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1 Introduction

The following is an attempt at explaining what ‘topology’ is.

1
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• Topology is the study of qualitative/global aspects of shapes, or – more generally –
the study of qualitative/global aspects in mathematics.

A simple example of a ‘shape’ is a 2-dimensional surface in 3-space, like the surface of a
ball, a football, or a donut. While a football is different from a ball (try kicking one...), it
is qualitatively the same in the sense that you could squeeze a ball (say a balloon to make
squeezing easier) into the shape of a football. While any surface is locally homeomorphic
R2 (i.e., every point has an open neighborhood homeomorphic to an open subset of R2) by
definition of ‘surface’, the ‘global shape’ of two surfaces might be different meaning that they
are not homeomorphic (e.g. the surface of a ball is not homeomorphic to the surface of a
donut). The French mathematician Henry Poincaré (1854-1912) is regarded as one of the
founders of topology, back then known as ‘analysis situ’. He was interested in understanding
qualitative aspects of the solutions of differential equation.

There are basically three flavors of topology:

1. Point set Topology: Study of general properties of topological spaces

2. Differential Topology: Study of manifolds (ideally: classification up to homeomor-
phism/diffeomorphism).

3. Algebraic topology: trying to distinguish topological spaces by assigning to them al-
gebraic objects (e.g. a group, a ring, . . . ).

Let us go in more detail concerning algebraic topology, since that is the topic of this course.
Before mentioning two examples of algebraic objects associated to topological spaces, let us
make the purpose of assigning these algebraic objects clear: if X and Y are homeomorphic
objects, we insist that the associated algebraic objects A(X), A(Y ) are isomorphic. That
means in particular, that if we find that A(X) and A(Y ) are not isomorphic, then we can
conclude that the spaces X and Y are not homeomorphic. In other words, the algebraic
objects help us to distinguish homeomorphism classes of topological spaces.

Here are two examples of algebraic objects we can assign to topological spaces, which
satisfy this requirement. We will discuss them in more detail below:

Homotopy groups To any topological space X equipped with a distinguished point x0 ∈
X (called the base point), we can associate groups πn(X, x0) for n = 1, 2, . . . called
homotopy groups of X. These are abelian groups for n ≥ 2.

Homology groups To any topological space X we can associate abelian groups Hn(X) for
n = 0, 1, . . . , called homology groups of X.

The advantages/disadvantages of homotopy versus homology groups are

• homotopy groups are easy to define, but extremely hard to calculate;
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• homology groups are harder to define, but comparatively easier to calculate (with the
appropriate tools in place, which will take us about half the semester)

Let us illustrate these statements in a simple example. We will show (in about a month)
that the homology group of spheres look as follows:

Hk(S
n) =

{
Z k = 0, n

0 k 6= 0, n

The homotopy groups of spheres are much more involved; for example:

k 1 2 3 4 5 6 7 8 9
πk(S

2, x0) 0 Z Z Z/2 Z/2 Z/12 Z/2 Z/2 Z/3
It is perhaps surprising that these homotopy groups are not known for large k (not only

in the sense that we don’t have a ‘closed formula’ for these groups, but also in the sense
that we don’t have an algorithm that would crank out these groups one after another on a
computer if we just give it enough time...). This holds not only for S2, but for any sphere
Sn (except n = 1). In fact, the calculation of the homotopy groups of spheres is something
akin to the ‘holy grail’ of algebraic topology.

1.1 Homotopy groups

Suppose f and g are continuous maps from a topological space X to a topological space
Y . Then true to the motto that in topology we are interested in ‘qualitative’ properties we
shouldn’t try to distinguish between f and g if they can be ‘deformed’ into each other in
the sense that for each t ∈ [0, 1] there is a map ft : X → Y such that f0 = f and f1 = g,
and such that the family of maps ft ‘depends continuously on t’. The following definition
makes precise what is meant by ‘depending continuously on t’ and introduces the technical
terminology ‘homotopic’ for the informal ‘can be deformed into each other’.

Definition 1.1. Two continuous maps f, g : X → Y between topological spaces X, Y are
homotopic if there is a continuous map H : X × [0, 1] → Y such that H(x, 0) = f(x) and
H(x, 1) = g(x) for all x ∈ X. The map H is called a homotopy between f and g. We will
denote by [X, Y ] the set of homotopy classes of maps from X to Y .

We note that if H is a homotopy, then we have a family of maps ft : X → Y parametrized
by t ∈ [0, 1] interpolating between f and g, given by ft(x) = H(t, x). Conversely, if ft : X →
Y is a family of maps parametrized by t ∈ [0, 1], then we can define a map H : [0, 1]×X → Y
by the above formula. We note that the continuity requirement for H implies not only that
each map ft is continuous, but also implies that for fixed x ∈ X the map t 7→ ft(x) is
continuous. In other words, our idea of requiring that ft should ‘depend continuously on t’
is made precise by requiring continuity of H.

Examples of homotopic maps.
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1. Any two maps f, g : X → R are homotopic; in other words, [X,R] is a one point set.
A homotopy H : X × [0, 1] → R is given by H(x, t) = (1 − t)f(x) + tg(x). We note
that for fixed x the map [0, 1]→ R given by t 7→ (1− t)f(x) + tg(x) is the affine linear
path (aka straight line) from f(x) to g(x). For this reason, the homotopy H is called
a linear homotopy. The construction of a linear homotopy can be done more generally
for maps f, g : X → Y if Y is a vector space, or a convex subspace of a vector space.

2. A map S1 → Y is a loop in the space Y . Physically, we can think of it as the trajectory
of a particle that moves in the topological space Y , returning to its original position
after some time. In general, there are maps f, g : S1 → Y that are not homotopic. For
example, given an integer k ∈ Z, let

fk : S1 → S1 be the map given by fk(z) = zk.

Physically that describes a particle that moves |k| times around the circle, going coun-
terclockwise for k > 0 and clockwise for k < 0. We will prove that fk and f` are
homotopic if and only if k = `. Moreover, we will show that any map f : S1 → S1 is
homotopic to fk for some k ∈ Z. In other words, we will prove that there is a bijection

Z↔ [S1, S1] given by k 7→ fk

This fact will be used to prove the fundamental theorem of algebra.

Sometimes it is useful to consider pairs (X,A) of topological spaces, meaning that X is
a topological space and A is a subspace of X. If (Y,B) is another pair, we write

f : (X,A) −→ (Y,B)

if f is a continuous map from X to Y which sends A to B. Two such maps f, g : (X,A)→
(Y,B) are homotopic if there is a map

H : (X × I, A× I) −→ (Y,B)

with H(x, 0) = f(x) and H(x, 1) = g(x). We will use the notation [(X,A), (Y,B)] for the
set of homotopy classes of maps from (X,A) to (Y,B).

Definition 1.2. Let X be a topological space, and let x0 be a point of X. Then the n-th
homotopy group of (X, x0) is by definition

πn(X, x0) := [(In, ∂In), (X, x0)].

Here In := I × · · · × I︸ ︷︷ ︸
n

⊂ Rn is the n-dimensional cube, and ∂In is its boundary.
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A map f : (I, ∂)→ (X, x0) is geometrically a path in X parametrized by the unit interval
I = [0, 1] with starting point f(0) = x0 and endpoint f(1) = x0. Such maps are also called
based loops. Similarly, a map f : (I2, ∂I2) → (X, x0) is geometrically a membrane in X
parametrized by the square I2, such that the boundary of the square maps to the base point
x0.

As suggested by the terminology of the above definition, the set [(In, ∂In), (X, x0)] has
in fact the structure of a group. Given two maps f, g : (In, ∂In) → (X, x0), their product
f ∗ g : (In, ∂In)→ (X, x0) is given by

(f ∗ g)(t1, . . . , tn) :=

{
f(2t1, t2, . . . , tn) for 0 ≤ t1 ≤ 1

2

g(2t1 − 1, t2, . . . , tn) for 1
2
≤ t1 ≤ 1

We note that this is a well-defined map, since for t1 = 1
2

the points (2t1, t2, . . . , tn) and
(2t1 − 1, t2, . . . , tn) both belong to the boundary ∂In, and hence both map to x0 via f and
g. Moreover, f ∗ g is continuous since its restriction to the closed subsets consisting of the
points t = (t1, . . . , tn) with t1 ≤ 1

2
resp. t1 ≥ 1

2
is continuous. We will refer to f ∗ g as the

concatenation of the maps f and g, since for n = 1 the map f ∗ g : I → X is usually referred
to as the concatenation of the paths f and g.

The following picture shows where f ∗ g maps points in the square I2: if t = (t1, t2)
belongs to the left half of the square, it is mapped via f ; points in the right half map via
g (here we implicitly identify the left and right halves of the square again with I2). In
particular the boundaries of the two halves map to the base point x0; this subset of I2 is
indicated by the gray lines in the picture.

f ∗ g = f g

Next we want to address the question whether given f, g, h : (In, ∂In)→ (X, x0) the maps
f ∗ (g ∗ h) and (f ∗ g) ∗ h agree. Thinking in terms of pictures, we have

f ∗ (g ∗ h) = f g ∗ h = f g h

(f ∗ g) ∗ h = f ∗ g h = f g h
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which shows that these two maps do not agree. However, they are homotopic to each other.
We leave it to the reader to provide a proof of this. This implies the third of the following
equalities in πn(X, x0); the others hold by definition:

[f ]([g][h]) = [f ]([g ∗ h]) = [f ∗ (g ∗ h)] = [(f ∗ g) ∗ h] = [f ∗ g][h] = ([f ][g])[h].

This shows that concatenation induces an associative product on πn(X, x0). We leave it to
the reader to show that this product gives πn(X, x0) of a group where the unit element is
represented by the constant map, and the inverse of an element [f ] ∈ πn(X, x0) is represented
by f̄ , defined by f̄(t1, . . . , tn) := f(1− t1, t2, . . . , tn).

The group π1(X, x0) is called the fundamental group of X, while the groups πn(X, x0)
for n ≥ 2 are referred to as higher homotopy groups. Examples show that the fundamental
group is in general not abelian. For example, the fundamental group of the “figure eight” is
the free group generated by two elements. By contrast, for higher homotopy groups we have
the following result.

Lemma 1.3. For n ≥ 2 the group πn(X, x0) is abelian.

Proof. We need to show that for maps f, g : (In, ∂In) → (X, x0) the concatenations f ∗ g
and g ∗ f are homotopic to each other (as maps of pairs). Such a homotopy H is given by a
continuous family of maps Ht : (In, ∂In)→ (X, x0) which agrees with f ∗g for t = 0 and with
g ∗ f for t = 1. Thinking of each such maps as a picture, like the one for f ∗ g above, such
a homotopy Ht is a family of pictures parametrized by t ∈ [0, 1]. Interpreting t as “time”,
this means that the homotopy Ht is a movie! Here it is:

f g

t = 0

f g

t = 1
6

f

g

t = 1
3

f

g

t = 1
2

f

g

t = 2
3

g f

t = 5
6

g f

t = 1

Here all points in the gray areas of the square map to the base point. So shrinking the
rectangles inside of the square labeled f resp. g allows us to rotate them past each other, a
move which is not possible for n = 1, but for all n ≥ 2.

1.2 The Euler characteristic of closed surfaces

The goal of this section is to discuss the Euler characteristic of closed surfaces, that is,
compact manifolds without boundary of dimension 2. We begin by recalling the definition
of manifolds.
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Definition 1.4. A manifold of dimension n or n-manifold is a topological space X which
is locally homeomorphic to Rn, that is, every point x ∈ X has an open neighborhood U
which is homeomorphic to an open subset V of Rn. Moreover, it is useful and customary
to require that X is Hausdorff (see Definition 2.29) and second countable (see Definition
3.1). A manifold with boundary of dimension n is defined by replacing Rn in the definition
above by the half-space Rn

+ := {(x1, . . . , xn) ∈ Rn | x1 ≥ 0}. If X is an n-manifold with
boundary, its boundary ∂X consists of those points of X which via some homeomorphism
U ≈ V ⊂ Rn

+ correspond to points in the hyperplane given by the equation x1 = 0. The
complement X \∂X is called the interior of X. A closed n-manifold is a compact n-manifold
without boundary.

Examples of manifolds of dimension 1. An open interval (a, b) is a 1-manifold. A closed
interval [a, b] is a 1-manifold with boundary {a, b}. A half-open interval (a, b] is a 1-manifold
with boundary {b}.

A non-example. The subspace X = {(x1, x2) ∈ R2 | x1 = 0 or x2 = 0} of R2 consisting of
the x-axis and y-axis is not a 1-dimensional manifold, since X is not locally homeomorphic to
R1 at the origin x = (0, 0). To prove this intuitively obvious fact, suppose that U is an open
neighborhood of (0, 0) which is homeomorphic to an open subset V ⊂ R. Replacing U by the
connected component of U containing (0, 0), and V by the image of that component, we can
assume that U and V are connected. This implies that V is an open interval. Restricting
the homeomorphism f : U → V , we obtain a homeomorphism U \ {(0, 0)} ≈ V \ f(0, 0).
This is the desired contradiction, since U \ {(0, 0)} has four connected components, while
V \ f(0, 0) has two.

Examples of higher dimensional manifolds.

1. Any open subset U ⊂ Rn
+ is an n-manifold whose boundary ∂U is the intersection of

U with the hyperplane {(x1, . . . , xn) ∈ Rn | x1 = 0}.

2. The n-sphere Sn := {x ∈ Rn | ||x|| = 1} is an n-manifold.

3. The n-disk Dn = {x ∈ Rn | ||x|| ≤ 1} is an n-manifold with boundary ∂Dn = Sn−1 =
{x ∈ Rn | ||x|| = 1}.

4. The torus T := S1 × S1 is a manifold of dimension 2. There at least two other ways
to describe the torus. The usual picture we draw describes the torus as a subspace of
R3. It can also be constructed as a quotient space of the square I2: we identify the
two horizontal edges of the square to obtain a cylinder, and then the two boundary
circles to obtain the torus T . From a formal point of view, the last sentence describes
an equivalence relation ∼ on I2, and the claim is that the quotient space I2/ ∼ is
homeomorphic to S1 × S1. It will be convenient to use pictures for this and similar
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quotient spaces. Here is the picture for the quotient space I2/ ∼ described above:

T =

a

a

b b

(1.5)

Question. Is the sphere S2 homeomorphic to the torus T?

It seems intuitively clear that the answer is “no”, but how do we prove that rigorously?
The usual strategy for showing that two topological spaces aren’t homeomorphic involves
thinking of adjectives for topological spaces (e.g., compact, connected, Hausdorff, second
countable, etc), and to show that one has some such property while the other doesn’t. It turns
out that the usual adjectives from point-set topology will not manage to distinguish these
space. Instead, we will associate an integer to closed surfaces, called the Euler characteristic,
that will distinguish S2 and T . This is the most basic “algebraic topological invariant” for
spaces.

The definition of the Euler characteristic of a closed 2-manifold Σ will involve choosing a
“pattern of polygons” on Σ. By this we mean a graph Γ (consisting of vertices and edges) on
Σ, such that all connected components of the complement Σ \ Γ are homeomorphic to open
discs. For example, the boundary of the 3-dimensional cube is a 2-dimensional manifold
homeomorphic to S2. The 8 vertices and 12 edges of the cube form a graph Γ on S2; the
complement S2 \ Γ consists of the 6 faces of the cube.

Given a pattern of polygons Γ on a surface Σ, we define the integer

χ(Σ,Γ) := #V −#E + #F,

where V is the set of vertices, E is the set of edges, and F is the set of faces.

Lemma 1.6. χ(Σ,Γ) = χ(Σ,Γ′) for any two choices of graphs Γ, Γ′.

Before proving this lemma, let us illustrate the statement in the example of two patterns
on the 2-sphere S2:

1. Let Γ be the graph described above obtained by identifying S2 with the boundary of
the cube. Then χ(S2,Γ) = 8− 12 + 6 = 2.

2. Let Γ′ be the graph obtained by identifying S2 with the boundary of the tetrahedron.
Then χ(S2,Γ′) = 4− 6 + 4 = 2.
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Proof. We begin by proving the statement in the special case were the graph Γ′ is obtained
from Γ by adding an new edge. Then the number of vertices is the same for Γ and Γ′, and
the number of edges Γ′ is the number of edges for Γ plus one. Similarly, the number of faces
of Γ′ is one larger than that for Γ, since the new edge subdivides one face for Γ into two
faces for Γ′. Hence χ(Γ′) = χ(Γ).

Similarly, if Γ′ is obtained from Γ by introducing a new vertex on one of the edges of Γ,
then the number of vertices and edges goes up by one, while the number of faces doesn’t
change. Again, this implies that χ(Γ′) = χ(Γ) in this case as well. More generally, if Γ′ is
a refinement of Γ in the sense that Γ′ is obtained from Γ by adding new edges and vertices,
we see that χ(Γ′) = χ(Γ).

Finally, for general graphs Γ, Γ′ we may assume without changing the number of vertices,
edges or faces that Γ, Γ′ are in general position to each other in the sense that the vertex
sets V (Γ), V (Γ′) are disjoint and that edges of Γ intersect those of Γ′ in finitely many points.
Then the union of the graphs Γ and Γ′ can again be viewed as a graph Γ′′ on Σ. For example,
the vertices of Γ′′ consist of the vertices of Γ, the vertices of Γ′ and the intersection points
of edges in Γ with edges in Γ′. The graph Γ′′ is a refinement of both Γ and Γ′, and hence
χ(Γ′) = χ(Γ′′) = χ(Γ).

Definition 1.7. The Euler characteristic of a closed surface Σ, denoted χ(Σ) ∈ Z is defined
to be χ(Σ,Γ) for any pattern of polygons on Σ.

The following is a simple consequence of Lemma 1.6 and the definition of the Euler
characteristic.

Corollary 1.8. If Σ, Σ′ are closed surfaces with χ(Σ) 6= χ(Σ′), then these surfaces are not
homeomorphic.

Proof. Suppose that there is a homeomorphism f : Σ
≈−→ Σ′. If Γ is a pattern of polygons

on Σ, let Γ′ be the pattern of polygons on Σ′ whose vertices (resp. edges resp. faces) are the
images of vertices (resp. edges resp. faces) of Γ under the map f . Then

χ(Σ) = χ(Σ,Γ) = χ(Σ′,Γ′) = χ(Σ′)

is the desired contradiction.

Corollary 1.9. The sphere S2 is not homeomorphic to the torus T .

Proof. By the previous result it suffices to show χ(S2) 6= χ(T ). By our calculations above
we know χ(S2) = 2. We claim that χ(T ) = 0. To prove this, we use as “pattern of polygons”
on T the picture (1.5), which has

• one face (the square);
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• two edges (labeled a resp. b). There are only two rather than four edges since the two
edges of the square labeled a lead to the same edge on the torus;

• one vertex; all four vertices of the square lead to the same vertex on the torus.

It follows that χ(T ) = 1− 2 + 1 = 0.

Other examples of closed surfaces and their Euler characteristic.

Klein bottle Like the torus, the Klein bottle K can be constructed as the quotient space
of the square I2 by identifying opposite edges of the square. Here is the picture:

K =

a

a

b b

(1.10)

Like for the torus, the Euler characteristic of the Klein bottle can be calculated by
using the “pattern of polygons” on K given by the above picture to obtain

χ(K) = 1− 2 + 1 = 0.

Real projective plane From an algebraic perspective, the real projective plane RP2 is the
set of lines (= 1-dimensional subspaces of R3). To describe the usual topology on RP2,
it is useful to identify this set of lines with the quotient S2/x ∼ −x of the 2-sphere
obtained by identifying antipodal points (the bijection is given by sending a point
x ∈ S2 to the line spanned by the unit vector x; since x and −x span the same line,
this gives a well-defined map S2/ ∼→ {lines in R3} which is easily seen to be bijective).
The usual topology of S2 then induces the quotient topology on RP2 = S2/ ∼.

Another way to think of RP2 comes from noting that any equivalence class [x] ∈ S2/ ∼
is represented by a point in the upper hemisphere S2

+ = {(x1, x2, x3) ∈ S2 | x3 ≥ 0}
which can be identified with the disk D2 by sending (x1, x2, x3) ∈ S2

+ to (x1, x2) ∈ D2.
This shows that RP2 is homeomorphic to the quotient D2/ ∼, where the equivalence
relation identifies antipodal points on the boundary of D2. In other words, it identifies
points of the upper semicircle with the corresponding points in the lower semicircle as
indicated by the following picture.

RP2 ≈

a

a

(1.11)
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Interpreting this picture as a pattern of polygons on RP2, we see that

χ(RP2) = 1− 1 + 1 = 1

Another way to calculate the Euler characteristic of the real projective plane is to note
that the projection map

S2 −→ S2/ ∼ = RP2

is a double covering. The following implies that χ(S2) = 2χ(RP2) and hence χ(RP2) = 1 by
our previous calculation of the Euler characteristic of the sphere.

Lemma 1.12. If Σ is a closed surface and p : Σ̃→ Σ is a d-fold covering map, then χ(Σ̃) =
dχ(Σ).

The proof of this lemma is a homework problem.

1.3 Homology groups of surfaces

The goal in this section is to define homology groups for closed surfaces. These are abelian
groups Hn(Σ) associated to a closed surface Σ for n ∈ Z. We begin by a quick review of
abelian groups.

Digression on abelian groups. We will write abelian groups A additively, that is, we
write a + b ∈ A for the group operation applied to two elements a, b ∈ A, and −a for the
inverse of a. As usual, we write na as shorthand for the n-fold sum a+ · · ·+ a of an element
a ∈ A, and −na for the n-fold sum (−a) + · · · + (−a). In particular, we can multiply an
element a ∈ A with any integer. This multiplication gives A the structure of a Z-module.
In fact, abelian group and Z-module are just two different names for the same mathematical
structure.

Here are some examples of abelian groups (aka Z-modules).

• The infinite cyclic group Z;

• The cyclic group Z/n = Z/nZ of order n. Here nZ ⊂ Z is the subgroup consisting of
integers divisible by n. We write [i] ∈ Z/n for the coset represented by i ∈ Z.

• If A, B are abelian groups, we can form their sum A⊕B. The elements of this abelian
group are all pairs (a, b) with a ∈ A, b ∈ B. The sum of two such pairs is given by
(a, b) + (a′, b′) = (a+ a′, b+ b′).

• If S is a set, the free abelian group generated by S or free Z-module generated by S,
denoted Z[S] is defined by

Z[S] :=

{∑
s∈S

nss | ns ∈ Z, ns 6= 0 for only finitely many s ∈ S

}
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In other words, the elements of Z[S] consist of the finite linear combinations of elements
of S with integer coefficients.

We recall the following important facts about abelian groups:

• The sum Z/m⊕ Z/n is isomorphic to Z/mn if and only if m is prime to n.

• Any finitely generated group is isomorphic to a sum of Z’s and Z/n’s. Without loss of
generality we can assume that the n’s are powers of primes. We recall that an abelian
group A is finitely generated if there are finitely many elements ai ∈ A such that every
element a ∈ A can be expressed as a linear combination of the ai’s.

Like for the definition of the Euler characteristic, the definition of the homology group
Hn(Σ) for a closed surface Σ requires us to first choose some additional structure on the
surface. To construct the homology groups, we need to make the following choices:

1. The choice of a pattern of polygons Γ on Σ;

2. We need to choose an “orientation” for each edge and each face.

(a) For an edge, this means giving it a direction, which we indicate in pictorially by
an arrow:

v0

e
v1

Thinking of the edge e as an arrow, we will refer to the vertices v1 resp. v0 as the
tip resp. tail of the edge e, and write tip(e) = v1, tail(e) = v0.

(b) An orientation for a face means a direction for the boundary circle (clockwise or
anti-clockwise), which we indicate in pictures as follows:

v1

v2

v3v4

e1

e2

e3

e4

f

These choices allow us to construct the following abelian groups and homomorphisms:

Z[V ] Z[E]
∂1oo Z[F ]

∂2oo (1.13)
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Here V (resp. E resp. F ) is the set of vertices (resp. edges resp. faces) of the pattern of
polygons that we picked, and Z[V ] (resp. Z[E] resp. Z[F ]) is the free abelian group generated
by these sets. Given an edge e ∈ E, then

∂1(e) = tip(e)− tail(e) ∈ Z[V ],

and this determines the map ∂1 by linearity. If f ∈ F is a face,

∂2(f) =
∑
e∈∂f

±e ∈ Z[E].

Here the sum is over all edges e of the polygon f ; the sign of an edge e is positive if the
direction of e and the direction of f agree, and negative otherwise.

Lemma 1.14. ∂1 ◦ ∂2 = 0.

Definition 1.15. A chain complex is a sequence

Ck−1
∂k−1oo Ck

∂koo Ck+1

∂k+1oo ∂k+2oo

of Z-modules Ck and module maps ∂k : Ck → Ck−1 for k ∈ Z, such that ∂k ◦ ∂k+1 = 0 for all
k ∈ Z. We typically abbreviate by writing (C∗, ∂∗) or just C∗ for a chain complex, where ∗
is a placeholder for an index n ∈ Z.

We note that (1.13) can be interpreted as a chain complex by setting

Ck :=


Z[V ] k = 0

Z[E] k = 1

Z[F ] k = 2

0 k 6= 0, 1, 2

.

Terminology. Motivated by this example, the maps ∂i are called boundary maps. An
element c ∈ Ck is a k-chain. If c is in the kernel of ∂k : Ck → Ck−1, it is a k-cycle, and
if it is in the image of ∂k+1 : Ck+1 → Ck, it is a k-boundary. We note that the condition
∂k ◦ ∂k+1 = 0 implies that any k-boundary is a k-cycle. Furthermore, we write

Zk := {k-cycles} = ker(∂k : Ck → Ck−1)

for the Z-module of k-cycles and

Bk := {k-boundaries} = im(∂k+1 : Ck+1 → Ck)
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for the submodule of k-boundaries. The the k-homology is defined to be the quotient module

Hk :=
Zk
Bk

=
{k-cycles}

{k-boundaries}
.

If there is more than one chain complex around we use the notation

Zk(C∗, ∂∗), Bk(C∗, ∂∗), Hk(C∗, ∂∗) or Zk(C∗), Bk(C∗), Hk(C∗)

to indicate that we are talking about cycles, boundaries, or homology classes of the chain
complex C∗ = (C∗, ∂∗).

2 Appendix: Pointset Topology

2.1 Metric spaces

We recall that a map f : Rm → Rn between Euclidean spaces is continuous if and only if

∀x ∈ X ∀ε > 0 ∃δ > 0 ∀y ∈ X d(x, y) < δ ⇒ d(f(x), f(y)) < ε, (2.1)

where
d(x, y) = ||x− y|| =

√
(x1 − y1)2 + · · ·+ (xn − yn)2 ∈ R≥0

is the Euclidean distance between two points x, y in Rn.

Example 2.2. (Examples of continuous maps.)

1. The addition map a : R2 → R, x = (x1, x2) 7→ x1 + x2;

2. The multiplication map m : R2 → R, x = (x1, x2) 7→ x1x2;

The proofs that these maps are continuous are simple estimates that you probably remember
from calculus. Since the continuity of all the maps we’ll look at in these notes is proved by
expressing them in terms of the maps a and m, we include the proofs of continuity of a and
m for completeness.

Proof. To prove that the addition map a is continuous, suppose x = (x1, x2) ∈ R2 and ε > 0
are given. We claim that for δ := ε/2 and y = (y1, y2) ∈ R2 with d(x, y) < δ we have
d(a(x), a(y)) < ε and hence a is a continuous function. To prove the claim, we note that

d(x, y) =
√
|x1 − y1|2 + |x2 − y2|2

and hence |x1 − y1| ≤ d(x, y), |x1 − y1| ≤ d(x, y). It follows that

d(a(x), a(y)) = |a(x)− a(y)| = |x1 + x2− y1− y2| ≤ |x1− y1|+ |x2− y2| ≤ 2d(x, y) < 2δ = ε.
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To prove that the multiplication map m is continuous, we claim that for

δ := min{1, ε/(|x1|+ |x2|+ 1)}

and y = (y1, y2) ∈ R2 with d(x, y) < δ we have d(m(x),m(y)) < ε and hence m is a
continuous function. The claim follows from the following estimates:

d(m(y),m(x)) = |y1y2 − x1x2| = |y1y2 − x1y2 + x1y2 − x1x2|
≤ |y1y2 − x1y2|+ |x1y2 − x1x2| = |y1 − x1||y2|+ |x1||y2 − x2|
≤ d(x, y)(|y2|+ |x1|) ≤ d(x, y)(|x2|+ |y2 − x2|+ |x1|)
≤ d(x, y)(|x1|+ |x2|+ 1) < δ(|x1|+ |x2|+ 1) ≤ ε

Lemma 2.3. The function d : Rn × Rn → R≥0 has the following properties:

1. d(x, y) = 0 if and only if x = y;

2. d(x, y) = d(y, x) (symmetry);

3. d(x, y) ≤ d(x, z) + d(z, y) (triangle inequality)

Definition 2.4. A metric space is a set X equipped with a map

d : X ×X → R≥0

with properties (1)-(3) above. A map f : X → Y between metric spaces X, Y is

continuous if condition (2.1) is satisfied.

an isometry if d(f(x), f(y)) = d(x, y) for all x, y ∈ X;

Two metric spaces X, Y are homeomorphic (resp. isometric) if there are continuous maps
(resp. isometries) f : X → Y and g : Y → X which are inverses of each other.

Example 2.5. An important class of examples of metric spaces are subsets of Rn. Here are
particular examples we will be talking about during the semester:

1. The n-disk Dn := {x ∈ Rn | |x| ≤ 1} ⊂ Rn, and Dn
r := {x ∈ Rn | |x| ≤ r}, the n-disk

of radius r > 0.

The dilation map
Dn −→ Dn

r x 7→ rx
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is a homeomorphism between Dn and Dn
r with inverse given by multiplication by 1/r.

However, these two metric spaces are not isometric for r 6= 1. To see this, define the
diameter diam(X) of a metric space X by

diam(X) := sup{d(x, y) | x, y ∈ X} ∈ R≥0 ∪ {∞}.

For example, diam(Dn
r ) = 2r. It is easy to see that if two metric spaces X, Y are

isometric, then their diameters agree. In particular, the disks Dn
r and Dn

r′ are not
isometric unless r = r′.

2. The n-sphere Sn := {x ∈ Rn+1 | |x| = 1} ⊂ Rn+1.

3. The torus T = {v ∈ R3 | d(v, C) = r} for 0 < r < 1. Here

C = {(x, y, 0) | x2 + y2 = 1} ⊂ R3

is the unit circle in the xy-plane, and d(v, C) = infw∈C d(v, w) is the distance between
v and C.

4. The general linear group

GLn(R) = {vector space isomorphisms f : Rn → Rn}
←→ {(v1, . . . , vn) | vi ∈ Rn, det(v1, . . . , vn) 6= 0}
= {invertible n× n-matrices} ⊂ Rn × · · · × Rn︸ ︷︷ ︸

n

= Rn2

Here we think of (v1, . . . , vn) as an n × n-matrix with column vectors vi, and the
bijection is the usual one in linear algebra that sends a linear map f : Rn → Rn to the
matrix (f(e1), . . . , f(en)) whose column vectors are the images of the standard basis
elements ei ∈ Rn.

5. The special linear group

SLn(R) = {(v1, . . . , vn) | vi ∈ Rn, det(v1, . . . , vn) = 1} ⊂ Rn2

6. The orthogonal group

O(n) = {linear isometries f : Rn → Rn}
= {(v1, . . . , vn) | vi ∈ Rn, vi’s are orthonormal} ⊂ Rn2

We recall that a collection of vectors vi ∈ Rn is orthonormal if |vi| = 1 for all i, and vi
is perpendicular to vj for i 6= j.
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7. The special orthogonal group

SO(n) = {(v1, . . . , vn) ∈ O(n) | det(v1, . . . , vn) = 1} ⊂ Rn2

8. The Stiefel manifold

Vk(Rn) = {linear isometries f : Rk → Rn}
= {(v1, . . . , vk) | vi ∈ Rn, vi’s are orthonormal} ⊂ Rkn

Example 2.6. The following maps between metric spaces are continuous. While it is pos-
sible to prove their continuity using the definition of continuity, it will be much simpler to
prove their continuity by ‘building’ these maps using compositions and products from the
continuous maps a and m of Example 2.2. We will do this below in Lemma 2.22.

1. Every polynomial function f : Rn → R is continuous. We recall that a polynomial
function is of the form f(x1, . . . , xn) =

∑
i1,...,in

ai1,...,inx
i1
1 · · · · · xinn for ai1,...,in ∈ R.

2. Let Mn×n(R) = Rn2
be the set of n× n matrices. Then the map

Mn×n(R)×Mn×n(R) −→Mn×n(R) (A,B) 7→ AB

given by matrix multiplication is continuous. Here we use the fact that a map to the
product Mn×n(R) = Rn2

= R × · · · × R is continuous if and only if each component
map is continuous (see Lemma 2.21), and each matrix entry of AB is a polynomial
and hence a continuous function of the matrix entries of A and B. Restricting to the
invertible matrices GLn(R) ⊂Mn×n(R), we see that the multiplication map

GLn(R)×GLn(R) −→ GLn(R)

is continuous. The same holds for the subgroups SO(n) ⊂ O(n) ⊂ GLn(R).

3. The map GLn(R) → GLn(R), A 7→ A−1 is continuous (this is a homework problem).
The same statement follows for the subgroups of GLn(R).

The Euclidean metric on Rn given by d(x, y) =
√

(x1 − y1)2 + · · ·+ (xn − yn)2 for x, y ∈
Rn is not the only reasonable metric on Rn. Another metric on Rn is given by

d1(x, y) =
n∑
i=1

|xi − yi|. (2.7)

The question arises whether it can happen that a map f : Rn → Rn is continuous with
respect to one of these metrics, but not with respect to the other. To see that this doen’t
happen, it is useful to characterize continuity of a map f : X → Y between metric spaces
X, Y in a way that involves the metrics on X and Y less directly than Definition 2.4 does.
This alternative characterization will be based on the following notion of “open subsets” of
a metric space.
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Definition 2.8. Let X be a metric space. A subset U ⊂ X is open if for every point x ∈ U
there is some ε > 0 such that Bε(x) ⊂ U . Here Bε(x) = {y ∈ X | d(y, x) < ε} is the ball of
radius ε around x.

To illustrate this, lets look at examples of subsets of Rn equipped with the Euclidean
metric. The subset Dn

r = {v ∈ Rn | ||v|| ≤ r} ⊂ Rn is not open, since for for a point v ∈ Dn
r

with ||v|| = r any open ball Bε(v) with center v will contain points not in Dn
r . By contrast,

the subset Br(0) ⊂ Rn is open, since for any x ∈ Br(0) the ball Bδ(x) of radius δ = r− ||x||
is contained in Br(0), since for y ∈ Bδ(x) by the triangle inequality we have

d(y, 0) ≤ d(y, x) + d(x, 0) < δ + ||x|| = (r − ||x||) + ||x|| = r.

Lemma 2.9. A map f : X → Y between metric spaces is continuous if and only if f−1(V )
is an open subset of X for every open subset V ⊂ Y .

Corollary 2.10. If f : X → Y and g : Y → Z are continuous maps, then so it their compo-
sition g ◦ f : X → Z.

Exercise 2.11. (a) Prove Lemma 2.9

(b) Assume that d, d′ are two metrics on a set X which are equivalent in the sense that
there are constants C,C ′ > 0 such that d(x, y) ≤ Cd1(x, y) and d1(x, y) ≤ C ′d(x, y) for
all x, y ∈ X. Show that a subset U ⊂ X is open with respect to d if and only if it is
open with respect to d′.

(c) Show that the Euclidean metric d and the metric (2.7) on Rn are equivalent. This shows
in particular that a map f : Rn → Rn is continuous w.r.t. d if and only if it is continuous
w.r.t. d1.

2.2 Topological spaces

Lemma 2.9 and Exercise (b) above shows that it is better to define continuity of maps
between metric spaces in terms of the open subsets of these metric space instead of the
original ε-δ-definition. In fact, we can go one step further, forget about the metric on a set
X altogether, and just consider a collection T of subsets of X that we declare to be “open”.
The next result summarizes the basic properties of open subsets of a metric space X, which
then motivates the restrictions that we wish to put on such collections T.

Lemma 2.12. Open subsets of a metric space X have the following properties.

(i) X and ∅ are open.

(ii) Any union of open sets is open.
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(iii) The intersection of any finite number of open sets is open.

Definition 2.13. A topological space is a set X together with a collection T of subsets of
X, called open sets which are required to satisfy conditions (i), (ii) and (iii) of the lemma
above. The collection T is called a topology on X. The sets in T are called the open sets,
and their complements in X are called closed sets. A subset of X may be neither closed nor
open, either closed or open, or both.

A map f : X → Y between topological spaces X, Y is continuous if the inverse image
f−1(V ) of every open subset V ⊂ Y is an open subset of X.

It is easy to see that the composition of continuous maps is again continuous.

Examples of topological spaces.

1. Let X be a metric space, and T the collection of those subsets of X that are unions of
balls Bε(x) in X (i.e., the subsets which are open in the sense of Definition 2.8). Then
T is a topology on X, the metric topology.

2. Let X be a set. Then T = {all subsets of X} is a topology, the discrete topology. We
note that any map f : X → Y to a topological space Y is continuous. We will see later
that the only continuous maps Rn → X are the constant maps.

3. Let X be a set. Then T = {∅, X} is a topology, the indiscrete topology.

Sometimes it is convenient to define a topology U on a set X by first describing a smaller
collection B of subsets of X, and then defining U to be those subsets of X that can be
written as unions of subsets belonging to B. We’ve done this already when defining the
metric topology: Let X be a metric space and let B be the collection of subsets of X of the
form Bε(x) := {y ∈ X | d(y, x) < ε} (the balls in X). Then the metric topology U on X
consists of those subsets U which are unions of subsets belonging to B.

Lemma 2.14. Let B be a collection of subsets of a set X satisfying the following conditions

1. Every point x ∈ X belongs to some subset B ∈ B.

2. If B1, B2 ∈ B, then for every x ∈ B1 ∩ B2 there is some B ∈ B with x ∈ B and
B ⊂ B1 ∩B2.

Then T := {unions of subsets belonging to B} is a topology on X.

Definition 2.15. If the above conditions are satisfied, we call the collection B is called a
basis for the topology T or we say that B generates the topology T.

It is easy to check that the collection of balls in a metric space satisfies the above condi-
tions and hence the collection of open subsets is a topology as claimed by Lemma 2.12.
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2.3 Constructions with topological spaces

2.3.1 Subspace topology

Definition 2.16. Let X be a topological space, and A ⊂ X a subset. Then

T = {A ∩ U | U ⊂
open

X}

is a topology on A called the subspace topology.

Lemma 2.17. Let X be a metric space and A ⊂ X. Then the metric topology on A agrees
with the subspace topology on A (as a subset of X equipped with the metric topology).

Lemma 2.18. Let X, Y be topological spaces and let A be a subset of X equipped with the
subspace topology. Then the inclusion map i : A → X is continuous and a map f : Y → A
is continuous if and only if the composition i ◦ f : Y → X is continuous.

2.3.2 Product topology

Definition 2.19. The product topology on the Cartesian product X × Y = {(x, y) | x ∈
X, y ∈ Y } of topological spaces X, Y is the topology with basis

B = {U × V | U ⊂
open

X, V ⊂
open

Y }

The collection B obviously satisfies property (1) of a basis; property (2) holds since (U ×
V )∩ (U ′ × V ′) = (U ∩U ′)× (V ∩ V ′). We note that the collection B is not a topology since
the union of U ×V and U ′×V ′ is typically not a Cartesian product (e.g., draw a picture for
the case where X = Y = R and U,U ′, V, V ′ are open intervals).

Lemma 2.20. The product topology on Rm×Rn (with each factor equipped with the metric
topology) agrees with the metric topology on Rm+n = Rm × Rn.

Proof: homework.

Lemma 2.21. Let X, Y1, Y2 be topological spaces. Then the projection maps pi : Y1×Y2 → Yi
is continuous and a map f : X → Y1 × Y2 is continuous if and only if the component maps

X
f // Y1 × Y2

pi // Yi

are continuous for i = 1, 2.

Proof: homework



2 APPENDIX: POINTSET TOPOLOGY 21

Lemma 2.22. 1. Let X be a topological space and let f, g : X → R be continuous maps.
Then f + g and f · g continuous maps from X to R. If g(x) 6= 0 for all x ∈ X, then
also f/g is continuous.

2. Any polynomial function f : Rn → R is continuous.

3. The multiplication map µ : GLn(R)×GLn(R)→ GLn(R) is continuous.

Proof. To prove part (1) we note that the map f + g : X → R can be factored in the form

X
f×g−→ R× R a−→ R

The map f × g is continuous by Lemma 2.21 since its component maps f, g are continuous;
the map a is continuous by Example 2.2, and hence the composition f + g is continuous.
The argument for f · g is the same, with a replaced by m. To prove that f/g is continuous,
we factor it in the form

X
f×g //R× R× p1×(I◦p2) //R× R× m //R,

where R× = {t ∈ R | t 6= 0}, p1 (resp. p2) is the projection to the first (resp. second) factor
of R × R×, and I : R× → R× is the inversion map t 7→ t−1. By Lemma 2.21 the pi’s are
continuous, in calculus we learned that I is continuous, and hence again by Lemma 2.21 the
map p1 × (I ◦ p2) is continuous.

To prove part (2), we note that the constant map Rn → R, x = (x1, . . . , xn) 7→ a is
obviously continuous, and that the projection map pi : Rn → R, x = (x1, . . . , xn) 7→ xi
is continuous by Lemma 2.21. Hence by part (1) of this lemma, the monomial function
x 7→ axi11 · · ·xinn is continuous. Any polynomial function is a sum of monomial functions and
hence continuous.

For the proof of (3), let Mn×n(R) = Rn2
be the set of n× n matrices and let

µ : Mn×n(R)×Mn×n(R) −→Mn×n(R) (A,B) 7→ AB

be the map given by matrix multiplication. By Lemma 2.21 the map µ is continuous if and
only if the composition

Mn×n(R)×Mn×n(R)
µ−→Mn×n(R)

pij−→ R

is continuous for all 1 ≤ i, j ≤ n, where pij is the projection map that sends a matrix A to
its entry Aij ∈ R. Since the pij(µ(A,B)) = (A · B)ij is a polynomial in the entries of the
matrices A and B, this is a continuous map by part (2) and hence µ is continuous.

Restricting µ to invertible matrices, we obtain the multiplication map

µ| : GLn(R)×GLn(R) −→ GLn(R)
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that we want to show is continuous. We will argue that in general if f : X → Y is a
continuous map with f(A) ⊂ B for subsets A ⊂ X, B ⊂ Y , then the restriction f|A : A→ B
is continuous. To prove this, consider the commutative diagram

A
f|A //

i
��

B

j
��

X
f // Y

where i, j are the obvious inclusion maps. These inclusion maps are continuous w.r.t. the
subspace topology on A, B by Lemma 2.18. The continuity of f and i implies the continuity
of f ◦ i = j ◦ f|A which again by Lemma 2.18 implies the continuity of f|A.

2.3.3 Quotient topology.

Definition 2.23. Let X be a topological space and let ∼ be an equivalence relation on X.
We denote by X/ ∼ be the set of equivalence classes and by

p : X → X/ ∼ x 7→ [x]

be the projection map that sends a point x ∈ X to its equivalence class [x]. The quotient
topology on X/ ∼ is given by the collection of subsets

U = {U ⊂ X/ ∼| p−1(U) is an open subset of X}.

The set X/ ∼ equipped with the quotient topology is called the quotient space.

The quotient topology is often used to construct a topology on a set Y which is not a
subset of some Euclidean space Rn, or for which it is not clear how to construct a metric. If
there is a surjective map

p : X −→ Y

from a topological space X, then Y can be identified with the quotient space X/ ∼, where the
equivalence relation is given by x ∼ x′ if and only if p(x) = p(x′). In particular, Y = X/ ∼
can be equipped with the quotient topology. Here are important examples.

Example 2.24. 1. The real projective space of dimension n is the set

RPn := {1-dimensional subspaces of Rn+1}.

The map
Sn −→ RPn Rn+1 3 v 7→ subspace generated by v

is surjective, leading to the identification

RPn = Sn/(v ∼ ±v),

and the quotient topology on RPn.
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2. Similarly, working with complex vector spaces, we obtain a quotient topology on the
the complex projective space

CPn := {1-dimensional subspaces of Cn+1} = S2n+1/(v ∼ zv), z ∈ S1

3. Generalizing, we can consider the Grassmann manifold

Gk(Rn+k) := {k-dimensional subspaces of Rn+k}.

There is a surjective map

Vk(Rn+k) = {(v1, . . . , vk) | vi ∈ Rn+k, vi’s are orthonormal} � Gk(Rn+k)

given by sending (v1, . . . , vk) ∈ Vk(Rn+k) to the k-dimensional subspace of Rn+k spanned
by the vi’s. Hence the subspace topology on the Stiefel manifold Vk(Rn+k) ⊂ R(n+k)k

gives a quotient topology on the Grassmann manifold Gk(Rn+k) = Vk(Rn+k)/ ∼. The
same construction works for the complex Grassmann manifold Gk(Cn+k).

As the examples below will show, sometimes a quotient space X/ ∼ is homeomorphic
to a topological space Z constructed in a different way. To establish the homeomorphism
between X/ ∼ and Z, we need to construct continuous maps

f : X/ ∼ −→ Z g : Z → X/ ∼

that are inverse to each other. The next lemma shows that it is easy to check continuity of
the map f , the map out of the quotient space.

Lemma 2.25. The projection map p : X → X/ ∼ is continuous and a map f : X/ ∼ → Z to
a topological space Z is continuous if and only if the composition f ◦p : X → Z is continuous.

As we will see in the next section, there are many situations where the continuity of the
inverse map for a continuous bijection f is automatic. So in the examples below, and for the
exercises in this section, we will defer checking the continuity of f−1 to that section.

Notation. Let A be a subset of a topological space X. Define a equivalence relation ∼ on
X by x ∼ y if x = y or x, y ∈ A. We use the notation X/A for the quotient space X/ ∼.

Example 2.26. (1) We claim that the quotient space [−1,+1]/{±1} is homeomorphic to
S1 via the map f : [−1,+1]/{±1} → S1 given by [t] 7→ eπit. Geometrically speaking, the
map f wraps the interval [−1,+1] once around the circle. Here is a picture.

−1 +1

glue

≈
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It is easy to check that the map f is a bijection. To see that f is continuous, consider
the composition

[−1,+1]
p // [−1,+1]/{±1} f // S1 i // C = R2,

where p is the projection map and i the inclusion map. This composition sends t ∈
[−1,+1] to eπit = (sinπt, cosπt) ∈ R2. By Lemma 2.21 it is a continuous function, since
its component functions sinπt and cosπt are continuous functions. By Lemma 2.25 the
continuity of i ◦ f ◦ p implies the continuity of i ◦ f , which by Lemma 2.18 implies the
continuity of f . As mentioned above, we’ll postpone the proof of the continuity of the
inverse map f−1 to the next section.

(2) More generally, Dn/Sn−1 is homeomorphic to Sn. (proof: homework)

(3) Consider the quotient space of the square [−1,+1]× [−1,+1] given by identifying (s,−1)
with (s, 1) for all s ∈ [−1, 1]. It can be visualized as a square whose top edge is to be
glued with its bottom edge. In the picture below we indicate that identification by
labeling those two edges by the same letter.

glue

a

a

The quotient ([−1,+1]× [−1,+1]) /(s,−1) ∼ (s,+1) is homeomorphic to the cylinder

C = {(x, y, z) ∈ R3 | x ∈ [−1,+1], y2 + z2 = 1}.

The proof is essentially the same as in (1). A homeomorphism from the quotient space
to C is given by f([s, t]) = (s, sin πt, cosπt). The picture below shows the cylinder C
with the image of the edge a indicated.

a
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(4) Consider again the square, but this time using an equivalence relations that identifies
more points than the one in the previous example. As before we identify (s,−1) and
(s, 1) for s ∈ [−1, 1], and in addition we identify (−1, t) with (1, t) for t ∈ [−1, 1]. Here
is the picture, where again corresponding points of edges labeled by the same letter are
to be identified.

a

a

b b

We claim that the quotient space is homeomorphic to the torus

T := {x ∈ R3 | d(x,K) = d},
where K = {(x1, x2, 0) | x21 + x22 = 1} is the unit circle in the xy-plane and 0 < d < 1
is a real number (see ) via a homeomorphism that maps the edges of the square to the
loops in T indicated in the following picture below.

b

a

Exercise: prove this by writing down an explicity map from the quotient space to T , and
arguing that this map is a continuous bijection (as always in this section, we defer the
proof of the continuity of the inverse to the next section).

(5) We claim that the quotient space Dn/ ∼ with equivalence relation generated by v ∼ −v
for v ∈ Sn−1 ⊂ Dn is homeomorphic to the real projective space RPn. Proof: exercise.
In particular, RP1 = S1/v ∼ −v is homeomorphic to D1/ ∼= [−1, 1]/ − 1 ∼ 1, which
by example (1) is homeomorphic to S1.

(6) The quotient space [−1, 1] × [−1, 1]/ ∼ with the equivalence relation generated by
(−1, t) ∼ (1,−t) is represented graphically by the following picture.

b b
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This topological space is called the Möbius band. It is homeomorphic to a subspace of
R3 shown by the following picture

(7) The quotient space of the square by edge identifications given by the picture

a

a

b b

is the Klein bottle. It is harder to visualize, since it is not homeomorphic to a subspace
of R3 (which can be proved by the methods of algebraic topology).

(8) The quotient space of the square given by the picture

a

a

b b

is homeomorphic to the real projective plane RP2. Exercise: prove this (hint: use the
statement of example (5)). Like the Klein bottle, it is challenging to visualize the real
projective plane, since it is not homeomorphic to a subspace of R3.

2.4 Properties of topological spaces

In the previous subsection we described a number of examples of topological spaces X, Y that
we claimed to be homeomorphic. We typically constructed a bijection f : X → Y and argued
that f is continuous. However, we did not finish the proof that f is a homeomorphism, since
we defered the argument that the inverse map f−1 : Y → X is continuous. We note that not
every continuous bijection is a homeomorphism. For example if X is a set, Xδ (resp. Xind)
is the topological space given by equipping the set X with the discrete (resp. indiscrete)
topology, then the identity map is a continuous bijection from Xδ to Xind. However its
inverse, the identity map Xind → Xδ is not continuous if X contains at least two points.

Fortunately, there are situations where the continuity of the inverse map is automatic as
the following proposition shows.

Proposition 2.27. Let f : X → Y be a continuous bijection. Then f is a homeomorphism
provided X is compact and Y is Hausdorff.
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The goal of this section is to define these notions, prove the proposition above, and to
give a tools to recognize that a topological space is compact and/or Hausdorff.

2.4.1 Hausdorff spaces

Definition 2.28. Let X be a topological space, xi ∈ X, i = 1, 2, . . . a sequence in X and
x ∈ X. Then x is the limit of the xi’s if for any open subset U ⊂ X containing x there is
some N such that xi ∈ U for all i ≥ N .

Caveat: If X is a topological space with the indiscrete topology, every point is the limit
of every sequence. The limit is unique if the topological space has the following property:

Definition 2.29. A topological space X is Hausdorff if for every x, y ∈ X, x 6= y, there are
disjoint open subsets U, V ⊂ X with x ∈ U , y ∈ V .

Note: if X is a metric space, then the metric topology on X is Hausdorff (since for x 6= y
and ε = d(x, y)/2, the balls Bε(x), Bε(y) are disjoint open subsets). In particular, any subset
of Rn, equipped with the subspace topology, is Hausdorff.

Warning: The notion of Cauchy sequences can be defined in metric spaces, but not in
general for topological spaces (even when they are Hausdorff).

Lemma 2.30. Let X be a topological space and A a closed subspace of X. If xn ∈ A is a
sequence with limit x, then x ∈ A.

Proof. Assume x /∈ A. Then x is a point in the open subset X \ A and hence by the
definition of limit, all but finitely many elements xn must belong to X \A, contradicting our
assumptions.

2.4.2 Compact spaces

Definition 2.31. An open cover of a topological space X is a collection of open subsets of
X whose union is X. If for every open cover of X there is a finite subcollection which also
covers X, then X is called compact.

Some books (like Munkres’ Topology) refer to open covers as open coverings, while newer
books (and wikipedia) seem to prefer to above terminology, probably for the same reasons
as me: to avoid confusions with covering spaces, a notion we’ll introduce soon.

Now we’ll prove some useful properties of compact spaces and maps between them, which
will lead to the important Corollaries 2.36 and 2.34.

Lemma 2.32. If f : X → Y is a continuous map and X is compact, then the image f(X)
is compact.
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In particular, if X is compact, then any quotient space X/ ∼ is compact, since the
projection map X → X/ ∼ is continuous with image X/ ∼.

Proof. To show that f(X) is compact assume that {Ua}, a ∈ A is an open cover of the
subspace f(X). Then each Ua is of the form Ua = Va ∩ f(X) for some open subset Va ∈ Y .
Then {f−1(Va)}, a ∈ A is an open cover of X. Since X is compact, there is a finite subset
A′ of A such that {f−1(Va)}, a ∈ A′ is a cover of X. This implies that {Ua}, a ∈ A′ is a
finite cover of f(X), and hence f(X) is compact.

Lemma 2.33. 1. If K is a closed subspace of a compact space X, then K is compact.

2. If K is compact subspace of a Hausdorff space X, then K is closed.

Proof. To prove (1), assume that {Ua}, a ∈ A is an open covering of K. Since the Ua’s
are open w.r.t. the subspace topology of K, there are open subsets Va of X such that
Ua = Va ∩K. Then the Va’s together with the open subset X \K form an open covering of
X. The compactness of X implies that there is a finite subset A′ ⊂ A such that the subsets
Va for a ∈ A′, together with X \K still cover X. It follows that Ua, a ∈ A′ is a finite cover
of K, showing that K is compact.

The proof of part (2) is a homework problem.

Corollary 2.34. If f : X → Y is a continuous bijection with X compact and Y Hausdorff,
then f is a homeomorphism.

Proof. We need to show that the map g : Y → X inverse to f is continuous, i.e., that
g−1(U) = f(U) is an open subset of Y for any open subset U of X. Equivalently (by passing
to complements), it suffices to show that g−1(C) = f(C) is a closed subset of Y for any
closed subset C of C.

Now the assumption that X is compact implies that the closed subset C ⊂ X is compact
by part (1) of Lemma 2.33 and hence f(C) ⊂ Y is compact by Lemma 2.32. The assumption
that Y is Hausdorff then implies by part (2) of Lemma 2.33 that f(C) is closed.

Lemma 2.35. Let K be a compact subset of Rn. Then K is bounded, meaning that there
is some r > 0 such that K is contained in the open ball Br(0) := {x ∈ Rn | d(x, 0) < r}.

Proof. The collection Br(0) ∩K, r ∈ (0,∞), is an open cover of K. By compactness, K is
covered by a finite number of these balls; if R is the maximum of the radii of these finitely
many balls, this implies K ⊂ BR(0) as desired.

Corollary 2.36. If f : X → R is a continuous function on a compact space X, then f has
a maximum and a minimum.
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Proof. K = f(X) is a compact subset of R. Hence K is bounded, and thus K has an infimum
a := inf K ∈ R and a supremum b := supK ∈ R. The infimum (resp. supremum) of K is the
limit of a sequence of elements in K; since K is closed (by Lemma 2.33 (2)), the limit points
a and b belong to K by Lemma 2.30. In other words, there are elements xmin, xmax ∈ X
with f(xmin) = a ≤ f(x) for all x ∈ X and f(xmax) = b ≥ f(x) for all x ∈ X.

In order to use Corollaries 2.34 and 2.36, we need to be able to show that topological
spaces we are interested in, are in fact compact. Note that this is quite difficult just working
from the definition of compactness: you need to ensure that every open cover has a finite
subcover. That sounds like a lot of work...

Fortunately, there is a very simple classical characterization of compact subspaces of
Euclidean spaces:

Theorem 2.37. (Heine-Borel Theorem) A subspace X ⊂ Rn is compact if and only if
X is closed and bounded.

We note that we’ve already proved that if K ⊂ Rn is compact, then K is a closed subset
of Rn (Lemma 2.33(2)), and K is bounded (Lemma 2.35).

There two important ingredients to the proof of the converse, namely the following two
results:

Lemma 2.38. A closed interval [a, b] is compact.

This lemma has a short proof that can be found in any pointset topology book, e.g.,
[Mu].

Theorem 2.39. If X1, . . . , Xn are compact topological spaces, then their product X1×· · ·×Xn

is compact.

For a proof see e.g. [Mu, Ch. 3, Thm. 5.7]. The statement is true more generally for a
product of infinitely many compact space (as discussed in [Mu, p. 113], the correct definition
of the product topology for infinite products requires some care), and this result is called
Tychonoff’s Theorem, see [Mu, Ch. 5, Thm. 1.1].

Proof of the Heine-Borel Theorem. Let K ⊂ Rn be closed and bounded, say K ⊂ Br(0).
We note that Br(0) is contained in the n-fold product

P := [−r, r]× · · · × [−r, r] ⊂ Rn

which is compact by Theorem 2.39. So K is a closed subset of P and hence compact by
Lemma 2.33(1).
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2.4.3 Connected spaces

Definition 2.40. A topological space X is connected if it can’t be written as decomposed
in the form X = U ∪ V , where U, V are two non-empty disjoint open subsets of X.

For example, if a, b, c, d are real numbers with a < b < c < d, consider the subspace
X = (a, b) q (c, d) ⊂ R. The topological space X is not connected, since U = (a, b),
V = (c, d) are open disjoint subsets of X whose union is X. This remains true if we replace
the open intervals by closed intervals. The space X ′ = [a, b] q [c, d] is not connected, since
it is the disjoint union of the subsets U ′ = [a, b], V ′ = [c, d]. We want to emphasize that
while U ′ and V ′ are not open as subsets of R, they are open subsets of X ′, since they can be
written as

U ′ = (−∞, c) ∩X ′ V ′ = (b,∞) ∩X ′,
showing that they are open subsets for the subspace topology of X ′ ⊂ R.

Lemma 2.41. Any interval I in R (open, closed, half-open, bounded or not) is connected.

Proof. Using proof by contradiction, let us assume that I has a decomposition I = U ∪ V
as the union of two non-empty disjoint open subsets. Pick points u ∈ U and v ∈ V , and let
us assume u < v without loss of generality. Then

[u, v] = U ′ ∪ V ′ with U ′ := U ∩ [u, v] V ′ := U ∩ [u, v]

is a decomposition of [u, v] as the disjoint union of non-empty disjoint open subsets U ′, V ′

of [u, v]. We claim that the supremum c := supU ′ belongs to both, U ′ and V ′, thus leading
to the desired contradiction. Here is the argument.

• Assuming that c doesn’t belong to U ′, for any ε > 0, there must be some element of
U ′ belonging to the interval (c− ε, c), allowing us to construct a sequence of elements
ui ∈ U ′ converging to c. This implies c ∈ U ′ by Lemma 2.30, since U ′ is a closed
subspace of [u, v] (its complement V ′ is open).

• By construction, every x ∈ [u, v] with x > c = supU ′ belongs to V ′. So we can
construct a sequence vi ∈ V ′ converging to c. Since V ′ is a closed subset of [u, v], we
conclude c ∈ V ′.

Theorem 2.42. (Intermediate Value Theorem) Let X be a connected topological space,
and f : X → R a continuous map. If elements a, b ∈ R belong to the image of f , then also
any real number c between a and b belongs to the image of f .

Proof. Assume that c is not in the image of f . Then X = f−1(−∞, c) ∪ f−1(c,∞) is a
decomposion of X as a union of non-empty disjoint open subsets.
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There is another notion, closely related to the notion of connected topological space,
which might be easier to think of geometrically.

Definition 2.43. A topological space X is path connected if for any points x, y ∈ X there
is a path connecting them. In other words, there is a continuous map γ : [a, b] → X from
some interval to X with γ(a) = x, γ(b) = y.

Lemma 2.44. Any path connected topological space is connected.

Proof. Using proof by contradiction, let us assume that the topological space X is path
connected, but not connected. So there is a decomposition X = U ∪ V of X as the union of
non-empty open subsets U, V ⊂ X. The assumption that X is path connected allows us to
find a path γ : [a, b]→ X with γ(a) ∈ U and γ(b) ∈ V . Then we obtain the decomposition

[a, b] = f−1(U) ∪ f−1(V )

of the interval [a, b] as the disjoint union of open subsets. These are non-empty since a ∈
f−1(U) and b ∈ f−1(V ). This implies that [a, b] is not connected, the desired contradiction.

For typical topological spaces we will consider, the properties “connected” and “path
connected” are equivalent. But here is an example known as the topologist’s sine curve
which is connected, but not path connected, see [Mu, Example 7, p. 156]. It is the following
subspace of R2:

X = {(x, sin 1

x
) ∈ R2 | 0 < x < 1} ∪ {(0, y) ∈ R2 | −1 ≤ y ≤ 1}.

3 Appendix: Manifolds

The purpose of this section is to provide interesting examples of topological spaces and
homeomorphisms between them. There are many examples of “weird” topological spaces.
There are non-Hausdorff spaces (they don’t have well-defined limits) or the topologist’s sine
curve, which is connected, but not path connected. While there is a huge literature concering
pathological topological spaces, I must admit that I find those examples most interesting that
“show up in nature”. For example, topological spaces that appear as “configuration spaces”
or “phase spaces” of physical systems. Often these are a particularly nice kind of topological
space known as manifold.

There is much to say about manifolds. For example, you can find the text books In-
troduction to topological manifolds and Introduction to smooth manifolds by John Lee. For
this section, our focus is to discuss manifolds of dimension 2. Unlike higher dimensional
manifolds, we can represent manifolds of dimension 2 by pictures, which greatly helps the
intuition about these objects.
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Definition 3.1. A manifold of dimension n or n-manifold is a topological space X which
is locally homeomorphic to Rn, that is, every point x ∈ X has an open neighborhood U
which is homeomorphic to an open subset V of Rn. Moreover, it is useful and customary
to require that X is Hausdorff (see Definition 2.29) and second countable, which means that
the topology of X has a countable basis.

In most examples, the technical conditions of being Hausdorff and second countable are
easy to check, since these properties are inherited by subspaces.

Homework 3.2. Show that a subspace of a Hausdorff space is Hausdorff. Show that a
subspace of a second countable space is second countable.

Examples of manifolds.

1. Any open subset U ⊂ Rn is an n-manifold. The technical condition of being a second
countable Hausdorff space is satisfied for U as a subspace of the second countable
Hausdorff space Rn.

2. The n-sphere Sn := {x ∈ Rn | ||x|| = 1} is an n-manifold. To prove this, let us look at
the subsets

U+
i := {(x0, . . . , xn) ∈ Rn+1 | xi > 0} ⊂ Sn

U−i := {(x0, . . . , xn) ∈ Rn+1 | xi < 0} ⊂ Sn

We want to argue that the map

φ±i : U±i −→ D̊n given by φ±i (x0, . . . , xn) := (x0, . . . , xi−1, x̂i, xi+1, . . . , xn)

is a homeomorphism, where D̊n := {(v1, . . . , vn) ∈ Dn | v21 + · · ·+ v2n < 1} is the open
n-disk. It is easy to verify that the map

D̊n −→ U±i v = (v1, . . . , vn) 7→ (v1, . . . , vi,±
√

1− ||v||2, vi+1, . . . , vn)

is in fact the inverse to φ±i . Here ||v||2 = v21 + · · ·+v2n is norm squared of v ∈ D̊n. Both
maps, φ±i and its inverse, are continuous since all their components are continuous.
This shows that φ±i is in fact a homeomorphism, and hence the n-sphere Sn is a
manifold of dimension n.

Homework 3.3. Show that the product X×Y of manifold X of dimension m and a manifold
Y of dimension n is a manifold of dimension m+n. Make sure to prove that X×Y is second
countable and Hausdorff.

Homework 3.4. Show that the real projective space RPn is manifold of dimension n. Make
sure to prove that RP2 is second countable and Hausdorff.
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Examples of manifolds of dimension 2.

1. The 2-torus T . We recall that there are various ways of defining the torus, one being
as the product S1 × S1 which is a manifold of dimension 2 by Excercise 3.3, since S1

is a manifold of dimension 1.

2. The real projective plane RP2.

3. The Klein bottle K. It is not hard to verify directly that K is a manifold of dimension
2. Alternatively, we will see in Lemma ?? that the Klein bottle is homeomorphic to
the connected sum RP2#RP2 of two copies of the projective plane RP2, which implies
in particular that K is a 2-manifold.

4. The surface Σg of genus g is the subspace of R3 given by the following picture:

. . .

︸ ︷︷ ︸
g

Here g is the number of “holes” of Σg. In particular Σ1, the surface of genus 1, is
the torus. By convention, the surface Σ0 of genus 0 is the 2-sphere S2. Since we have
described the surface of genus g as a subspace of R3 given by a picture rather than
a formula, it is impossible to give a precise argument that this subspace is locally
homeomorphic to R2, but hopefully the picture makes this obvious at a heuristic level.

The connected sum construction. This construction produces a new manifold M#N
of dimension n from two given manifolds M and N of dimension n. The manifold M#N is
called the connected sum of M and N . The construction proceeds as follows. First we make
some choices:

• We pick points x ∈M and y ∈ N .

• We pick a homeomorphism φ between an open neighborhood U of x and the open
ball B2(0) of radius 2 around the origin 0 ∈ Rn. Similarly, we pick a homeomorphism

ψ : V
≈−→ B2(0) where V ⊂ N is an open neighborhood of y ∈ N .
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The existence of homeomorphisms φ, ψ with these properties follows from the assumption
that M , N are manifolds of dimension n. This implies that there is an open neighborhood
U ′ ⊂M of x and a homeomorphism φ′ between U ′ and an open subset V ′ ⊂ Rn. Composing
φ by a translation in Rn we can assume that φ(x) = 0 ∈ Rn. Since V ′ is open, there is some
ε > 0 such that the open ball Bε(0) of radius ε around 0 ∈ Rn is contained in V ′. Then
restricting φ′ to U := (φ′)−1(Bε(0)) ⊂ M gives a homeomorphism between U and Bε(0).
Then the composition

U
φ′U
≈

// Bε(0)
multiplication by 2/ε

≈
// B2(0)

is the desired homeomorphism φ between a neighborhood U of x ∈ M and B2(0) ⊂ Rn.
Analogously, we construct the homeomorphism ψ. Here is a picture illustrating the situation.

M N

B2(0) ⊂ Rn

x

U

y

V

φ ψ

The next step is to remove the open disc φ−1(B1(0)) from the manifold M and the open
disc ψ−1(B1(0)) from the manifold N . The following picture shows the resulting topological
spaces M\φ−1(B1(0)) and N\ψ−1(B1(0)). Here the red circles mark the points corresponding
to the sphere Sn−1 ⊂ B2(0) via the homeomorphisms φ and ψ, respectively.

M \ φ−1(B1(0)) N \ ψ−1(B1(0))

The final step is to pass to a quotient space of the union

M \ φ−1(B1(0)) ∪ N \ ψ−1(B1(0))



3 APPENDIX: MANIFOLDS 35

given by identifying points in φ−1(Sn−1) with their images under the homeomorphism

φ−1(Sn−1)
≈−→ ψ−1(Sn−1) z 7→ ψ−1(φ(z)).

The connected sum M#N is this quotient space. In terms of our pictures, the manifold
M#N is obtained by gluing the two red circles, and is given by the following picture.

M#N

Theorem 3.5. (Classification Theorem for compact connected 2-manifolds.) Every
compact connected manifold of dimension 2 is homeomorphic to exactly one of the following
manifolds:

• The connected sum T# . . .#T︸ ︷︷ ︸
g

of g copies of the torus T , g ≥ 0;

• The connected sum RP2# . . .#RP2︸ ︷︷ ︸
k

of k copies of the real projective plane RP2, k ≥ 1;

3.1 Categories and functors

Before giving the formal definition of categories, let us recall examples of mathematical
objects that are quite familiar.

mathematical objects appropriate maps between
these objects

sets maps
groups group homomorphisms
vector spaces over a fixed field linear maps
topological spaces continuous maps

There are obvious similarities between these four cases of mathematical objects, suggest-
ing to destill their commonality into a definition.

Definition 3.6. A category C consists of the following data:

• A class obC of objects of C.
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• For any two objects A,B ∈ obC a set C(A,B) of morphisms from A to B. It is common

to use the notation A
f−→ B to indicate that f is a morphism from A to B, and to call

A the domain or source of f , and B its codomain or target.

• Morphisms f ∈ C(A,B) and g ∈ C(B,C) can be composed to obtain a morphism
g ◦ f ∈ C(A,C). In other words, there is a composition map

◦ : C(B,C)× C(A,B) −→ C(A,C)

(g, f) 7→ g ◦ f

These are required to satisfy the following properties:

(associativity) If f : A → B, g : B → C and h : C → D are morphisms, then (h ◦
g) ◦ f = h ◦ (g ◦ f).

(identity) For every object B there exists a morphism idB : B → B, called identity
morphism such that for all morphism f : A→ B and g : B → C we have idB ◦f =
f and g ◦ idB = g.

Next we want to define what a functor is. As usual, before giving the formal definition,
we want to give at least one example of the to be defined notion as a motivation for the
definition. Our motivating example of a functor is the fundamental group:

• For each topological space X equipped with a base point x0 ∈ X, we have its funda-
mental group π1(X, x0).

• A continuous map f : X → Y with f(x0) = y0 ∈ Y leads to a group homomorphism
f∗ : π1(X, x0) −→ π1(Y, y0).

From an abstract point of view, the fundamental group takes an object (X, x0) of one category
(the category of pointed topological spaces) and produces an object π1(X, x0) of another
category (the category of groups). Moreover, it takes a morphism f : (X, x0)→ (Y, y0) in the
category of pointed topological spaces and produces a morphism f∗ : π1(X, x0) → π1(Y, y0)
in the category of groups.

Definition 3.7. A functor F : C → D from a category C to a category D consists of the
following data:

• An assignment that maps each object A ∈ obC to an object F (A) ∈ obD.

• An assignment that maps each morphism g : A→ B in C to a morphism F (g) : F (A)→
F (B) in D.

We require:
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(Compatibility with composition) For morphisms f : A→ B and g : B → C in C

F (g ◦ f) = F (g) ◦ F (f) ∈ D(A,C).

(Compatibility with identities) For any object A ∈ C, F (idA) = idF (A).

Examples of functors.

functors on objects on morphisms

π1 : Top∗ → Gp (X, x0) 7→ π1(X, x0) (X, x0)
f−→ (Y, y0) 7→

π1(X, x0)
f∗−→ π1(Y, y0)

−⊗W : Vectk → Vectk V 7→ V ⊗W V
f−→ V ′ 7→ V ⊗W f⊗id−→ V ′⊗W

F : Set −→ Vectk S 7→ k[S] S
f−→ T 7→ k[S]

k[f ]−→ k[T ]

Here k[S] is the k-vector space of finite linear combinations
∑

s∈S kss of elements of s
with coefficients ks ∈ k. The adjective finite means that we require ks = 0 for all but finitely
many s ∈ S. The map k[f ] : k[S] → k[T ] sends

∑
s∈S kss to

∑
s∈S ksf(s), which is a finite

linear combination of elements of T .
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