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Statistical Hypothesis Testing

Classical Hypothesis Testing
Review or Reading Assignment

Test of a null hypothesis against an alternative hypothesis. There
are five steps, the first four of which should be done before
inspecting the data.

Step 1. Declare the null hypothesis H0 and the alternative
hypothesis H1.

In a sequence matching problem H0 may be that two sequences are
uniformly independent, in which case the probability of a match is
0.25. H1 may be “probability of a match = 0.35”, or “probability of
a match > 0.25”.
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Classical Hypothesis Testing
Types of hypotheses

A hypothesis that completely specifies the parameters is called
simple. If it leaves some parameter undetermined it is composite.
A hypothesis is one-sided if it proposes that a parameter is > some
value or < some value; it is two-sided if it simply says the
parameter is 6= some value.
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Types of Error

Rejecting H0 when it is actually true is called a Type I Error. In
biomedical settings it can be considered a false positive. (Null
hypothesis says “nothing is happening” but we decide “there is
disease”.)

Step 2. Specify an acceptable level of Type I error, α, normally
0.05 or 0.01.

This is the threshold used in deciding to reject H0 or not. If
α = 0.05 and we determine the probability of our data assuming
H0 is 0.0001, then we reject H0.
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The Test Statistic

Step 3. Select a test statistic.

This is a quantity calculated from the data whose value leads me
to reject the null hypothesis or not. For matching sequences one
choice would be the number of matches. For a contingency table
compute Chi-squared. Normally compute the value of the statistic
from the data assuming H0 is true.

A great deal of theory, experience and care can go into selecting
the right statistic.
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The Critical Value or Region

Step 4. Identify the values of the test statistic that lead to
rejection of the null hypothesis.

Ensure that the test has the numerical value for type I error chosen
in Step 2. For a one-sided alternative we normally find a value x0

so that only α = 0.05 values of the statistic are > x0 (or < x0 for
an alternative in the other direction). For a two-sided alternative
we need thresholds in both directions. We find y0 and y1 so that
0.025 values of the statistic are > y0 and 0.025 values of the
statistic are < y1.
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The Critical Value or Region
Example

The statistic for the number Y of matches between two sequences
of nucleotides is a binomial random variable. Let n be the lengths
of the two sequences (assume they are the same). Under the null
hypothesis that there are only random connections between the
sequences the probability of a match at any point is p = 0.25. We
reject the null hypothesis if the observed value of Y is so large that
the chance of obtaining it is < 0.05.
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The Critical Value or Region
Example

There is a specific formula for the probability of Y matches in n
“trials” with probability of a match = 0.25. We can similarly
calculate the significance threshold K so that

Prob(Y ≥ K |p = 0.25) = 0.05.

When n = 100, Prob(Y ≥ 32) = .069 and Prob(Y ≥ 33) = .044.
Take as the significance threshold 33. Reject the null hypothesis if
there are at least 33 matches.
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Obtain the Data and Execute

Step 5. Obtain the data, calculate the value of the statistic
assuming the null hypothesis and compare with the threshold.
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P-Values
Substitute for Step 4

Once the data are obtained calculate the null hypothesis
probability of obtaining the observed value of the statistic or one
more extreme in the direction of a one-sided alternative. This is
called the p-value. If it is < the selected Type I Error threshold
then we reject the null hypothesis.



Statistical Hypothesis Testing

P-Values
Example

Compare sequences of length 26 under the null hypothesis of only
random matches; i.e., p = 0.25. Suppose there are 11 matches in
our data. In a binomial distribution of length 26 with p = 0.25 the
probability of ≥ 11 matches is about 0.04. So, with the Type I
Error rate, α, at 0.05 we would reject the null hypothesis.



Statistical Hypothesis Testing

Summary of Hypothesis Testing

• Clearly state the null and alternative hypotheses before
designing the experiment.

• Select an optimal test statistic. This is number calculated
from the data.

• Under particular assumptions the test statistic has a
well-understood distribution under the null hypothesis.
Nickname: the null distribution.

• Collect the data and calculate the test statistic.

• If this value is extremely unlikely (based on α and the
alternative) in the null distribution we reject the null
hypothesis.
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Outline
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Statistical Hypothesis Testing

Mean of a Normal

Suppose we are given a normally distributed random variable of
unkown mean µ but known variance σ2. In one test the null
hypothesis is that the mean is µ0 and the one-sided alternative is
“the mean is > µ0”. Set the type I error as α = 0.05. In the
experiment we sample n values, X1, . . . ,Xn, of the random variable.
The chosen test statistic is the average X̄ = (X1 + · · ·+ Xn)/n.
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Mean of a Normal
Normal; unknown mean, known variance

This is a random variable itself that takes different values for
different samples. The theory of sums of random variable implies
that X̄ is normally distributed with mean µ and variance σ2/n.
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Z-scores
Standardization

Normally distributed random variables are often standardized. If Y
is normally distributed with mean m and variance s2, then
(Y −m)/s has a standard normal distribution. This is the Z-score.
It measures the number of standard deviations from the mean.

So, if q95 is the .95 quantile of the standard normal, the .95
quantile of Y is m + q95s.
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Calculate Theshold
For one-sided alternative: µ > µ0

The .95 quantile of the standard normal is

> qnorm(0.95)

[1] 1.645

The .95 quantile of the null distribution is then
t0 = µ0 + 1.645σ/

√
n. Thus, we reject the null hypothesis if

X̄ > t0.
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Two-sided Alternative

With a two-sided alternative; i.e., that µ 6= µ0, we must set
thresholds for the alternatives µ > µ0 and µ < µ0. With a type I
error of 0.05 we use the extreme thresholds of the .025 quantile
and the .975 quantile.

> qnorm(0.025)

[1] -1.96

The thresholds are µ0 − 1.96σ/
√

n and µ0 + 1.96σ/
√

n. Rule of
thumb: 2 standard deviations from the mean is extreme.
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Averages for Non-normal Distributions

Suppose that X is a random variable with mean µ and variance σ2,
which may not be normal. If X0, . . . ,Xn are indpendent samples
from X , then for n sufficiently large, X̄ approaches a normal
distribution with mean µ and variance σ2/n. This is by the Central
Limit Theorem. For X of any distribution we can test the
hypothesis µ = µ0 with enough samples.
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Outline
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Compare Gene Expression Levels
between two cell types

Problem Given a particular gene we want to know if it is expressed
differently in two different cell types. That is, is the gene
differentially expressed in the two cell types.

Biological and technical variations require that we use numerous
replicates of each cell type, taking the mean as the expession level
of the cell type.
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Compare Means of Two Sample Groups

Strategy Measure the expression levels of m cells of one type and n
cells of the second type, and test the null hypothesis that the
means are equal.

Assume the measurements are X11, . . . ,X1m for the first cell type
and X21, . . . ,X2n for the second cell type.

X̄1 = (X11 + · · ·+ X1m)/m, X̄2 = (X21 + · · ·+ X2n)/n, are the two
means.
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Assumption about Distributions
of gene expression

Assumption The gene expression levels in the first cell type are
normally distributed with mean µ1 and variance σ2, and in the
second they are normally distributed with mean µ2 and the same
variance σ2.

Not totally unreasonable when the replicates are true replicates
and variance is small.
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Select Test Statistic
using the assumption

With these assumptions we use the two-sample t test (with equal
variance) calculated as follows.

t0 =
(X̄1 − X̄2)

√
mn

S
√

m + n
,

where S is defined from

S2 =

∑m
i=1(X1i − X̄1)2 +

∑n
i=1(X2i − X̄2)2

m + n − 2
.
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The Distribution of t0
it’s t

Under the null hypothesis and the assumptions of the case, t0
calculated from the data as above follows a t distribution with
m + n − 2 degrees of freedom. This distribution is used to set the
threshold for rejecting the null hypothesis.
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The t Distribution

The probability density function for the t distribution is dt, the
cumulative distribution function is pt and the quantile function is
qt. Each of these has a parameter df for degrees of freedom.

> qt(0.95, df = 5)

[1] 2.015
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The t Distribution
Density plot compared to normal

How does a t distribution compare to a normal distribution?

> xvs <- seq(-4, 4, 0.01)

> plot(xvs, dnorm(xvs), type = "l", lty = 2,

+ ylab = "Probability Density", xlab = "Deviates",

+ main = "Normal and t Density Functions")

> lines(xvs, dt(xvs, df = 5), col = "red")
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Normal vs. t Density
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Normal vs. t Density
Effect of df

> plot(xvs, dnorm(xvs), type = "l", lty = 3,

+ lwd = 3, ylab = "Probability Density",

+ xlab = "Deviates", main = "Normal and t Density Functions")

> lines(xvs, dt(xvs, df = 50), col = "yellow")
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Normal vs. t Density
Effect of df
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Effect of Equal Variance
assumption in this case

It may not be reasonable to assume the variances in the two cell
types are the same. There is an alternative statistic, calculated
with a different formula than t0, the Welch’s two-sample t test
with unequal variance. This also follows a t distribution (with a
complicated calculation of degrees of freedom).

More robust is a non-parametric Mann-Whitney test, which needs
no assumptions on the distribution of the two sample groups,
except that they have the same shape.
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t Tests in R

R has a simple function t.test(...) for carrying out a t test. It
has numerous parameters for setting options, like equal variance or
unequal variance.

Given sample vectors x1, x2, both from normally distributed
random variables, the format of a t test is

result <- t.test( x1, x2, ... )

where . . . are optional parameters. See the help on t.test.
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t Test Example
equal variance

We have variables x1, x2, x3 supplied as experimental data and
we want to compare the means. We can use summary to get some
feel for the numbers.

> summary(x1)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-0.963 0.639 1.010 1.070 1.670 3.560

> summary(x2)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-1.06 1.05 1.61 1.61 2.21 4.32

> summary(x3)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-0.546 0.666 1.490 1.330 1.880 4.130
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Box and Whisker Plots

> boxplot(x1, x2, x3, names = c("x1", "x2",

+ "x3"), main = "Boxplot of x1, x2, x3")
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Check Hypotheses for t Test
for x1, x2

Are the variances equal?

> var(x1)

[1] 0.8949

> var(x2)

[1] 0.9076

Check that x1, x2 are approximately normally distributed.

> par(mfrow = c(1, 2))

> qqnorm(x1)

> qqnorm(x2)

> par(mfrow = c(1, 1))



Statistical Hypothesis Testing

Q-Q Normal Plots of Samples
both in one figure
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Execute t Test
on x1, x2

Null hypothesis: mean(x1)=mean(x2)
Alternative: mean(x1)6=mean(x2) (two-sided)
Type I Error: 0.05

> tx1x2 <- t.test(x1, x2, var.equal = TRUE)

Normally, with the result of a test, or fitting a statistical model,
the results can be obtained just by typing the object or maybe
summary(object). For a t.test, just print.
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Output of the t Test
on x1, x2

Result of the test:

> tx1x2

Two Sample t-test

data: x1 and x2
t = -2.966, df = 108, p-value = 0.003711
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-0.8999 -0.1790
sample estimates:
mean of x mean of y

1.073 1.613
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What Kind of Object is Returned?

Interrogate the object as follows:

> class(tx1x2)

[1] "htest"

> names(tx1x2)

[1] "statistic" "parameter" "p.value"
[4] "conf.int" "estimate" "null.value"
[7] "alternative" "method" "data.name"

Often objects are coded like lists so the components carry different
aspects of the analysis. These parameters are used to prepare the
“report” seen above.
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Extracting Individual Components

> tx1x2$statistic

t
-2.966

> tx1x2$parameter

df
108

> tx1x2$p.value

[1] 0.003711
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What is p.value for Two-sided Test?

Theoretically, after setting α in a two-sided test we find regions at
extremes in the negative and positive directions that each contain
α/2 of the values. Do we reject the null hypothesis if the p.value
is < α or < α/2?

The p.value is supposedly the quantile value of the test statistic
applied to the data. Compute the quantile of the value for our
specific example.
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What is p.value for Two-sided Test?

> pt(tx1x2$statistic, df = 108)

t
0.001856

> tx1x2$p.value

[1] 0.003711

The quantile is half the p.value. Specifying that the test is
two-sided caused R to adjust the p.value so that we reject the null
if the p.value is < α.
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A Failed t Test

> t.test(x1, x3, var.equal = TRUE)

Two Sample t-test

data: x1 and x3
t = -1.405, df = 108, p-value = 0.1630
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-0.6075 0.1036
sample estimates:
mean of x mean of y

1.073 1.325

Can’t conclude that the mean of x1 is different from the mean of
x2.
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t Test with Unequal Variances
Welch’s Two-Sample t

Given two samples, normally distributed with unknown mean and
unknown variance, test the null hypothesis that they have the same
mean.

Another version of the t test handles this more general case.
Calculate a quantity t1 much like t0 from before. Calculate a
pseudo- degrees of freedom d1 from a complicated formula. Under
the null hypothesis t1 satisfies a t distribution with d1 degrees of
freedom.
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Welch’s t Test in R

It is trivial to perform this test in R; it is the default option of
t.test.

> t2x1x2 <- t.test(x1, x2)

> t2x1x2

Welch Two Sample t-test

data: x1 and x2
t = -2.968, df = 104.7, p-value = 0.003713
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-0.8998 -0.1791
sample estimates:
mean of x mean of y

1.073 1.613
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Compare the two t’s

This test did slightly worse than under the equal variance
assumption.

> t2x1x2$p.value

[1] 0.003713

> tx1x2$p.value

[1] 0.003711

It is harder to “pass” a test with fewer restrictions on the samples.
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Two samples, Arbitrary Distribution

Given: Two samples with a common distribution, which may not be
normal. Test the null hypothesis that they have the same mean.

Such methods are called nonparametric or (more accurately)
distribution-free. Such tests are conservative in that we make no
assumptions about the distribution (except that they’re the same
in both samples). It is also conservative in that it is difficult to
reject the null hypothesis.
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Mann-Whitney

The method developed here has a couple of equivalent names:
Mann-Whitney test or Wilcoxon rank sum test.The term
Mann-Whitney seems most common in biostatistics.

First some point plots to illustrate what’s happening here.
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Two Samples
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Sort and Rank
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Wilcoxon Rank Sum Statistic

Suppose the first sample group contains m samples and the second
n samples.

• Rank order the samples in both groups taken together with
the smallest value ranked 1 and the largest ranked m + n.

• Add up the ranks of the samples in the first group and call it
W .

• Under the null hypothesis W follows a Wilcoxon distribution
with parameters for m and n.
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Wilcoxon Distribution
Close to Normal
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Wilcoxon Test in R
Mann-Whitney

Just like with the t test there is a function that performs the
Wilcoxon rank sum test in R. The format is

Wres <- wilcox.test(sampleA, sampleB)

The output, Wres is an htest object, just as with a t test.
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Example of Wilcoxon Test

We’re given two samples, sampA, sampB, and want to test if the
means are the same. Each has 15 points. In this case they aren’t
far from normal, but let’s use a rank sum test for illustration.
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Check Distributions
> qqplot(sampA, sampB)

●

● ●

●

●
● ●●

●

●●
●

●
●

●●

● ●
● ●

●

●

●
●
●
●
● ●

●

●

−2 −1 0 1 2 3 4

1
2

3
4

sampA

sa
m

pB

Not great but OK for
samples with few points.



Statistical Hypothesis Testing

Execute the Wilcoxon Test

> wTest <- wilcox.test(sampA, sampB)

> wTest

Wilcoxon rank sum test

data: sampA and sampB
W = 297, p-value = 0.02339
alternative hypothesis: true location shift is not equal to 0
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Comparing Means in General

The Wilcoxon test is not entirely distribution-free. It assumes the
two samples have roughly the same distribution except possibly a
difference of means. A more general test to compare the means of
two samples that has no assumptions about the distributions can
be executed using a bootstrap approximation of the underlying
distribution.
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