above for the vanishing of Â(X), the index of the Dirac operator on X,
immediately generalizes to prove the vanishing of the Clifford index, thus proving Hitchin’s
generalization (Hitchin used a different argument).
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Remark 5.30. For n ≡ 0 mod 4 the Atiyah invariant α(X) for a closed spin n-manifold X

agrees with Â(X) (up to a factor of 2 for n ≡ 4 mod 8. For n ≡ 1, 2 mod 8, n ≥ 9, there
are manifolds Σn of dimension n homeomorphic to Sn with α(Σn) 6= 0, and hence Σn does
not admit a positive scalar curvature metric. The homotopy spheres Σn in Ωfr

n correspond
via the map (4.49) to elements in the n-th stable homotopy group of spheres constructed by
Adams.

Theorem 5.31. (Stolz, 1990) Let X be a closed simply connected spin manifold of dimen-
sion n ≥ 5. Then X admits a positive scalar curvature metric if and only if α(X) = 0.

5.4 A general index theorem

Let D : Γ(E)→ Γ(F ) be a differential operator on a closed manifold X with principal symbol

σD : π∗E −→ π∗F.

Here π : T ∗X → X is the cotangent bundle. If D is elliptic, then for each non-zero cotangent
vector ξ ∈ T ∗xX the linear map σDξ : Ex → Fx is an isomorphism, and hence we obtain a
K-theory element

σ(D) := [π∗E, π∗F ;σD] ∈ Kc(T
∗M) = Kc(TM).

Lemma 5.32. The index of D depends only on σ(D) ∈ Kc(TM).

Definition 5.33. (Short hand notation for Thom isomorphisms). Let π : V → X be
a smooth vector bundle and let i : X → V be the zero section. Assume either that

(i) V is a complex vector bundle of complex dimension k (which guarantees the existence
of the K-theory orientation UK

C (V )), or that

(ii) V is a real vector bundle of dimension 2k with a spin structure (which guarantees the
existence of the K-theory orientation UK(V )).

Let
i! : Kc(X)

∼=−→ Kc(V )

be the resulting Thom isomorphism given by multiplication by the orientation class, and let

π! : Kc(V )
∼=−→ Kc(X)

be its inverse. If there is need to emphasize which orientation class on V is used, we write
iC! , πC

! in case (i) and ispin
! , πspin

! in case (ii).
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Let f : X ↪→ Y be a proper embedding of manifolds with normal bundleN → X satisfying
assumptions (i) or (ii) above. Let

f! : Kc(X) −→ Kc(Y )

be the composition of i! : Kc(X) → Kc(N) followed by the map Kc(N) → Kc(Y ) obtained
by identifying a tubular neighborhood of X in Y with N .

Let X be a closed n-manifold and let f : X ↪→ Rn+k be an embedding with normal bundle
N . Then the differential

Tf : TX −→ TRn+k

is a proper embedding. Its normal bundle is the pullback of N ⊕ N ∼= N ⊗R C via the
projection map TX → X. The complex structure on the normal bundle then gives a
homomorphism

Tf! = TfC
! : Kc(TX) −→ Kc(TRn+k)

Thinking of q : TRn+k = Rn+k ⊕ Rn+k = Cn+k → pt as a complex vector bundle, let

q! : Kc(TRn+k)→ K(pt)

be the inverse of the Thom isomorphism.

Definition 5.34. The topological index of an elliptic differential operator D on a closed
manifold X is the image of σ(D) ∈ Kc(TX) under the composition

top-ind: Kc(TX) Kc(TRN) K(pt) = ZTf! q!

Theorem 5.35. (The index theorem for general elliptic operators). Let P be an
elliptic operator on a compact n-manifold X with principal symbol σ(P ) ∈ Kc(TX). Then

index(P ) = top-ind(σ(P )).

Our next goal is to show that the above result implies the index theorem for the Dirac
operator that we stated in section 3. More precisely, we will prove the K-theory version of
the Index Theorem 3.1 according to which

index(D+
E) = (−1)mp!([E]) ∈ K(pt) = Z. (5.36)

Here DE : Γ(S ⊗ E) → Γ(S ⊗ E) is the Dirac operator on a compact n-manifold, n = 2m,
twisted by a complex vector bundle E → X, and p! : K(X) → K(pt) is the umkehr map
associated to the projection map p : X → pt (see Definition 3.27). We recall that the
construction of p! is based on choosing an embedding f : X ↪→ Rn+k, k even, with normal
bundle N . Using the notation from Definition 5.33, the map p! is the composition

p! : K(X) Kc(Rn+k) K(pt) = Z
f spin! (ι!)

−1

∼=
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Here Rn+k is viewed as a vector bundle over pt, the map ι : pt → Rn+k is the inclusion

of the zero-section, and ι! : K(pt)
∼=−→ Kc(Rn+k) is the Thom isomorphism aka suspension

isomorphism aka Bott isomorphism.

Proof of Theorem 3.1/equation (5.36). We recall from 5.2(1) that the principal symbol of
the Dirac operator D+ is given by

π∗S+ ic−→ π∗S−

where π : T ∗X → X is the cotangent bundle and c is the Clifford multiplication map. This
represents an element in Kc(T

∗X), which after a homotopy in order to remove the factor i
is precisely the orientation class

UK(T ∗X) = [π∗S+, π∗S−; c] ∈ Kc(T
∗X).

In other words, the principal symbol class σ(D) of the Dirac operator is the K-theory
orientation class UK(T ∗X) and More generally, In other words, the princ

Let f : X ↪→ Rn+k be an embedding and consider the following commutative diagram of
embeddings

X Rn+k pt

TX TRn+k

f

i j

ι

T ι

Tf

Applying the index theorem for elliptic operators 5.35 to D+
E , we obtain

index(D+
E) = top-ind(σ(D+

E)) = (jι)−1
! (Tf)!σ(D+

E) = ι−1
! j−1

! (Tf)!i!([E])

= ι−1
! j−1

! j!f!([E]) = ι−1
! f!([E]) = p!([E])

(5.37)

This seems to show that in fact index(D+
E) = p!([E]) without the factor of (−1)m claimed

in equation (5.36). However, we have been careless in the above calculation with regards to
which K-orientation (UK

C or UK , see 5.33) we use for the normal bundles of the embeddings
i, f , Tf , and Tι. Let us take a close look at the normal bundles of these embeddings.

(1) The normal bundle of the embedding i : X ↪→ TX is the tangent bundle TX which is
assumed to be even dimensional and equipped with a spin structure, but in general TX
does not have a complex structure. Hence the K-orientation UK(TX) is the only option,
and consequently, the relevant umkehr map is ispin

! .

(2) The normal bundle N of the embedding f : X ↪→ Rn+k has dimension k, which is even
by assumption. The bundle isomorphism TX⊕N ∼= Rn+k and the spin structure on TX
induces a spin structure on N , but in general N does not have complex structure. Hence
we only have the K-orientation UK(N) and the umkehr map f spin

! at our disposal.
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(3) The normal bundle of the embedding Tf : ↪→ TX ↪→ TRn+k as discussed above is the
pullback of N⊕N ∼= N⊗RC via the projection maps π : TX → X. The spin structure on
N determines a spin structure on N ⊕N . This bundle also has a complex structure (via
the isomorphism N ⊕N ∼= N ⊗R C), and hence this vector bundle has both orientations
UK(N ⊕N) (due to the spin structure) and UK

C (N ⊕N) (due to the complex structure),
and we have both umkehr maps, Tf spin

! and TfC
! , at our disposal.

(4) The same arguments as for Tf apply to see that for the embedding Tι both umkehr
maps, Tιspin

! and TιC! are defined.

We note that we need to use both umkehr maps, Tf spin
! and TfC

! ; the latter is used in the
definition of top-ind, while the former is needed to make the argument that Tf ◦ i = j ◦ f
implies Tf! ◦ i! = j! ◦ f!! So we need to know how these two umkehr maps compare. This
comparison is provided by the following result.

Lemma 5.38. Let N → X be spin vector bundle of dimension 2`. Let UK(N⊕N) ∈ Kc(N⊕
N) be the K-orientation determined by the spin structure on N ⊕N , and let UK

C (N ⊕N) ∈
Kc(N ⊕N) be the K-orientation determined by the complex structure on N ⊕N ∼= N ⊗R C.
Then UK(N ⊕ N) = (−1)`UK

C (N ⊕ N). In particular, if f : X ↪→ Y is an embedding with
normal bundle N , then f spin

! = (−1)`fC
! .

Let us now repeat the calculation (5.37), but carefully differentiating between umkehr
maps, adding the super script C to indicate umkehr maps using the complex structure. No
superscript for an umkehr maps means that it is given using the spin structure. For n = 2m,
k = 2`, and using the lemma above we obtain:

index(D+
E) = top-ind(σ(D+

E)) = ((Tι)C! )−1(Tf)C! σ(D+
E)

= (−1)m+`(Tι)−1
! (−1)`(Tf)!σ(D+

E)

= (−1)mι−1
! j−1

! (Tf)!i!([E]) = (−1)mι−1
! j−1

! j!f!([E])

= (−1)mι−1
! f!([E]) = (−1)mp!([E])

Let W → X be a complex vector bundle of dimension n, and let WR the real vector
bundle of dimension 2n obtained by forgetting the complex structure. Then WR has a
canonical orientation determined by the complex structure on W constructed as follows.
Let w1, . . . , wn be a C-basis of the fiber Wx for some point x ∈ X. Then

w1, iw1, w2, iw2, . . . , wn, iwn

is an ordered R-basis of Wx and hence provides the real vector space Wx with an orientation.
This orientation is independent of the choice of the ordered C-basis w1, . . . , wn.
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Let V → X be a real vector bundle of dimension n, and let V ⊗R C its complexifica-
tion. Then the real vector bundle (V ⊗R C)R is isomorphic to V ⊕ V via the vector bundle
isomorphism

V ⊕ V
∼=−→ (V ⊗R C)R given by (v, w) 7→ v ⊗ 1 + w ⊗ i. (5.39)

Lemma 5.40. Let V → X be an oriented real vector bundle of dimension n. Then the
orientation on V ⊕ V agrees with the canonical orientation on (V ⊗R C)R if and only if
n(n−1)

2
is even. In particular the associated orientation classes are related by

UH(V ⊕ V ) = (−1)
n(n−1)

2 UH((V ⊗R C)R) ∈ H2n
c (V ⊕ V ).

Remark 5.41. Let X be an oriented n-manifold with tangent bundle π : TX → X. Then
the total space TX is a 2n-manifold whose tangent bundle is isomorphic to π∗(TX ⊕ TX).
Hence there are two natural orientations on the tangent bundle of TX (and hence on the
manifold TX):

1. the orientation on TX ⊕ TX given by the orientation on each summand, and

2. the canonical orientation on the complex vector bundle TX ⊗R C ∼= TX ⊕ TX.

By the lemma above, these two orientations differ by the factor (−1)
n(n−1)

2 . This contrasts
with a statement in the book Spin geometry where it is claimed on p. 256 that these orien-

tations differ by the factor (−1)
n(n+1)

2 , explaining why that factor shows up in their index
formula (13.24) in Theorem 13.8.

The main case of interest to us is n even, in which case (−1)n(n−1)
2

is equal to (−1)n(n+1)
2

.
However, for n odd these expressions differ by a minus sign.

Proof of Lemma 5.40. Let x ∈ X and let v1, . . . , vn an ordered basis for the fiber Vx repre-
senting the orientation of the vector bundle V . Identifying Vx ⊕ Vx with Vx ⊗R C via the
isomorphism (5.39),

1. the orientation on Vx ⊗R C induced by the orientation on Vx is given by the ordered
basis

v1, v2 . . . , vn, iv1, iv2, . . . , ivn,

2. the canonical orientation on Vx ⊗R C is given by the ordered basis

v1, iv1, . . . , vn, ivn.

Rearranging the first sequence of symbols to obtain the second sequence requires (n− 1) +

(n − 2) + · · · + 1 = n(n−1
2

transpositions. Hence the two orientations agree if and only if
n(n−1

2
is even.
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5.5 Outline of the proof of the Index Theorem for twisted Dirac
operators

In this section we outline the proof the Index Theorem, basically following the arguments
in section 13 of Chapter III of the book Spin Geometry by Lawson and Michelsohn [LM].
However, we found it easier to present the arguments if we restrict ourselves to twisted Dirac
operators.

We recall that for an even dimensional compact spin manifold X equipped with a complex
Z/2-graded vector bundle E → X, the associated Dirac operator D(X,E) acts on the
sections of the tensor product S ⊗ E, where S is the spinor bundle on X. The Z/2-grading
on S and E induces a Z/2-grading on S ⊗ E and hence the space of sections Γ(S ⊗ E).
The Dirac operator D(X,E) is an odd operator, i.e., its restriction to Γ((S ⊗ E)+) maps to
Γ((S ⊗ E)−), resulting in an operator

D+(X,E) : Γ((S ⊗ E)+) −→ Γ((S ⊗ E)−).

We recall that

index(D+(X,E)) = dim kerD+(X,E)− dim cokerD+(X,E)

= dim kerD+(X,E)− dim kerD−(X,E)

= dim(kerD(X,E))+ − dim(kerD(X,E))−

= sdim kerD(X,E)

= sdim kerD2(X,E)

This point of view will be convenient for us in this section, and we will use the notation

ind(D(X,E)) := sdim(kerD2(X,E)).

Throughout this section we will be working with the K-theory orientation class UK(V ) ∈
Kc(V ) of even dimensional real vector vector bundles equipped with spin structures. They
will often occur as normal bundle of embeddings f : X ↪→ Y , and so it will be convenient for
us to make the following assumption.

Assumption. All manifolds and real vector bundles in this section are even dimensional.

Theorem 5.42. (Index theorem for twisted Dirac operators). Let X be a closed spin
manifold, and let E → X be a complex graded vector bundle. Then

ind(D(X,E)) = p!([E]) ∈ K(pt) = Z.

Here p! : K(X)→ K(pt) = Z is the umkehr map whose construction we recall below.
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The astute reader might notice a glaring contradiction between this statement and equa-
tion (5.36). This is due to the fact that up to this section, I’ve followed the conventions in
the Spin Geometry book. In this section, where we’ll deal extensively with the twisted Dirac
operators and umkehr maps in K-theory I find lugging around the signs annoying. So I pre-
fer to change the convention for the K-theory orientation class UK(V ) for even dimensional
vector bundles with spin structure. That makes the sign in this formula go away without
changing the cohomology version of the index theorem.

Motivated by the fact that p! is constructed in purely topological terms, but it calcu-
lates the index of twisted Dirac operators, the homomorphism p! is also referred to as the
topological index:

top-ind := p! : K(X) −→ K(pt) = Z. (5.43)

A a spin embedding is an embedding f : X ↪→ Y together with a spin structure on the
normal bundle N → X. Let i : X ↪→ N be the zero section, and let e : N ↪→ Y be the open
embedding of N as a tubular neighboorhood of f(X) in Y . Then the commutative triangle

X Y

N

f

i e

induces a commutative triangle of umkehr maps between the corresponding K-theory groups

Kc(X) Kc(Y )

Kc(N)

f!

i!

∼=
e!

(5.44)

Here i! is the Thom isomorphism, e! is the extend-by-zero map, and f! is defined as the
composition f! := e!i!. A crucial property of the umkehr map is its compatibility with

compositions, i.e., if X
f
↪→ Y

g
↪→ Z are spin embeddings, then

(g ◦ f)! = g! ◦ f!. (5.45)

This is a consequence of the multiplicativity property

UK(V ⊕W ) = UK(V )⊗ UK(W )

of the K-theory oriention UK applied to the normal bundles of the embeddings.
Let X be a closed spin manifold and let f : X ↪→ Rn+k be an embedding. The spin

structure on X induces a spin structure on the normal bundle. Then top-ind = p! is the
composition

K(X) Kc(Rn+k) K(pt)
f!

∼=
ι!
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Now we begin with the proof of the index theorem. The first step is to show that the
index of the twisted Dirac operator indeed only depends on [E] ∈ K(X).

Lemma 5.46. The map

ind: K(X) −→ Z given by [E] 7→ ind(D(X,E))

is a welldefined homomorphism.

The map ind is called the analytic index map. The strategy to show that the two index
homomorphisms ind and top-ind agree, is to contemplate the formal properties of top-ind,
and in fact to characterize the homomorphism top-ind by these properties. Then the real
work is to show that the analytic index map ind has the same properties.

Lemma 5.47. 1. The topological index top-ind(X, u) ∈ K(pt) for a compact spin mani-
fold X and u ∈ K(X) has the following two properties

compatibility with embeddings: top-ind(Y, f!u) = top-ind(X, u) for spin embed-
ding of compact spin manifolds f : X ↪→ Y and u ∈ K(X).

normalization property: top-ind(pt, u) = u for u ∈ K(pt).

2. There is only one assignment (X, u) 7→ I(X, u) ∈ K(pt) satisfying the two conditions
above.

The normalization property obviously holds for top-ind; in fact, it might seem silly to
mention it. However, the without it, part 2 no longer holds, since the assignment defined by
I(X, u) := 0 ∈ K(pt) for all closed spin manifolds X is compatible with embeddings.

Proof. To prove property (ii) for top-ind, let g : Y ↪→ Rn+k be a spin embedding. Then
the spin embedding gf : X ↪→ Rn+k can be used to calculate top-ind(u) for u ∈ K(X). As
above, let ι : pt ↪→ Rn+k. Then

top-ind(Y, f!u) = ι−1
! g!(f!u) = ι−1

! (g ◦ f)!u = top-ind(u).

To prove part 2 of the lemma, let (X, u) 7→ I(X, u) ∈ K(pt) for X a closed spin manifold
and u ∈ K(X) be an assignment satisfying properties (i), (ii) and (ii). Then for any spin
embedding f : X ↪→ Rn+k

I(X, u)
(ii)
= I(Rn+k, f!u)

(ii)
= I(pt, ι−1

! f!u)
(i)
= ι−1

! f!u = top-ind(X, u)
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Let X be compact spin manifold, E → X a Z/2-graded vector bundle, and [E] ∈ K(X)
the K-theory class it represents. Let

ind(X, [E]) := ind(D(X,E)) ∈ Z = K(pt).

Part 2 of the lemma above shows that for the proof of the Index Theorem 5.42, it suffices to
show that the assignment (X, u) 7→ ind(X, u) satisfies the two properties of lemma 5.47(1).
The normalization property is obviously satisfied, and hence it suffice to show that ind(X, u)
is compatible with embeddings, i.e., that

ind(X, u) = ind(Y, f!u) (5.48)

for every spin embedding f : X ↪→ Y of compact spin manifolds.
We recall from (5.44) that for a spin embedding

f : X
i−→ N

e
↪→ Y

of compact manifolds X, Y the map f! : K(X) → K(Y ) is the composition of the shriek
maps induced by the zero section i and the embedding e of the normal bundle N as a
tubular neighborhood of f(X) in Y . This suggests to verify the compatibility condition
ind(X, u) = ind(Y, f!u) of ind with f! by checking the compatibility condition of ind with
i! and e!. The problem is that N , the total space of the normal bundle is not compact and
hence the envisioned compatibility condition for i!, namely

ind(X, u) = ind(N, i!u) = ind(D(N, i!u))

does not make sense, since the Dirac operator D(N, i!u) on the non-compact manifold should
be expected to have infinite dimensional kernel. It turns out that one can make sense of the
index of the operator D(N, i!u), since i!u has compact support (recall that i!u ∈ Kc(N) is the
orientation class). This was done after the original work of Atiyah and Singer and is known
as relative index theory [GL].

In their proof Atiyah and Singer avoid the non-compact manifold N by compactifying it,
by adding a point at infinity ∞x to every fiber Nx for x ∈ X. To give a precise definition,
we equip the vector bundle N with a bundle metric. Then there is a homeomorphism

h : Nx ∪ {∞x}
≈−→ S(Nx ⊕ R)

between the one-point-compactification Nx ∪ {∞x} of the vector space Nx and the sphere
S(Nx ⊕ R) inside the vector space Nx ⊕ R, with h(0) = (0,−1) and h(∞x) = (0, 1). Here is
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a picture of S(Nx ⊕ R):

Nx

R

h(∞x)

h(0)

This construction provides an embedding j : N ↪→ S(N ⊕ R) from N to the sphere bundle
of the direct sum of N and the trivial real line bundle.

The composition s := j ◦ i : X → S(N ⊕ R) is a section of the sphere bundle S(N ⊕ R).
It is a spin embedding of compact spin manifolds.

Proposition 5.49. (Compatibility of the analytical index with sphere bundles).
Let X be compact spin manifold, N → X a spin vector bundle, and let s : X → S(N ⊕ R)
be the section of the sphere bundle described above. Then

ind(X, u) = ind(S(N ⊕ R), s!u) for all u ∈ K(X).

In other words, this result shows that the desired compatibility of the index map with
spin embeddings (5.48) holds for the spin embedding s from X to the sphere bundle

S(N ⊕ R)→ X.

To address how this is related to the compatibility for the embedding f : X ↪→ Y , consider
the commutative diagram of spin embeddings:

Y

X N

S(N ⊕ R)

f

i

s

e

j
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It follows that by the proposition above,

ind(X, u) = ind(S(N ⊕ R), s!u) = ind(S(N ⊕ R), j!(i!u)) for all u ∈ K(X),

while
ind(Y, f!u) = ind(Y, e!(i!u)).

Hence the following result implies ind(X, u) = ind(Y, f!u) and hence the index theorem.

Proposition 5.50. Let O be an open manifold, and let

e : O ↪→ Y and e′ : O ↪→ Y ′

be two open embeddings into compact spin manifolds. Then

ind(Y, e!u) = ind(Y ′, e′!u) for any u ∈ Kc(O).

This is what Lawson and Michelsohn call The Excision Property in their book [LM, p.
248]. They actually state a result for general elliptic operators rather than just twisted Dirac
operators. Consequently, their K-theory elements live in Kc(T

∗X), rather than in K(X);
moreover, theirK-theory elements correspond to the principal symbol class σ(P ) ∈ Kc(T

∗X)
of elliptic operators P on X, rather than the element [E] ∈ K(X) given by a vector bundle
E that is used to form the twisted Dirac operator D(X,E). Note that if X is spin, then
the Thom isomorphism K(X) ∼= Kc(T

∗X) sends [E] ∈ K(X) to the principal symbol class
σ(D(X,E)) ∈ Kc(T

∗X).
We refer to [LM] for a proof of the Excision Property, which uses the theory of pseudo

differential operators.
The proof of Proposition 5.49 require us to show that the index a twisted Dirac operator

on the total space of the sphere bundle S(N ⊕ R) → X is equal to the index of a twisted
Dirac operator on X. In the case where the vector bundle N is trivial, the sphere bundle
S(N ⊕ R) is just the product of X and the sphere Sk, where k = dimN . In that case the
statement follows from the calculation of the index of the relevant twisted Dirac operator on
Sk and the following product formula for the index of Dirac operators.

Proposition 5.51. (Product formula for the index of Dirac operators). Let X1,
X2 be compact spin manifold and Ei → Xi be Z/2-graded vector bundles over Xi. Let
D(Xi, Ei) be the Dirac operator on Xi twisted by Ei, and let D(X1 × X2, p

∗
1E1 ⊗ p∗2E2) be

the Dirac operator on the product X1 ×X2 twisted by the Z/2-graded tensor product bundle
p∗1E1 ⊗ p∗2E2 → X1 ×X2, where pi : X1 ×X2 → Xi is the projection map. Then

ind D(X1 ×X2, p
∗
1E1 ⊗ p∗2E2) = ind D(X1, E1)) · ind D(X2, E2). (5.52)
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Proof. Let Si → Xi be the Z/2-graded spinor bundle on Xi and Fi := Si⊗Ei the Z/2-graded
tensor product. The Dirac operator D := D(X1×X2, p

∗
1E1⊗p∗2E2) acts on the section space

Γ(p∗1F1⊗ p∗2F2). Unwinding the definition of the Dirac operator, it is not hard to check that
the following diagram is commutative:

Γ(F1)⊗ Γ(F2) Γ(F1)⊗ Γ(F2)

Γ(p∗1F1 ⊗ p∗2F2) Γ(p∗1F1 ⊗ p∗2F2)

D1⊗id + id⊗D2

D

Here the vertical maps are given by multiplying sections. In more detail, if ψi : Xi → Fi is
a section of Fi, then the section

ψ1 ⊗ ψ2 ∈ Γ(p∗1F1 ⊗ p∗2F2)

is defined by

(ψ1 ⊗ ψ2)(x1, x2) := ψ1(x1)⊗ ψ2(x2) ∈ (F1)x1 ⊗ (F2)x2

The vertical maps are not literally isomorphisms, but they are injective maps with dense
images, and hence the kernels of the horizontal maps can be identified.

D2 = (D1 ⊗ id + id⊗D2)2

= (D1 ⊗ id)2 + (D1 ⊗ id)(id⊗D2) + (id⊗D2)(D1 ⊗ id) + (id⊗D2)2

= D2
1 ⊗ id +D1 ⊗D2 −D1 ⊗D2 + id⊗D2

2

= D2
1 ⊗ id + id⊗D2

2

(5.53)

Here the crucial minus sign in the third line above is due to the Koszul sign rule in the
definition of the tensor product f ⊗ g of maps f : V → V ′ and g : W → W ′ between
Z/2-graded vector spaces. If f , g, and v ∈ V , w ∈ W are homogenous, then this is defined
by

(f ⊗ g)(v ⊗ w) := (−1)|g||v|f(v)⊗ g(w).

The general case is handled by decomposing all participants as sums of homogenous elements.
This convention implies that if f ′ : V ′ → V ′′ and g′ : W ′ → W ′′ are homogeneous maps, then
the composition is given by

(f ′ ⊗ g′) ◦ (f ⊗ g) = (−1)|g
′||f |(f ′ ◦ f)⊗ (g′ ⊗ g).

In particular, since D1, D2 are odd operators, we have

(id⊗D2)(D1 ⊗ id) = −D1 ⊗D2.
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To calculate the kernel of D2 using (5.53), we note that the operators Di are self-adjoint,
and hence all its eigenvalues are real. In particular, the eigenvalues of D2

i are all ≥ 0. Hence
by (5.53)

kerD2 = ker(D2
1 ⊗ id) ∩ ker(id⊗D2

2) = (kerD2
1)⊗ (kerD2

2).

In particular,
sdim kerD2 = (sdim kerD2

1) · (sdim kerD2
2),

which proves the multiplicativity of the index of Dirac operators.

The proof of Proposition 5.49 in the general case, where the vector bundle N → X
is non-trivial, requires a generalization of the product formula 5.52 from products X × Y
to twisted products, i.e., fiber bundles over X with fiber Y . More precisely, we need fiber
bundles with compact structure group G. This means that G acts on the fiber Y , and there
is a principal G-bundle P → X, such that the fiber bundle is associated to the principal
G-bundle P → X, i.e., it is of the form

π : P ×G Y → X.

As in the construction of a vector bundle associated to a principal bundle P and a G-action
on a vector space V in section 2.2, the total space P ×G Y is the quotient (P ×Y )/ ∼, where
the equivalence relation is given by (pg, y) ∼ (p, gy) for p ∈ P , g ∈ G, y ∈ Y .

Furthermore, we require that:

• Y is a Riemannian manifold on which G acts by isometries; this is simple to accomplish
by choosing an arbitrary Riemannian metric h on Y . While an element g ∈ G might
not leave the metric h fixed, i.e., the pullback g∗h of h via the diffeomorphism affected
by g might not be equal to h, by averaging the metrics g∗h over the elements g of the
compact group G, we can produce a G-equivariant metric.

• Y is equipped with a G-equivariant spin structure. We won’t give the precise definition
of this, but just mention that this assumption guarantees that the associated spinor
bundle S → Y is G-equivariant, and that the Dirac operator D : Γ(S) → Γ(S) is
G-equivariant. More generally, if F → Y is a G-equivariant Z/2-graded vector bundle
with equivariant connection, then the twisted Dirac operator D(Y, F ) is G-equivariant.

In particular, with these assumptions the kernel of D(Y, F ) is a representation of G. More
precisely, the G-action preserves the splitting

kerD(Y, F ) = (kerD(Y, F ))+ ⊕ (kerD(Y, F ))−

of the kernel into its even and odd subspace. We recall that the representation ring of G,
denoted R(G) is the group completion of the abelian monoid given by the isomorphism
classes of finite dimensional representations of G under the direct sum.
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Definition 5.54. The equivariant index of the Dirac operator D(Y, F ) is defined by

indG D(Y, F ) := (kerD(Y, F ))+ − (kerD(Y, F ))− ∈ R(G).

If G is trivial, then a G-representation is just a finite dimensional vector space, and
the monoid of finite dimensional representations is isomorphic to N, with the isomorphism
determined by mapping a vector space V to dimV ∈ N. It follows that R(G) ∼= Z, and the
definition of the equivariant index is precisely our description of

ind D(Y, F ) = dim(kerD(Y, F ))+ − dim(kerD(Y, F ))−.

The assumption that Y is equipped with a G-equivariant spin structure also guarantees
that a spin structure on X induces a spin structure on the twisted product P ×G Y , the
total space of the fiber bundle π : P ×G Y → X. In particular, there is an associated Dirac
operator D(P ×G Y ).

In the case of the product X × Y , we considered the Dirac operator on X × Y twisted
by the tensor product of a bundle pulled back from X and another pulled back from Y .
Similarly, in the case of the fiber bundle π : P ×G Y → X, we will twist the Dirac operator
on P ×G Y by the tensor product of two types of (complex, Z/2-graded) vector bundles over
P ×G Y :

• a vector bundle E → X can be pulled back via the projection map π to yield the vector
bundle π∗E.

• A G-equivariant vector bundle F → Y produces via the associated bundle construction
a vector bundle

P ×G F −→ P ×G X.

Proposition 5.55. (Twisted Product formula for the index of Dirac operators).
Let D(P×GY, π∗E⊗(P×GF )) be the Dirac operator on P×GY twisted by the tensor product
of the vector bundles π∗E and P ×G F described above. Then the index of this twisted Dirac
operator is given by the formula

ind D(P ×G Y, π∗E ⊗ (P ×G F )) = ind D(X,E ⊗ (P ×G indG D(Y, F ))).

The twisted product formula for the index is then applied to prove Proposition 5.49 by
observing that the sphere bundle S(N ⊕ R) −→ X is of the form P ×G Y . We recall the
N → X is a real vector bundle of dimension 2k equipped with a spin structure. Let P → X
be the principal Spin(2k)-bundle determined by the spin structure on N . Let Y = S(R2k⊕R)
be the sphere of dimension 2k, equipped with the action of Spin(2k) given by the double
covering map Spin(2k) → SO(2k) and the obvious action of SO(2k) on Y = S(R2k ⊕ R).
Then is it easy to see that there is an isomorphism

P ×Spin(2k S(R2k ⊕ R) ∼= S(N ⊕ R)
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of fiber bundles over X. Moreover, the K-theory element s![E] ∈ K(S(N ⊕ R)) can be
represented by the vector bundle

π∗E ⊗ (P ×Spin(2k) SY ),

where SY is the spinor bundle on the sphere Y = S2k.
Then the crucial, but not difficult calculation is that of the G-equivariant index of the

twisted Dirac operator D(Y, SY ) for the action of G = Spin(2k) on the sphere Y = S2k. It
turns out that indG D(Y, SY ) = 1 ∈ R(G). Since the unit in the representation ring is the
trivial representation of dimension 1, the associated vector bundle P ×G indG(Y, SY ) is just
the trivial line bundle over X. Hence Proposition 5.55 implies

indD(S(N ⊕ R), s![E]) = indD(X,E),

which proves Proposition 5.49.

6 The equivariant Index Theorem and the Witten genus

This section is a quick survey on equivariant index theory and the Witten genus, which
should be thought of the equivariant index of the Dirac operator on the free loop space LX,
the space of maps from S1 to a manifold X.

6.1 The equivariant index theorem

Let X be closed Riemannian spin manifold of dimension n = 2k. We recall that the index
of the Dirac operator D on X is given by

indD := dim(kerD)+ − dim(kerD)−,

where (kerD)± is the even (resp. odd) part of the kernel of D, which is a Z/2-graded
vector space. Let G be a compact Lie group which acts on X by spin-structure preserving
isometries (which means that the G-action on the oriented frame bundle SO(X) – given by
the differential – comes equipped with a lift to the double covering Spin(X)→ SO(X)). This
in turn implies that G acts on the spinor bundle S and its space of sections Γ(S). Moreover,
this G-action on Γ(S) commutes with D, and hence kerD and its subspaces (kerD)± are
representations of G.

Definition 6.1. The G-equivariant index of the Dirac operator on X is given by

indG(g,D(X)) := tr(g, (kerD)+)− tr(g, tr(kerD)−) ∈ C for g ∈ G
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Here we denote by tr(g, V ) for a representation ρ : G → Aut(V ) the trace of ρ(g) for
g ∈ G. We note that the equivariant index of D is a generalization of the index of D, since
tr(e, V ) = dimV for the identity element e ∈ G, and hence indG(e,D(X)) = ind D.

The equivariant index theorem, due to Atiyah and Singer [ASIII, Lefschetz Theorem 3.9]
expresses the equivariant index indG(g,D) in terms of data associated to the fixed point set

Xg = {x ∈ X | gx = x}.

Their theorem is actually much more general, not just for the Dirac operator, but for any
G-equivariant elliptic operator (in fact, even more generally, for generalizations of elliptic
operators called “elliptic complexes”). A reference for the explicit index formula for the
Dirac operator is [AH, section 1.4(5), 1.4(8)]. We will more closely follow the presentation in
Witten’s paper [Wi], and restrict to G = S1, which is the case of interest in the next section
on the Witten genus.

In this case, the equivariant index indS1(q,D) for any q ∈ S1 can be calculated in terms
of data associated to the full fixed point set

XS1

= {x ∈ X | qx = x for all q ∈ S1}.

The simplest situation is where XS1
is discrete, i.e., consists of finitely many fixed points.

In that case, the equivariant index theorem takes the form

indS1(q,D) =
∑
x∈XS1

Fx(q), (6.2)

where Fx(q) ∈ C is a number which is determined by the action of S1 on the tangent space
TxX. We observe that no tangent vector v ∈ TxX is fixed under the action of S1. Otherwise
the geodesic through x with tangent vector v would also have to be point-wise fixed under
the S1-action, contradicting our assumption that x is an isolated fixed point.

6.1.1 Representations of S1

To describe Fx(q) for q ∈ S1, it will be useful to recall a little bit of the representation theory
of S1. We recall that there are three equivalent ways to think about a (finite dimensional)
complex representation of S1:

(1) a homomorphism ρ : S1 → Aut(V ) to the automorphism group of a complex vector space
V ;

(2) a complex vector space V equipped with a Z-grading, i.e., a direct sum decomposition
V =

⊕
`∈Z V` of V as a sum of subspaces V` ⊂ V ;
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(3) a Laurent polynomial
∑

`∈Z V`q
` in a formal variable q whose coefficients V` are finite

dimensional complex vector spaces, which are trivial for almost all ` (i.e., this is a finite
sum). Generalizing the notation Z[q, q−1] for Laurent polynomials with coefficients in
Z, we will write VectC[q, q−1] for the collection of Laurent series with values in vector
spaces.

To pass from a homomorphism ρ : S1 → Aut(V ) to a Z-grading on V , let V` ⊂ V be the
subspace of V on which ρ(q) acts by scalar multiplication by q` for q ∈ S1. Conversely,
if V =

⊕
`∈Z V` is a Z-graded complex vector space, a homomorphism ρ : S1 → Aut(V ) is

determined by defining ρ(q)(v) := q`v for v ∈ V`. Clearly the descriptions (2) and (3) are
equivalent, both use just a slightly different syntax to write down a Z-graded vector space.

For a complex S1-representation V , its character is the function S1 → C given by q 7→
tr(q, V ). Using the decomposition V =

⊕
`∈Z V`,

tr(q, V ) =
∑
`∈Z

tr(q, V`) =
∑
`∈Z

dimV`q
`.

Let R(S1) be the complex representation ring of S1, i.e., the group completion of the abelian
monoid given by complex representations of S1 with respect the direct sum of representa-
tions. In other words, an element of R(S1) is represented as a formal difference between
representations. The ring structure on R(S1) is induced by the tensor product of represen-
tations. Writing a representation V as in (3) above as V =

∑
`∈Z V`q

`, the map

dim∗ : R(S1) −→ Z[q, q−1]

V =
∑
`∈Z

V`q
` 7→ tr(q, V ) =

∑
`∈Z

dimV`q
`. (6.3)

is called the graded dimension map or character map.
If S1 acts on a real vector space V , for example the tangent space TxX of an isolated

fixed point, then V can be decomposed in a similar way into subspaces V` as in the complex
case, but more care is needed. For a representation ρ : S1 → Aut(V ) let

P : V −→ V be the operator defined by P :=
d

dθ |θ=0
ρ(eiθ)

For example, if V = C`, then

P =
d

dθ |θ=0
ρ(eiθ) =

d

dθ |θ=0
ei`θ = i`

acts by multiplication by i`. If we regard C as a real vector space with the standard basis,
then P is given by the matrix

ρ(eiθ) =

(
cos `θ − sin `θ
sin `θ cos `θ

)
and hence P =

d

dθ |θ=0
ρ(eiθ) =

(
0 −`
` 0

)
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In particular, P has complex eigenvalues ±i`. For a general real representation V , the
possible complex eigenvalues of P are 0 and pairs ±i` of complex conjugate numbers with
` ∈ Z+ = {1, 2, . . . }. Moreover, if P does not have eigenvalue 0, which is the case of interest
to us, then the following holds.

(i) the real dimension dimR V is even, and there is a basis e1, f1, . . . , ek, fk of V such that
the matrix P has block diagonal form with 2× 2 blocks(

0 −`i
`i 0

)
for i = 1, . . . , k and `i ∈ Z+. In particular, V has a complex structure J : V → V given
by Jei := fi and Jfi = −ei. Then e1, . . . , ek is a basis of V as a complex vector space,
i.e., we have a decomposition of complex vector spaces

V = Ce1 ⊕ · · · ⊕ Cek, (6.4)

and ρ(q) acts on the complex subspace Cei ⊂ V by multiplication by q`i .

(ii) More invariantly, there is a complex structure J on the real vector space V , such that
V as complex vector space of complex dimension k decomposes as the direct sum

V =
⊕
`>0

V` (6.5)

of complex subspaces V` where ρ(q) acts by multiplication by q`. The subspace V` is
equal to the sum

⊕
Cei, where we sum over those indices i for which `i = `.

6.1.2 The equivariant index theorem in the case of isolated fixed points

Theorem 6.6. (The equivariant index theorem for isolated fixed points). Let X be
a closed Riemannian spin manifold of dimension n = 2k. Let S1 act on X by spin structure
preserving isometries with fixed point set XS1

consisting of finitely many points. Then the
equivariant index of the Dirac operator D(X) is given by

indS1(q,D(X)) =
∑
x∈XS1

Fx(q), with Fx(q) = λx

k∏
i=1

q`i/2

1− q`i
∈ C.

Here `1, . . . , `k ∈ Z+ are the positive integers such that ±i`i are the complex eigenvalues
of the operator P for the S1-action on TxX (see (i) above). Moreover, λx ∈ {±1}, where
λx = 1 if and only if the orientation on TxX given by the spin structure on X agrees with the
orientation provided by the complex structure −J on TxX. Here J is the complex structure
on V = TxX determined by the S1-action on V as described above.
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This is the Fixed Point Theorem that Witten in his paper [Wi] states as equation (4),
with the definition of Fx(q) in equation (7). Superficially, his definition of the sign λx looks
different than ours since he compares with the orientation given by the complex structure
J rather than −J . However, his matrix form of P differs from ours by a minus sign. This
has the effect that ρ(q) on the subspace spanned by ei acts by multiplication by q−`i , a
convention I find awkward.

The fixed point contribution Fx(q) can be rewritten in terms of the canonical decom-
position (6.5) of V = TxX, using the fact that dimV` is the cardinality of the index set
I` := #{i | `i = `}:

k∏
i=1

q`i/2

1− q`i
=
∏
`>0

(∏
i∈I`

q`i/2

1− q`i

)

=
∏
`>0

q(`dimV`)/2

(1− q`)dimV`

=

(∏
`>0

q
1
2
`dimV`

)(∏
`>0

1

(1− q`)dimV`

) (6.7)

In general, the fixed point set XS1
consists not just of a finite number of points, but it

can be decomposed as disjoint union

XS1

=
∐
α

XS1

α

of its connected components XS1

α which are all manifold, but possibly of varying dimension.
The equivariant Index Theorem is the statement

indS1(q,D) =
∑
α

Fα(q),

where the summand Fα(q) can be expressed in terms of the component XS1

α of the fixed
point set and its equivariant normal bundle N . In order to write down the explicit formula
for Fα(q) we will again proceed by first decomposing the equivariant normal bundle N .

The S1-action on X induces an action of S1 on the normal bundle N . In particular, the
fiber Nx is a representation of S1 for each x ∈ XS1

α . The same argument as in the isolated
fixed point case shows that no non-zero vector v ∈ Nx is fixed by S1, and hence Nx has a
complex structure and a decomposition (6.5) into eigenspaces of the operator P . This can
be done simultaneously in all fibers of N and leads to a complex structure on N , as well as
a decomposition

N =
⊕
`>0

N` (6.8)



6 THE EQUIVARIANT INDEX THEOREM AND THE WITTEN GENUS 131

of N as a sum of complex subbundles N` where q ∈ S1 acts by multiplication by q`.
The definition of Fα(q) is a generalization of the expression Fx(q) for the case of an

isolated fixed point x. This involves replacing the complex vector spaces V` by the complex
vector bundles N`. Writing down the generalization of formula (6.7) requires to recognize
the two factors in that formula as graded dimensions of suitable Z-graded vector spaces from
the representation V , which are constructed as determinant and total symmetric power,
respectively.

6.1.3 The determinant construction

Let V be a vector space of dimension n. Then the determinant line is the 1-dimensional
vector space

Det(V ) := Λn(V ).

This is a functorial construction, and if f : V → V is a linear map, the induced map
Det(V ) → Det(V ) is multiplication by the scalar det(f), the usual determinant of f . This
construction is exponential in the sense that for vector spaces V , W , there is a natural
isomorphism

Det(V ⊕W ) ∼= Det(V )⊗Det(W ).

By functoriality, a S1-action on V induces an S1-action on Det(V ), and hence the determi-
nant line construction induces a map

Det : R(S1) −→ R(S1) V 7→ Det(V ).

For example, let V be a complex vector space, and let V q` ∈ R(S1) be the representation
where q ∈ S1 acts on V by multiplication by q`. Then q ∈ S1 acts on Det(V ) = Λn(V ) by
multiplication by q`n. In other words,

Det(V q`) = Det(V )q`dimV

More generally, for a representation V =
∑

`>0 V`q
` ∈ R(S1),

Det(V ) =
⊗
`

Det(V`q
`) =

⊗
`

(
Det(V`)q

`dimV`
)

=

(⊗
`

Det(V`)

)∏
`>0

q`dimV` . (6.9)

Since dim Det(V`) = 1, the graded dimension of this representation (see (6.3)) is given by

dim∗(Det(V )) =
∏
`

q`dimV` . (6.10)

We notice that this is the square of the first factor of the expression (6.7) for Fx(q). Hence
the first factor should be thought of as

√
Det(V ); we will discuss later how to make sense of

this.
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6.1.4 The symmetric power construction

For a complex vector space V , let SkV be the k-th symmetric power of V . For a finite
dimensional vector space of dimension ≥ 1, the total symmetric power

S(V ) := S0V ⊕ S1V ⊕ S2V ⊕ . . .

is infinite dimensional (unlike the total exterior power of V ). So for many purposes, it it
more useful to assemble the symmetric powers of V in a formal power series

St(V ) := S0V + S1V t+ S2V t2 + . . . , (6.11)

in a formal variable t, all of whose coefficients are are finite dimensional vector spaces. This
is an exponential construction in the sense that for vector spaces V , W

St(V ⊕W ) = St(V )⊗ St(W ),

where the tensor product on the right is defined by the usual multiplication of powerseries,
using the tensor product to multiply the vector space coefficients.

The construction St is useful for symmetric powers of S1-representations. Let V = V`q
`

be the S1-representation given by multiplication by q` on the complex vector space V`. Then
by functoriality, S1 acts on the symmetric power Sk(V`q

`); as a vector space this is just SkV`
with q ∈ S1 acting on it by multiplication by q`k. In other words,

SkV = Sk(V`q
`) = Sk(V`)q

`k,

and hence as a representation, the total symmetric power S(V ) has the form

S(V ) =
⊕
k≥0

SkV =
⊕
k≥0

Sk(V`)(q
`)k

= S0(V`) + S1(V`)q
` + S2(V`)(q

`)2 + S3(V`)(q
`)3 + . . .

= Sq`(V`),

where Sq`(V`) is the formal power series (6.11), with q` substituted for t. This shows that
although the total symmetric power is infinite dimensional, each isotypical component of
the represenation S(V ) is finite dimensional provided ` 6= 0. Moreover, for ` > 0, the total
symmetric power is a powerseries in q. More generally, this is the case for any representation
V of the form V =

⊕
`>0 V`q

`:

S(V ) =
⊗
`>0

S(V`q
`) =

⊗
`>0

Sq`(V`). (6.12)
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Our next goal is to calculate the graded dimension dim∗ S(V ) of the total symmetric
power of an S1-representation V of the form V =

⊕
`>0 V`q

`. In the simple case V = C`

dim∗(S(Cq`)) = dim∗
(
S0(C) + S1(C)q` + S2(C)q2` + S3(C)q3` + . . .

)
= 1 + q` + q2` + q3` + · · · = 1

1− q`
.

and hence if dimV` = n`

dim∗(S(V`q
`)) = dim∗(S(Cq` ⊕ · · · ⊕ Cq`︸ ︷︷ ︸

n`

)) =
1

(1− q`)n`

It follows that for V =
⊕

`>0 V`q
`

dim∗(S(V )) = dim∗(
⊗
`>0

S(V`q
`)) =

∏
`>0

1

(1− q`)n`
(6.13)

which we recognize as the second factor in the expression (6.7) for Fx(q).

6.1.5 The equivariant index theorem

Putting all of this together, we end up with a more conceptual way of writing the contribution
Fx(q) of an isolated fixed point x ∈ XS1

to the equivariant index in the Fixed Point Formula
6.6:

Fx(q) = λx dim∗(
√

Det(TxX)) dim∗(S(TxX)). (6.14)

The point of this rewriting is that TxX can be thought of as the normal bundle of the fixed
point x considered as a submanifold of X. So the analog of TxX for a fixed point component
XS1

α ⊂ X is its normal bundle N . The S1-action on N gives N the structure of a complex
vector bundle, and a decomposition N =

⊕
`>0N`q

` of N as S1-equivariant vector bundle as
described in (6.8). The determinant line construction and the symmetric power construction
works for equivariant vector bundles the same way as for representations. In more detail,
the latter is given by

S(N) :=
⊗
`>0

S(N`q
`),

where S(N`q
`) := Sq`(N`), and St(V ) for a vector bundle V is the formal power series

St(V ) = S0V + S1V t+ S2V t2 + . . . .

While the definition of Det(N) as equivariant line bundle over X is clear, it is less clear how
to make sense of the square root

√
Det(N). It is helpful to separate the construction of the

line bundle from the question of how S1 acts on it, as in (6.9) for representations by writing

Det(N) = Det(
⊕
`>0

N`q
n`) = Det(N)

∏
`>0

q`n`
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where we write N for the vector bundle N obtained by forgetting about the S1-action. This
shows that if the complex line bundle Det(N) has a square root

√
Det(N), then we can

define √
Det(N) :=

√
Det(N)

∏
`>0

q`n`/2

as an element of VectC(X)[q1/2], i.e., as a polynomial in q1/2 whose coefficients are complex
vector bundles over X (geometrically, this can be interpreted as an action of the double cover
of S1). While Det(N) might not have a square root, the first Chern class of such a square
root is just half of the first Chern class c := c1(Det(N)) ∈ H2(X;Q) and hence we can define

ch(Det(N)) := ec/2 ∈ H∗(X;Q).

Theorem 6.15. (Equivariant index theorem). Let X be a closed Riemannian spin
manifold of dimension n = 2k. Let S1 act on X by spin structure preserving isometries with
fixed point set XS1

=
∐

αX
S1

α . Then the equivariant index of the Dirac operator D(X) is
given by

indS1(q,D(X)) =
∑
α

Fα(q).

Here the summand Fα(q) is determined by the equivariant normal bundle N of the component
XS1

α . In terms of the equivariant decomposition N =
⊕

`>0N`q
` it is given by

Fα(q) = λα〈Â(TX) ch

(√
Det(N)

∏
`>0

q`n`/2S(N)

)
, [XS1

α ]〉

If XS1

α has a spin structure, and the square root of the complex line bundle ∆(N) exists,
Fα(q) can be alternatively expressed as

Fα(q) = λαind(D(XS1

α ),
√

Det(N)
∏
`>0

q`n`/2S(N)). (6.16)

Remark 6.17. Atiyah and Hirzebruch have shown that the equivariant index of the Dirac
operator on a closed spin 2k-manifold with a non-trivial S1-action vanishes [AH]. This does
not mean that explaining the complicated right hand side of the equivariant index theorem
is pointless since it is 0 anyway, since

(i) The proof of the Atiyah-Hirzebruch result starts with this index formula, and is based
on analyzing the behavior of both sides as functions of q. Using the fact that the two
sides represent quite different flavors of functions, they are able to conclude that these
functions must be identically zero.

(ii) Formally applying the equivariant theorem to the Dirac operator on the free loop space
(see next section), that index is often not zero.

(iii) There is a slightly more general equivariant index theorem for twisted Dirac operators
(see e.g. [Wi]); their S1-equivariant indices are generally non-zero.
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6.2 The Witten genus

Let LX = map(S1, X) be the free loops space ofX consisting of the smooth maps γ : S1 → X.
This is an infinite dimensional manifold, with a natural S1-action given by reparametrizing
the loops. The fixed point set LXS1

consists of a the constant loops, which can be identified
with the manifold X itself:

LXS1

= X ⊂ LX.

In order to formally apply the equivariant index theorem 6.15 to the Dirac operator on LX,
we need to determine the equivariant normal bundle N → X of X in LX.

The tangent space TγLX at a loop γ is given by the space of vector fields along the
loop γ which is defined to be the space Γ(γ∗TX) of smooth sections of the pullback bundle
γ∗TX → S1. In particular, if γ is the constant map with image x ∈ X, then

Γ(γ∗TX) = C∞(S1, TxX)

is the space of smooth maps from S1 to TxX. Fourier decomposition of maps S1 → TxX
gives an injective linear map with dense image⊕

`∈Z

(TxX)` −→ C∞(S1, TxX)

which sends (a`)`∈Z to the smooth map f : S1 → TxX given by

f(θ) =
∑
`>0

a` cos i`θ + a0 +
∑
`<0

a` sin i`θ for a` ∈ TxX.

Alternatively, using the embedding TxX ↪→ TxX ⊗ C and rewriting

a` cos `θ + a−` sin `θ = Re((a` − ia−`)(cos `θ + i sin `θ)) = Re((a` − ia−`)e`θ)

we obtain the injective linear map with dense image

TxX ⊕
⊕
`>0

(TxX ⊗ C)` −→ C∞(S1, TxX) = TxLX.

This maps (v`)`>0 ∈
⊕

`>0(TxX ⊗ C)` to the map f(θ) = Re(
∑

`>0(v`e
`θ). This map is

S1-equivariant, where q ∈ S1 acts trivially on TxX, by multiplication by q` on the summand
(TxX ⊗ C)`, and by reparametrization on the mapping space C∞(S1, X). The summand
TxX on the left corresponds to the tangent space of the fixed point set X = LXS1

, and
hence the fiber Nx of the normal bundle N corresponds to

⊕
`>0(TxX ⊗C)`. It follows that

this procedure produces an isomorphism of equivariant vector bundles⊕
`>0

N`q
` ∼= N with N` = TX ⊗ C for all ` > 0.

Formally applying the equivariant index theorem 6.15 to the Dirac operator D(LX) on the
free loop space LX, we analyse the terms appearing on the right hand side of (6.16)
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1. The sign λα will be ignored here, since the fixed point set has only one component, and
so it only leads to an overall sign (more than one component would require a careful
consideration of the relative sign).

2. Det(N`) = Det(TX ⊗ C) = Det(TX) ⊗ C, where Det(TX) is the determinant line
bundle of the real vector bundle TX. This real line bundle is the orientation line
bundle of X, and hence is trivial since X has a spin structure. It follows that

Det(N) =
⊗
`>0

Det(N`)

is trivial.

3. n` = dimCN` = dimX = n, and hence∏
`>0

q`n`/2 =
∏
`>0

q`n/2 = q
n
2

∑
`>0 ` = q−

n
24

Here the last equality comes from interpreting the obviously diverging sum
∑

`>0 ` as
− 1

12
via “zeta regularization”. We recall that the ζ-function ζ(s) is defined for s ∈ C

with sufficiently large real part by the convergent series

ζ(s) :=
∑
`>0

1

`s
.

It can be analytically continued to give the value − 1
12

at s = −1. Formally, the value
of ζ(s) at s = −1 is the divergent sum

∑
`>0 `.

4. S(N) =
⊗

`>0 Sq`(N`) =
⊗

`>0 Sq`(TX ⊗ C).

Putting all these terms together, we obtain the following formal expression for the equivariant
index:

indS1(q,D(LX)) = ind(D(X), q−n/24
⊗
`>0

Sq`(TX ⊗ C)). (6.18)

It is useful to rewrite this expression in a different way. To explain why, let us look at the
map

S : K(X)→ K(X)[[q]] given by V 7→
⊗
`>0

Sq`(V ).

This map is exponentional in the obvious sense; topologists would call it an exponential
characteristic class with values in the generalized cohomology theory K( )[[q]], known as
Tate K-theory. However, unlike the exponential characteristic classes we looked at (e.g., the
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Â-class, the Todd class or the L-class), this class is not stable, i.e., applied to a trivial bundle
it does not give the unit 1 ∈ K(X)[[q]]. For the trivial line bundle C we obtain

Sq`(C) = S0C + S1Cq` + S2Cq2` + · · · = 1 + q` + q2` + · · · = 1

1− q`
∈ K(X)[[q]]

and hence

S(C) =
⊗
`>0

Sq`(C) =
∏
`>0

1

1− q`

A stable operation can be manufactured by replacing S(V ) for a vector bundle of dimension
n by S(V − Cn) := S(V )S(Cn)−1. Rewriting the right hand side of (6.18) in this way we
obtain

indS1(q,D(LX)) = q−n/24(
∏
`>0

1

(1− q`)
)nind(D(X),

⊗
`>0

Sq`(TX ⊗ C− Cn))

=
ind(D(X),

⊗
`>0 Sq`(TX ⊗ C− Cn))

η(q)n
.

Here η(q) := q1/24
∏

`>0(1− q`) is the Dedekind η-function.

Definition 6.19. For a closed spin n-manifold X the power series

Wit(X) := ind(D(X),
⊗
`>0

Sq`(TX ⊗ C− Cn)) ∈ Z[[q]]

is the Witten genus of X.

We note that the expression
⊗

`>0 Sq`(TX ⊗ C− Cn) is a power series⊗
`>0

Sq`(TX ⊗ C− Cn) = V0 + V1q + V2q
2 + . . .

in q whose coefficients Vi are complex vector bundles over X which are built from the com-
plexified tangent bundle TX⊗C and its symmetric powers. More accurately, the coefficients
are differences of vector bundles, i.e., elements of K(X). Explicitly,⊗

`>0

Sq`(TX ⊗ C− Cn)

= C + (TX ⊗ C− Cn)q +

(
S2TXC − (n− 1)TXC +

n(n− 3)

2
C
)
q2 + . . .

Exercise 6.20. Prove the above statement.
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The Witten genus is then the power series

Wit(X) =
∑
k

ind(D(X, Vk))q
k

whose coefficient of qk is the index of the Dirac operator on X twisted by Vk; alternatively,
using the Index Theorem 3.2,

ind(D(X, Vk)) = 〈Â(TX) ch(Vk), [X]〉.

In particular, the constant term of the Witten genus of X is Â(X), the Â-genus of X, and

the coefficient of q is 〈Â(TX) ch(TX ⊗ C− Cn), [X]〉.
This shows that the definition of the Witten genus does not necessarily require a spin

structure on X. An orientation on X is sufficient to have a fundamental homology class [X],
and hence to be able to define the Witten genus as the power series

Wit(X) :=
∞∑
k=0

〈Â(TX) ch(Vk), [X]〉 qk.

However, if X is not spin, the coefficients of this power series in general will only be rational
numbers, since Â(TX) ch(Vk) is a rational cohomology class whose evaluation on the funda-

mental class in general only yields a rational number, not an integer; e.g., Â(CP2) = −1/8.
If X is spin, this number by the index theorem is equal to the index of the Dirac operator
twisted by Vk, which then forces it to be an integer.

The Witten genus Wit(X) ∈ Z[[q]] has a very interesting property, it is a modular form of
weight 1

2
dimX, provided that the tangent bundle of X restricted to the 4-skeleton is trivial.

This property is very unexpected from the way it was defined above, but it was conjectured
by Witten based on arguments based on the physics interpretation of the Witten genus as
the “partition function of a 2-dimensional field theory”, and proved by Zagier [Za].

Definition 6.21. Let h be the upper half plane consisting of all points τ ∈ C with positive
imaginary part. A function f : h→ C is a modular form of weight n if the following conditions
hold.

holomorphicity: f is holomorphic;

equivariance:

f(
aτ + b

cτ + d
) = (cτ + d)nf(τ) for all

(
a b
c d

)
∈ SL2(Z). (6.22)

In particular f(τ + 1) = f(τ) for all τ ∈ h, and hence f factors in the form

h h/Z B× C.∼=
g F
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Here B× is the open punctured 2-disk {q ∈ C | 0 < |q| < 1}, and the biholomorphic
map g sends [τ ] ∈ h/Z to e2πiτ ∈ B× (biholomorphic means that g and its inverse are
holomorphic).

holomorphicity at ∞: Via the biholomorphic map g, the “point at ∞” of h corresponds
to the origin of the punctured disk B×, and consequently, holomorphicity at ∞ for
f amounts to the requirement that the holomorphic function F : B× → C on the
punctured disk B× extends to a holomorphic function on the disk. More explicitly, in
terms of the Laurent expansion

F (q) =
∑
k∈Z

akq
k, (6.23)

of F , this is the requirement ak = 0 for k < 0.

The expansion (6.23) is called the q-expansion of f .

Remark 6.24. The above is the classical definition of modular forms. It is ok for calcu-
lations, but it does a great job to hide any conceptual context for this definition! (Where
does h come from, why do we consider that specific action of SL2(Z) on h, and maybe most
mystifying, where does the funny factor (cτ + d)n in the equivariance requirement come
from?). Here is an attempt to give a little bit of conceptual backdrop. A point τ ∈ C
determines a lattice in C given by Zτ + Z1 ⊂ C. Modding out by the lattice we obtain
a torus Tτ := C/Zτ + Z1. This is a complex 1-manifold via the complex structure on Tτ
induced from C. In fact, every compact complex 1-manifold with Euler characteristic 0 is
biholomophically equivalent to Tτ for some τ ∈ h. In other words, the map

h −→M :=

{
compact complex 1-manifolds

of Euler characteristic 0

}
/biholomorphic equivalence

is surjective. It is not injective; rather for τ, τ ′ ∈ h the corresponding tori Tτ , Tτ ′ are
biholomorphically equivalent if and only if there is some ( a bc d ) ∈ SL2(Z) such that τ ′ = aτ+b

cτ+d
.

In other words, the induced map

SL2(Z)\h −→M

is a bijection, and so the quotient SL2(Z)\h is the moduli space of compact complex 1-manifolds
with Euler characteristic 0.

What about the funny factor (cτ + d)n? Every compact complex 1-manifold Σ has a
canonical complex line Det(Σ) associated to it, defined by

Det(Σ) := Det(Ω1
hol(Σ)∗),
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where Ω1
hol(Σ) is the space of holomorphic 1-forms on Σ, Ω1

hol(Σ)∗ is its dual space, and
Det(Ω1

hol(Σ)∗) is as in section 6.1.3 the top dimensional exterior power of the finite dimen-
sional complex vector space Ω1

hol(Σ)∗. If Σ is a torus, then Ω1
hol(Σ)∗ is 1-dimensional, and

so
Det(Σ) = Ω1

hol(Σ)∗ if Σ has Euler characteristic 0

The determinant lines Det(Tτ ) for τ ∈ h fit together to form a line bundle Det → h whose
fiber over τ ∈ h is Det(Tτ ). In fact, this is an SL2(Z)-equivariant line bundle (a matrix
A ∈ SL2(Z) determines functorially a biholomorphic equivalence Tτ ∼= TAτ and hence an
isomorphism Det(Tτ ) ∼= Det(Tτ ′). From a conceptual point of view, a modular form of weight
n is a section of Det⊗n → h which is holomorphic, SL2(Z)-equivariant and holomorphic at
∞.

How does that relate to the definition of a modular form as a function on h? The line
bundle Det → h has a nowhere vanishing section s, given at τ ∈ h by evaluation on the
holomorphic 1-form on Tτ = C/Zτ + Z1 whose pullback to C is the holomorphic 1-form
dz ∈ Ω1

hol(C). Using this section s, functions on h can be interpreted as sections of Det⊗n

(by multiplying with s). Since s is not an equivariant section SLn(Z)-equivariant sections
of Det⊗n do not correspond to equivariant functions on h, but rather to functions with the
funny transformation property (6.22).

7 Solutions to some exercises

Proof of Lemma 1.32. Let X be a riemannian manifold of dimension n = 2`. The homo-
morphism τ : Ω∗(X)→ Ω∗(X) is defined by

τα := ik(k−1)+` ? α for α ∈ Ωk(X).

To prove that τ is an involution, we calculate:

τ 2(α) =τ
(
ik(k−1)+` ? α

)
=i(n−k)(n−k−1)+`ik(k−1)+` ?2 α

=i(n−k)(n−k−1)+k(k−1)+2`(−1)k(n−k)α

=i(n−k)(n−k−1)+k(k−1)+n+2k(n−k)α

So it suffice to calculate the exponent modulo 4:

(n− k)(n− k − 1) + k(k − 1) + n+ 2k(n− k)

=(n− k)2 − (n− k) + k2 − k + n+ 2kn− 2k

=n2 − 2nk + k2 − n+ k + k2 − k + n+ 2kn− 2k2

=n2
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This is congruent 0 modulo 4 since n is even.
To show that τ anti-commutes with D = d+ d∗, we note that for n even the formulas for

d∗α and ?2α simplify to

d∗α = − ? d ? ?2α = (−1)kα for α ∈ Ωk(X).

Then

τ(d+ d∗)α =τdα− τ ? d ? α
=i(k+1)k+` ? dα− i(k−1)(k−2)+` ? ?d ? α

=ik
2+k+` ? dα− ik2−3k+2+`(−1)n−k+1d ? α

=ik
2+k+` ? dα− ik2+k+`i2(−1)n−k+1d ? α

=ik
2+k+`

(
?dα− (−1)kd ? α

)
(d+ d∗)τα =(d− ?d?)(ik(k−1)+` ? α

=ik
2−k+`

(
d ? α− (−1)k ? dα

)
=ik

2+k+`(−1)k
(
d ? α− (−1)k ? dα

)
=ik

2+k+`
(
(−1)kd ? α− ?dα

)
This proves that τ and d+ d∗ anti-commute.

To describe the map i! in the middle row, we note that for any compact subset K ⊂ V ,
the inclusion i : V ↪→ Rn+k gives a map of pairs i : (V, V ⊂ K) → (Rn+1,Rn+1 ⊂ K). The
induced map in cohomology

i∗ : H∗(Rn+1,Rn+1 \K) −→ H∗(V, V \K)

is an isomorphism by excision. Then i! is the composition

H∗c (V ) = lim−→
K ⊂ V compact

H∗(V, V \K) lim−→
K ⊂ V compact

H∗(Rn+k,Rn+k \K)

lim−→
L ⊂ Rn+k compact

H∗(Rn+k,Rn+k \ L) = H∗c (Rn+k)

(i∗)−1
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