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1 Pointset Topology

1.1 Metric spaces
We recall that a map f: R™ — R" between Euclidean spaces is continuous if and only if

VeeX Ve>0 3F9>0 YyeX dz,y) <d=d(f(z),f(y)) <e, (1.1)

where

d(ﬂf,y) = ||$_y|’ = \/(‘Tl —91)2—1-—!— (mn—yn)2 - RZO

is the Fuclidean distance between two points z,y in R"™.
Example 1.2. (Examples of continuous maps.)

1. The addition map a: R? - R, z = (21, 22) — =1 + T2;

2. The multiplication map m: R? — R, x = (z1, 7o) = 71T2;

The proofs that these maps are continuous are simple estimates that you probably remember
from calculus. Since the continuity of all the maps we’ll look at in these notes is proved by
expressing them in terms of the maps a and m, we include the proofs of continuity of a and
m for completeness.
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Proof. To prove that the addition map a is continuous, suppose x = (1, z2) € R* and € > 0
are given. We claim that for § := €/2 and y = (y1,y2) € R? with d(z,y) < § we have
d(a(x),a(y)) < € and hence a is a continuous function. To prove the claim, we note that

d(z,y) = V/]w1 — 12 + |23 — yof?
and hence |x1 — y1| < d(z,y), |1 — 1| < d(x,y). It follows that
d(a(z),a(y)) = la(z) —a(y)| = |v1 + 22— y1 —yo| < |21 = yi] + |22 — 2| < 2d(z,y) <20 =c.
To prove that the multiplication map m is continuous, we claim that for
6 :=min{l,e/(|x1]| + |z2| + 1)}

and y = (y1,y2) € R? with d(z,y) < § we have d(m(x),m(y)) < € and hence m is a
continuous function. The claim follows from the following estimates:

d(m(y), m(z)) = |y1y2 — 2122| = Y192 — T1y2 + T1Y2 — 2179|
< |yiye — z1ye| + |21y — 2122| = |y1 — z1[y2| + |21[|y2 — 22
< d(x,y)(|y2| + |z1]) < d(z,y) (22| + |y2 — 22| + [21])
< d(@,y)(|lza]| + |wo| +1) < O(|zi] + |22 +1) <€

Lemma 1.3. The function d: R" x R" — R has the following properties:
1. d(z,y) = 0 if and only if v = y;
2. d(z,y) = d(y,z) (symmetry);
3. d(z,y) < d(x,z)+d(z,y) (triangle inequality)

Definition 1.4. A metric space is a set X equipped with a map

d:XXX-)RzO

with properties (1)-(3) above. A map f: X — Y between metric spaces X, Y is
continuous if condition ({1.1)) is satisfied.
an isometry if d(f(x), f(y)) = d(x,y) for all z,y € X

Two metric spaces X, Y are homeomorphic (resp. isometric) if there are continuous maps
(resp. isometries) f: X — Y and ¢g: Y — X which are inverses of each other.

Example 1.5. An important class of examples of metric spaces are subsets of R". Here are
particular examples we will be talking about during the semester:
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1. The n-disk D™ := {x € R" | |z] <1} C R™, and D := {x € R" | |z| < r}, the n-disk
of radius r > 0.

The dilation map
D" — D T =TT

is a homeomorphism between D" and D} with inverse given by multiplication by 1/r.
However, these two metric spaces are not isometric for r # 1. To see this, define the
diameter diam(X) of a metric space X by

diam(X) :=sup{d(z,y) | z,y € X} € R5o U {o0}.

For example, diam(D]') = 2r. It is easy to see that if two metric spaces X, Y are
isometric, then their diameters agree. In particular, the disks D' and D), are not
isometric unless r = r’.

2. The n-sphere S™ := {x € R"™ | |x| =1} C R
3. The torus T = {v € R | d(v,C) =r} for 0 < r < 1. Here
C={(z,y,0) |2 +y* =1} CR?

is the unit circle in the zy-plane, and d(v,C) = inf,ec d(v, w) is the distance between
v and C.

4. The general linear group

GL,(R) = {vector space isomorphisms f: R" — R"}
— {(v1,...,v,) | v; € R, det(vy,...,v,) # 0}

= {invertible n X n-matrices} C R" x --- x R" = R
—_—

n

Here we think of (vq,...,v,) as an n x n-matrix with column vectors v;, and the
bijection is the usual one in linear algebra that sends a linear map f: R"™ — R” to the
matrix (f(e1),..., f(e,)) whose column vectors are the images of the standard basis
elements e; € R".

5. The special linear group

SLo(R) = {(v1,...,v,) | v € R", det(vy,...,v,) =1} CR™

6. The orthogonal group
O(n) = {linear isometries f: R" — R"}
= {(v1,...,vn) | v; € R", v;’s are orthonormal} C R"

We recall that a collection of vectors v; € R™ is orthonormal if |v;| = 1 for all ¢, and v;
is perpendicular to v; for i # j.

7. The special orthogonal group
SO(n) = {(v1,...,vy) € O(n) | det(vy,...,v,) =1} C R™
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8. The Stiefel manifold

Vi(R™) = {linear isometries f: R¥ — R™}

= {(v1,...,v) | v; € R", v;’s are orthonormal} C R*"

Example 1.6. The following maps between metric spaces are continuous. While it is pos-
sible to prove their continuity using the definition of continuity, it will be much simpler to
prove their continuity by ‘building’ these maps using compositions and products from the
continuous maps a and m of Example [I.2l We will do this below in Lemma [1.22]

1. Every polynomial function f: R" — R is continuous. We recall that a polynomial
function is of the form f(xy,...,2,) = >, . @iy _a2) - zir for a;,. i € R.

2. Let Mpxn(R) = R"™ be the set of n x n matrices. Then the map
Mysn(R) X Mysen(R) — Moy (R) (A,B)— AB

given by matrix multiplication is continuous. Here we use the fact that a map to the
product M, ,(R) = R™ = R x --- x R is continuous if and only if each component
map is continuous (see Lemma , and each matrix entry of AB is a polynomial
and hence a continuous function of the matrix entries of A and B. Restricting to the
invertible matrices GL,(R) C M,x,(R), we see that the multiplication map

GL,(R) x GL,(R) — GL,(R)
is continuous. The same holds for the subgroups SO(n) C O(n) C GL,(R).

3. The map GL,(R) — GL,(R), A — A~ is continuous (this is a homework problem).
The same statement follows for the subgroups of GL,(R).

The Euclidean metric on R" given by d(x,y) = v/(x1 — y1)% + - + (z, — y,)? for z,y €
R" is not the only reasonable metric on R™. Another metric on R" is given by

n

di(y) =3 o~ uil. (L.7)

=1

The question arises whether it can happen that a map f: R® — R" is continuous with
respect to one of these metrics, but not with respect to the other. To see that this doen’t
happen, it is useful to characterize continuity of a map f: X — Y between metric spaces
X, Y in a way that involves the metrics on X and Y less directly than Definition does.
This alternative characterization will be based on the following notion of “open subsets” of
a metric space.

Definition 1.8. Let X be a metric space. A subset U C X is open if for every point x € U
there is some € > 0 such that B.(z) C U. Here B.(z) = {y € X | d(y,z) < €} is the ball of

radius € around x.
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To illustrate this, lets look at examples of subsets of R™ equipped with the Euclidean
metric. The subset D' = {v € R" | ||v|| < r} C R™ is not open, since for for a point v € D
with ||v|| = r any open ball B.(v) with center v will contain points not in D. By contrast,
the subset B,.(0) C R™ is open, since for any x € B,.(0) the ball Bs(x) of radius § = r — ||z||
is contained in B,(0), since for y € Bs(z) by the triangle inequality we have

d(y,0) < d(y, x) + d(z,0) <0 +||z]| = (r = [[z]]) + [|=[| = 7.

Lemma 1.9. A map f: X — Y between metric spaces is continuous if and only if f~1(V)
1s an open subset of X for every open subset V C Y.

Corollary 1.10. If f: X =Y and g: Y — Z are continuous maps, then so it their compo-
sition go f: X — Z.

Exercise 1.11. (a) Prove Lemma [L.9]

(b) Assume that d, d’ are two metrics on a set X which are equivalent in the sense that
there are constants C,C” > 0 such that d(z,y) < Cd;(z,y) and d;(x,y) < C'd(z,y) for
all z,y € X. Show that a subset U C X is open with respect to d if and only if it is
open with respect to d’.

(c) Show that the Euclidean metric d and the metric (1.7)) on R™ are equivalent. This shows
in particular that a map f: R™ — R" is continuous w.r.t. d if and only if it is continuous
w.r.t. d;.

1.2 Topological spaces

Lemma and Exercise (b) above shows that it is better to define continuity of maps
between metric spaces in terms of the open subsets of these metric space instead of the
original e-d-definition. In fact, we can go one step further, forget about the metric on a set
X altogether, and just consider a collection T of subsets of X that we declare to be “open”.
The next result summarizes the basic properties of open subsets of a metric space X, which
then motivates the restrictions that we wish to put on such collections 7.

Lemma 1.12. Open subsets of a metric space X have the following properties.
(i) X and O are open.

(1) Any union of open sets is open.

(i1i) The intersection of any finite number of open sets is open.

Definition 1.13. A topological space is a set X together with a collection T of subsets of
X, called open sets which are required to satisfy conditions (i), (ii) and (iii) of the lemma
above. The collection T is called a topology on X. The sets in T are called the open sets,
and their complements in X are called closed sets. A subset of X may be neither closed nor
open, either closed or open, or both.

A map f: X — Y between topological spaces X, Y is continuous if the inverse image
f7YV) of every open subset VV C Y is an open subset of X.
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It is easy to see that the composition of continuous maps is again continuous.

Examples of topological spaces.

1. Let X be a metric space, and T the collection of those subsets of X that are unions of
balls B.(x) in X (i.e., the subsets which are open in the sense of Definition [I.8). Then
T is a topology on X, the metric topology.

2. Let X be a set. Then T = {all subsets of X} is a topology, the discrete topology. We
note that any map f: X — Y to a topological space Y is continuous. We will see later
that the only continuous maps R™ — X are the constant maps.

3. Let X be a set. Then T = {0, X'} is a topology, the indiscrete topology.

Sometimes it is convenient to define a topology U on a set X by first describing a smaller
collection B of subsets of X, and then defining U to be those subsets of X that can be
written as unions of subsets belonging to B. We've done this already when defining the
metric topology: Let X be a metric space and let B be the collection of subsets of X of the
form B.(z) := {y € X | d(y,z) < €} (the balls in X). Then the metric topology U on X
consists of those subsets U which are unions of subsets belonging to B.

Lemma 1.14. Let B be a collection of subsets of a set X satisfying the following conditions
1. Every point x € X belongs to some subset B € B.

2. If B1,By € B, then for every x € By N By there is some B € B with x € B and
B C B; N Bs.

Then T := {unions of subsets belonging to B} is a topology on X.

Definition 1.15. If the above conditions are satisfied, we call the collection B is called a
basis for the topology T or we say that B generates the topology T.

It is easy to check that the collection of balls in a metric space satisfies the above condi-
tions and hence the collection of open subsets is a topology as claimed by Lemma [1.12]

1.3 Constructions with topological spaces
1.3.1 Subspace topology
Definition 1.16. Let X be a topological space, and A C X a subset. Then

T={ANU|U c X}

open
is a topology on A called the subspace topology.

Lemma 1.17. Let X be a metric space and A C X. Then the metric topology on A agrees
with the subspace topology on A (as a subset of X equipped with the metric topology).

Lemma 1.18. Let X, Y be topological spaces and let A be a subset of X equipped with the
subspace topology. Then the inclusion map i: A — X s continuous and a map f:Y — A
1s continuous if and only if the composition io f:Y — X is continuous.
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1.3.2 Product topology

Definition 1.19. The product topology on the Cartesian product X x Y = {(z,y) | z €
X, y € Y} of topological spaces X, Y is the topology with basis

B={UxV|U Cc X,V C Y}

open open

The collection B obviously satisfies property (1) of a basis; property (2) holds since (U x
VINWU' x V') =UnNU") x (VNV’). We note that the collection B is not a topology since
the union of U x V and U’ x V" is typically not a Cartesian product (e.g., draw a picture for
the case where X =Y =R and U,U’, V, V' are open intervals).

Lemma 1.20. The product topology on R™ x R™ (with each factor equipped with the metric
topology) agrees with the metric topology on R™" = R™ x R".

Proof: homework.

Lemma 1.21. Let X, Y], Y5 be topological spaces. Then the projection maps p;: Y1 XYy — Y]
1s continuous and a map f: X — Y X Ys is continuous if and only if the component maps

X -y x v, e,
are continuous for i =1, 2.

Proof: homework

Lemma 1.22. 1. Let X be a topological space and let f,g: X — R be continuous maps.
Then f+ g and f - g continuous maps from X to R. If g(x) # 0 for all x € X, then
also f/g is continuous.

2. Any polynomial function f: R™ — R is continuous.
3. The multiplication map p: GL,(R) x GL,(R) — GL,(R) is continuous.

Proof. To prove part (1) we note that the map f + ¢g: X — R can be factored in the form

XY RxR -5 R

The map f X g is continuous by Lemma [1.21] since its component maps f, g are continuous;
the map a is continuous by Example [1.2] and hence the composition f + ¢ is continuous.
The argument for f - ¢ is the same, with a replaced by m. To prove that f/g is continuous,
we factor it in the form

(Iop2)

X— 9 papx U po g M R

Y

where R* = {t € R | t # 0}, p; (resp. p2) is the projection to the first (resp. second) factor
of R x R*, and I: R* — RX is the inversion map t — t~!. By Lemma the p;’s are
continuous, in calculus we learned that I is continuous, and hence again by Lemma the
map p; X (I o py) is continuous.
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To prove part (2), we note that the constant map R” — R, =z = (z1,...,x,) — a is
obviously continuous, and that the projection map p;: R" — R, xz = (x1,...,2,) — x;
is continuous by Lemma m Hence by part (1) of this lemma, the monomial function
x + ax’' - - 2! is continuous. Any polynomial function is a sum of monomial functions and
hence continuous.

For the proof of (3), let M,,,(R) = R" be the set of n x n matrices and let

p: Myn(R) X Myun(R) — My, (R) (A,B) — AB

be the map given by matrix multiplication. By Lemma the map p is continuous if and
only if the composition

Mpsn(R) X My (R) =25 My n(R) 225 R

is continuous for all 1 <+¢,7 < n, where p;; is the projection map that sends a matrix A to

its entry A;; € R. Since the p;;(1(A, B)) = (A - B);; is a polynomial in the entries of the

matrices A and B, this is a continuous map by part (2) and hence p is continuous.
Restricting p to invertible matrices, we obtain the multiplication map

p: GLy(R) x GL,(R) — GL,(R)

that we want to show is continuous. We will argue that in general if f: X — Y is a
continuous map with f(A) C B for subsets A C X, B C Y, then the restriction fla: A — B
is continuous. To prove this, consider the commutative diagram

AoB

X —Y

fla

where i, 7 are the obvious inclusion maps. These inclusion maps are continuous w.r.t. the
subspace topology on A, B by Lemma [I.18 The continuity of f and ¢ implies the continuity
of foi=jo fl4 which again by Lemma implies the continuity of f4. O

1.3.3 Quotient topology.

Definition 1.23. Let X be a topological space and let ~ be an equivalence relation on X.
We denote by X/ ~ be the set of equivalence classes and by

p: X = X/~ x — [z]

be the projection map that sends a point x € X to its equivalence class [z]. The quotient
topology on X/ ~ is given by the collection of subsets

U={UC X/ ~|p }U) is an open subset of X}.

The set X/ ~ equipped with the quotient topology is called the quotient space.
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The quotient topology is often used to construct a topology on a set Y which is not a
subset of some Euclidean space R", or for which it is not clear how to construct a metric. If
there is a surjective map

p: X —Y

from a topological space X, then Y can be identified with the quotient space X/ ~, where the
equivalence relation is given by = ~ 2’ if and only if p(z) = p(2’). In particular, Y = X/ ~
can be equipped with the quotient topology. Here are important examples.

Example 1.24. 1. The real projective space of dimension n is the set
RP" := {1-dimensional subspaces of R""}.

The map
S" — RP" R™™ 5 v+ subspace generated by v

is surjective, leading to the identification
RP" = 5" /(v ~ +£v),
and the quotient topology on RP".

2. Similarly, working with complex vector spaces, we obtain a quotient topology on the
the complex projective space

CP" := {1-dimensional subspaces of C"*'} = §*"*1 /(v ~ zv), ze 8!

3. Generalizing, we can consider the Grassmann manifold
G(R™™) := {k-dimensional subspaces of R"*}.
There is a surjective map
Vi(R™™) = {(vy,...,v) | v; € R™™* v;’s are orthonormal}  — Gy (R™™)

given by sending (vy, ..., v;) € Vi(R"*) to the k-dimensional subspace of R"** spanned
by the v;’s. Hence the subspace topology on the Stiefel manifold Vj(R"**) c R(+kk
gives a quotient topology on the Grassmann manifold Gy (R"*) = V,(R"™*)/ ~. The
same construction works for the complex Grassmann manifold G, (C"™).

As the examples below will show, sometimes a quotient space X/ ~ is homeomorphic
to a topological space Z constructed in a different way. To establish the homeomorphism
between X/ ~ and Z, we need to construct continuous maps

fi: X/ ~—Z g: Z = X/~

that are inverse to each other. The next lemma shows that it is easy to check continuity of
the map f, the map out of the quotient space.

Lemma 1.25. The projection map p: X — X/ ~ is continuous and a map f: X/ ~ — Z to
a topological space Z is continuous if and only if the composition fop: X — Z is continuous.
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As we will see in the next section, there are many situations where the continuity of the

inverse map for a continuous bijection f is automatic. So in the examples below, and for the
exercises in this section, we will defer checking the continuity of f~! to that section.

Notation. Let A be a subset of a topological space X. Define a equivalence relation ~ on
Xbyx~yifx=yorxzye A We use the notation X/A for the quotient space X/ ~.

Example 1.26. (1) We claim that the quotient space [—1,41]/{%1} is homeomorphic to

St via the map f: [—1,+1]/{£1} — S given by [t] = e™. Geometrically speaking, the
map f wraps the interval [—1,41] once around the circle. Here is a picture.

glue

N

-1 +1

It is easy to check that the map f is a bijection. To see that f is continuous, consider
the composition

1, +1] — 2= [-1,+1]/{£1} L= 8" . C =R?,

where p is the projection map and ¢ the inclusion map. This composition sends t €
[—1,+1] to €™ = (sint,cost) € R?. By Lemma it is a continuous function, since
its component functions sin 7t and cos 7t are continuous functions. By Lemma the
continuity of 7 o f o p implies the continuity of 7 o f, which by Lemma [1.18| implies the
continuity of f. As mentioned above, we’ll postpone the proof of the continuity of the
inverse map f~! to the next section.

More generally, D"/S™! is homeomorphic to S™. (proof: homework)

Consider the quotient space of the square [—1, +1] x [—1, +1] given by identifying (s, —1)
with (s,1) for all s € [—1,1]. It can be visualized as a square whose top edge is to be
glued with its bottom edge. In the picture below we indicate that identification by
labeling those two edges by the same letter.

glue
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The quotient ([—1,+1] x [—1,+1]) /(s,—1) ~ (s,+1) is homeomorphic to the cylinder
C={(z,y,2) eR® |z €[-1,+1],9° + 22 = 1}.

The proof is essentially the same as in (1). A homeomorphism from the quotient space
to C' is given by f([s,t]) = (s,sinnt,cosmt). The picture below shows the cylinder C'
with the image of the edge a indicated.

Consider again the square, but this time using an equivalence relations that identifies
more points than the one in the previous example. As before we identify (s, —1) and
(s,1) for s € [—1,1], and in addition we identify (—1,¢) with (1,¢) for ¢t € [-1,1]. Here
is the picture, where again corresponding points of edges labeled by the same letter are

to be identified.
a

a

We claim that the quotient space is homeomorphic to the torus
T:={x eR®|d(z,K) = d},

where K = {(z1,%9,0) | 2% + 22 = 1} is the unit circle in the zy-plane and 0 < d < 1
is a real number (see ) via a homeomorphism that maps the edges of the square to the
loops in T indicated in the following picture below.

Exercise: prove this by writing down an explicity map from the quotient space to T', and
arguing that this map is a continuous bijection (as always in this section, we defer the
proof of the continuity of the inverse to the next section).

We claim that the quotient space D™/ ~ with equivalence relation generated by v ~ —v
for v € S"~! C D" is homeomorphic to the real projective space RP". Proof: exercise.
In particular, RP! = S' /v ~ —v is homeomorphic to D'/ ~= [-1,1]/ — 1 ~ 1, which
by example (1) is homeomorphic to St



1 POINTSET TOPOLOGY 12

(6) The quotient space [—1,1] x [=1,1]/ ~ with the equivalence relation generated by
(—1,t) ~ (1, —t) is represented graphically by the following picture.

This topological space is called the Mdbius band. It is homeomorphic to a subspace of
R3 shown by the following picture

(7) The quotient space of the square by edge identifications given by the picture

a

b) b

a

is the Klein bottle. It is harder to visualize, since it is not homeomorphic to a subspace
of R? (which can be proved by the methods of algebraic topology).

(8) The quotient space of the square given by the picture

a

>

<

a

is homeomorphic to the real projective plane RP2. Exercise: prove this (hint: use the
statement of example (5)). Like the Klein bottle, it is challenging to visualize the real
projective plane, since it is not homeomorphic to a subspace of R3.

1.4 Properties of topological spaces

In the previous subsection we described a number of examples of topological spaces X, Y that
we claimed to be homeomorphic. We typically constructed a bijection f: X — Y and argued
that f is continuous. However, we did not finish the proof that f is a homeomorphism, since
we defered the argument that the inverse map f~!: Y — X is continuous. We note that not
every continuous bijection is a homeomorphism. For example if X is a set, X (resp. Xinq)
is the topological space given by equipping the set X with the discrete (resp. indiscrete)
topology, then the identity map is a continuous bijection from X5 to Xj,q. However its
inverse, the identity map Xi,q — Xy is not continuous if X contains at least two points.

Fortunately, there are situations where the continuity of the inverse map is automatic as
the following proposition shows.
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Proposition 1.27. Let f: X — Y be a continuous bijection. Then f is a homeomorphism
provided X is compact and 'Y is Hausdorff.

The goal of this section is to define these notions, prove the proposition above, and to
give a tools to recognize that a topological space is compact and/or Hausdorff.

1.4.1 Hausdorff spaces

Definition 1.28. Let X be a topological space, x; € X, i =1,2,... a sequence in X and
x € X. Then x is the limit of the x;’s if for any open subset U C X containing x there is
some N such that z; € U for all 7 > N.

Caveat: If X is a topological space with the indiscrete topology, every point is the limit
of every sequence. The limit is unique if the topological space has the following property:

Definition 1.29. A topological space X is Hausdorff if for every x,y € X, x # y, there are
disjoint open subsets U,V C X withz e U, y € V.

Note: if X is a metric space, then the metric topology on X is Hausdorff (since for x # y
and € = d(z,y)/2, the balls B.(z), B.(y) are disjoint open subsets). In particular, any subset
of R™, equipped with the subspace topology, is Hausdorff.

Warning: The notion of Cauchy sequences can be defined in metric spaces, but not in
general for topological spaces (even when they are Hausdorf).

Lemma 1.30. Let X be a topological space and A a closed subspace of X. If x,, € A is a
sequence with limit x, then © € A.

Proof. Assume x ¢ A. Then x is a point in the open subset X \ A and hence by the
definition of limit, all but finitely many elements x,, must belong to X \ A, contradicting our
assumptions. ]

1.4.2 Compact spaces

Definition 1.31. An open cover of a topological space X is a collection of open subsets of
X whose union is X. If for every open cover of X there is a finite subcollection which also
covers X, then X is called compact.

Some books (like Munkres’ Topology) refer to open covers as open coverings, while newer
books (and wikipedia) seem to prefer to above terminology, probably for the same reasons
as me: to avoid confusions with covering spaces, a notion we’ll introduce soon.

Now we’ll prove some useful properties of compact spaces and maps between them, which
will lead to the important Corollaries 7?7 and [1.34}

Lemma 1.32. If f: X = Y is a continuous map and X is compact, then the image f(X)
18 compact.

In particular, if X is compact, then any quotient space X/ ~ is compact, since the
projection map X — X/ ~ is continuous with image X/ ~.
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Proof. To show that f(X) is compact assume that {U,}, a € A is an open cover of the
subspace f(X). Then each U, is of the form U, =V, N f(X) for some open subset V, € Y.
Then {f~'(V,)}, a € A is an open cover of X. Since X is compact, there is a finite subset
A’ of A such that {f~*(V,)}, a € A’ is a cover of X. This implies that {U,}, a € A is a
finite cover of f(X), and hence f(X) is compact. O

Lemma 1.33. 1. If K is a closed subspace of a compact space X, then K is compact.

2. If K is compact subspace of a Hausdorff space X, then K is closed.

Proof. To prove (1), assume that {U,}, a € A is an open covering of K. Since the U,’s
are open w.r.t. the subspace topology of K, there are open subsets V, of X such that
U, = V,N K. Then the V,’s together with the open subset X \ K form an open covering of
X. The compactness of X implies that there is a finite subset A" C A such that the subsets
V, for a € A, together with X \ K still cover X. It follows that U,, a € A’ is a finite cover
of K, showing that K is compact.

The proof of part (2) is a homework problem. ]

Corollary 1.34. If f: X — Y is a continuous bijection with X compact and Y Hausdorff,
then f 1s a homeomorphism.

Proof. We need to show that the map g: ¥ — X inverse to f is continuous, i.e., that
g 1 (U) = f(U) is an open subset of Y for any open subset U of X. Equivalently (by passing
to complements), it suffices to show that ¢g=!(C') = f(C) is a closed subset of Y for any
closed subset C of C.

Now the assumption that X is compact implies that the closed subset C' C X is compact
by part (1) of Lemma and hence f(C') C Y is compact by Lemmall.32] The assumption
that Y is Hausdorff then implies by part (2) of Lemma that f(C') is closed. O

Lemma 1.35. Let K be a compact subset of R™. Then K is bounded, meaning that there
is some r > 0 such that K is contained in the open ball B.(0) := {x € R™ | d(z,0) < r}.

Proof. The collection B,(0) N K, r € (0,00), is an open cover of K. By compactness, K is
covered by a finite number of these balls; if R is the maximum of the radii of these finitely
many balls, this implies K C Bg(0) as desired. ]

Corollary 1.36. If f: X — R is a continuous function on a compact space X, then f has
a mazximum and a MinImum.

Proof. K = f(X) is a compact subset of R. Hence K is bounded, and thus K has an infimum
a :=inf K € R and a supremum b := sup K € R. The infimum (resp. supremum) of K is the
limit of a sequence of elements in K; since K is closed (by Lemmall.33](2)), the limit points
a and b belong to K by Lemma [I.30] In other words, there are elements Z,in, Tmar € X
with f(Zmin) = a < f(z) for all x € X and f(@pmee) = b > f(x) for all z € X. O

In order to use Corollaries [1.34] and [1.36] we need to be able to show that topological
spaces we are interested in, are in fact compact. Note that this is quite difficult just working
from the definition of compactness: you need to ensure that every open cover has a finite
subcover. That sounds like a lot of work...

Fortunately, there is a very simple classical characterization of compact subspaces of
Euclidean spaces:
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Theorem 1.37. (Heine-Borel Theorem) A subspace X C R"™ is compact if and only if
X is closed and bounded.

We note that we’ve already proved that if K C R™ is compact, then K is a closed subset
of R" (Lemma[1.33(2)), and K is bounded (Lemma [I.35)).

There two important ingredients to the proof of the converse, namely the following two
results:

Lemma 1.38. A closed interval [a,b] is compact.

This lemma has a short proof that can be found in any pointset topology book, e.g.,
[Mu].

Theorem 1.39. If Xy, ..., X, are compact topological spaces, then their product X;x---x X,
18 compact.

For a proof see e.g. [Mu, Ch. 3, Thm. 5.7]. The statement is true more generally for a
product of infinitely many compact space (as discussed in [Mul, p. 113], the correct definition

of the product topology for infinite products requires some care), and this result is called
Tychonoff’s Theorem, see [Mu, Ch. 5, Thm. 1.1].

Proof of the Heine-Borel Theorem. Let K C R"™ be closed and bounded, say K C B,(0).
We note that B,(0) is contained in the n-fold product

P:=[-rr]x- - x[-rr CR"

which is compact by Theorem [1.39] So K is a closed subset of P and hence compact by
Lemma [1.33](1). O

1.4.3 Connected spaces

Definition 1.40. A topological space X is connected if it can’t be written as decomposed
in the form X = U UV, where U,V are two non-empty disjoint open subsets of X.

For example, if a,b, c,d are real numbers with a < b < ¢ < d, consider the subspace
X = (a,b) II (¢,d) € R. The topological space X is not connected, since U = (a,b),
V' = (¢, d) are open disjoint subsets of X whose union is X. This remains true if we replace
the open intervals by closed intervals. The space X' = [a,b] IT [¢, d] is not connected, since
it is the disjoint union of the subsets U’ = [a,b], V' = [¢,d]. We want to emphasize that
while U" and V' are not open as subsets of R, they are open subsets of X', since they can be
written as

U'=(-00,c)NnX"  V'=(boo)N X',

showing that they are open subsets for the subspace topology of X’ C R.

Lemma 1.41. Any interval I in R (open, closed, half-open, bounded or not) is connected.

Proof. Using proof by contradiction, let us assume that [ has a decomposition [ = U UV
as the union of two non-empty disjoint open subsets. Pick points u € U and v € V, and let
us assume u < v without loss of generality. Then

[u,0] =U"'UV"  with U :=UnN[uv] V' :=UnN][u,]
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is a decomposition of [u,v] as the disjoint union of non-empty disjoint open subsets U’, V'
of [u,v]. We claim that the supremum c := sup U’ belongs to both, U’ and V', thus leading
to the desired contradiction. Here is the argument.

e Assuming that ¢ doesn’t belong to U’, for any € > 0, there must be some element of
U’ belonging to the interval (¢ — €, ¢), allowing us to construct a sequence of elements
u; € U’ converging to c¢. This implies ¢ € U’ by Lemma [1.30] since U’ is a closed
subspace of [u, v] (its complement V' is open).

e By construction, every = € [u,v] with x > ¢ = supU’ belongs to V’. So we can
construct a sequence v; € V'’ converging to c. Since V' is a closed subset of [u,v], we
conclude ¢ € V.

[]

Theorem 1.42. (Intermediate Value Theorem) Let X be a connected topological space,
and f: X — R a continuous map. If elements a,b € R belong to the image of f, then also
any real number ¢ between a and b belongs to the image of f.

Proof. Assume that ¢ is not in the image of f. Then X = f~'(—o0,c) U f~!(c,00) is a
decomposion of X as a union of non-empty disjoint open subsets. O

There is another notion, closely related to the notion of connected topological space,
which might be easier to think of geometrically.

Definition 1.43. A topological space X is path connected if for any points x,y € X there
is a path connecting them. In other words, there is a continuous map v: [a,b] — X from
some interval to X with v(a) = x, y(b) = y.

Lemma 1.44. Any path connected topological space is connected.

Proof. Using proof by contradiction, let us assume that the topological space X is path
connected, but not connected. So there is a decomposition X = U UV of X as the union of
non-empty open subsets U,V C X. The assumption that X is path connected allows us to
find a path ~v: [a,b] — X with v(a) € U and ~(b) € V. Then we obtain the decomposition

[a,0] = fTHU)UFH(V)
of the interval [a,b] as the disjoint union of open subsets. These are non-empty since a €

f~YU) and b € f~1(V). This implies that [a,b] is not connected, the desired contradiction.
[

For typical topological spaces we will consider, the properties “connected” and “path
connected” are equivalent. But here is an example known as the topologist’s sine curve
which is connected, but not path connected, see [Mu, Example 7, p. 156]. It is the following
subspace of R?:

1
X:{(I,sinE)ER2|0<x<1}U{(O,y)€]R2]—1§y§1}.
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