
Objects that Hold Data

R Language Fundamentals
Data Frames

Steven Buechler

Department of Mathematics
276B Hurley Hall; 1-6233

Fall, 2007



Objects that Hold Data

Outline

Objects that Hold Data
Simple Example of Manipulating Data Frames
Writing functions, loops and conditionals



Objects that Hold Data

Clean-up and Filter

Some common tasks in preparing a data frame for analysis are:

• Set appropriate rownames (sample ids) and component names
(variables).

• Massage factors by collapsing extraneous levels, renaming
levels, labeling missing values.

• Decide on which rows or columns to eliminate based on
missing values or the specific analysis. Do we eliminate any
record with missing data, or just too much missing data?



Objects that Hold Data

Breast Cancer Example

The clinical data from a breast cancer study in Sweden are found
in the spreadsheet “Clinical Upps.csv”. This is typical
supplementary data found on the Gene Expression Omnibus (GEO)
at NCBI, and/or accompanying a paper.



Objects that Hold Data

Read in Spreadsheet
and get acquainted

> clinUPPS <- read.csv("../Lect2/lect2WorkDir/Clinical_Upps.csv")

> dim(clinUPPS)

[1] 249 11

> clinUPPS[1:3, 1:4]

GSM.ID..A.B.chip. ID Grd DFS_time
1 GSM110625/GSM110874 X100B08 1 11.83
2 GSM110626/GSM110875 X101B88 3 11.83
3 GSM110627/GSM110876 X102B06 3 11.83



Objects that Hold Data

Name the Rows

> rownames(clinUPPS) <- clinUPPS$ID



Objects that Hold Data

Inspect Components

> names(clinUPPS)

[1] "GSM.ID..A.B.chip." "ID"
[3] "Grd" "DFS_time"
[5] "DFS_event" "No_tamox"
[7] "ER_status" "Lymph_node"
[9] "p53_mut_status" "age_at_diagnosis"
[11] "tumor_size_.mm."

Viewing the original spreadsheet is not cheating. It reveals the
codes used in recording the data.



Objects that Hold Data

Inspect No tamox

> clinUPPS$No_tamox[1:5]

[1] 1 1 NA NA NA



Objects that Hold Data

Correct No tamox Coding

The coding of the No tamox component reads as 1, NA, when the
NA really codes “Yes, Tamoxifen”. So, recode these NA’s as 0.

> tam <- clinUPPS$No_tamox

> tam[is.na(clinUPPS$No_tamox)] <- 0

> clinUPPS[, 6] <- tam

> clinUPPS[1:5, 6]

[1] 1 1 0 0 0



Objects that Hold Data

Any Other NAs?

> sum(is.na(clinUPPS))

[1] 0

Nope



Objects that Hold Data

Characteristics of ER Status

In this experiment we’re comparing estrogen receptor positive
(ER+) samples with (ER-) samples. Check that each sample has a
determined status.

> levels(clinUPPS$ER_status)

[1] "ER+" "ER-" "ER?"

> table(clinUPPS$ER_status)

ER+ ER- ER?
211 34 4

We need to remove the ER? samples.



Objects that Hold Data

Filter by ER Status

> clinUPPS2 <- clinUPPS[clinUPPS$ER_status !=

+ "ER?", ]

> table(clinUPPS2$ER_status)

ER+ ER- ER?
211 34 0

Clean-up the ER status factor to remove the defunct level.

> clinUPPS2$ER_status <- factor(as.character(clinUPPS2$ER_status))



Objects that Hold Data

Outline

Objects that Hold Data
Simple Example of Manipulating Data Frames
Writing functions, loops and conditionals



Objects that Hold Data

Grouped Expressions

In writing custom functions and loops it’s necessary to group a set
of expressions together and generate a single output of this set of
expressions. Commands may be grouped inside braces. The output
of the grouped expressions is the value of the last expression.



Objects that Hold Data

Loops

It may be necessary to loop through an index and perform an
operation at each iteration. The most common format uses the
for construct.

for (name in vec) {grouped expression }

Most commonly, vec is an integer range, like 1:20, so name
iterates through those integers, and the grouped expression uses
name as a variable.



Objects that Hold Data

for Example

Use a for loop to compute the product of the elements of a given
vector.

> a <- 1:10

> b <- 1

> for (i in 1:length(a)) {

+ b <- b * a[i]

+ }

> b

[1] 3628800



Objects that Hold Data

for Example 2

Given a list such that each component is a character vector, create
a list whose components are the first entry of the vector.

> LL <- list(one = c("a", "b", "c"), two = c("p",

+ "q", "r"), three = c("x", "y"))

> FF <- vector(mode = "list", length = length(LL))

> for (i in 1:length(LL)) {

+ FF[[i]] <- LL[[i]][1]

+ }



Objects that Hold Data

for Example 2

> FF

[[1]]
[1] "a"

[[2]]
[1] "p"

[[3]]
[1] "x"

> ff <- unlist(FF)

> ff

[1] "a" "p" "x"

It’s ocassionally useful to collapse a list to a vector when the
components will allow it.



Objects that Hold Data

Other Control Statements

R has an if-else statement in the format

if (logical expr) { group 1 } else { group 2 }

Other constructs to look up are ifelse, while, repeat and
break. You’ll need these when writing batch programs.



Objects that Hold Data

Function Objects

R allows the user to write functions. These can be applied just like
core functions ( sum, seq, etc.). The format for creating the
function named fn is

fn <- function( var1, var2, ... ) { expr group }

Here, var1, etc., are the objects the function takes as input. The
return value of the function is the value of the expression group;
i.e., the value of the last command in the group.



Objects that Hold Data

First Function

Write a function that computes the product of the entries in a
vector.

> prod1 <- function(x) {

+ b <- 1

+ for (i in 1:length(x)) {

+ b <- b * x[i]

+ }

+ b

+ }



Objects that Hold Data

Product Function

Examples:

> a1 <- c(2, 4, 7)

> b1 <- prod1(a1)

> b1

[1] 56



Objects that Hold Data

Functions as Subroutines

Functions can be used as reusable chuncks of code. Given input
they execute a set of commands and return some output.

R commands, including function definitions can be stored in an
ordinary text file with a .R extension. Simply type the commands
as you would at a prompt, except they aren’t executed. Then
execute in R,

> source("the file")

The commands are executed and any defined functions are ready
for use.



Objects that Hold Data

Defined Functions in apply

More essential is the use of defined functions in apply and friends.

Problem Given a matrix A find a vector v whose i th entry is
max(row i) - min(row i).



Objects that Hold Data

Defined Functions in apply

> maxMin <- function(x) {

+ max(x) - min(x)

+ }

> A <- matrix(rnorm(16), nrow = 4, ncol = 4)

> v <- apply(A, 1, maxMin)

> v

[1] 1.3582 2.0209 2.2516 0.8158



Objects that Hold Data

Defined Functions in apply

More commonly, the function definition is included with the apply.

> vv <- apply(A, 1, function(x) {

+ max(x) - min(x)

+ })

> vv

[1] 1.3582 2.0209 2.2516 0.8158



Objects that Hold Data

The lapply Function

The lapply function alows batch operation of a function on the
components of a list. This can replace many (slow) for loops.

Given a list LL with n components, suppose we want to apply a
function successively to LL[[i]], for each i, and to collect all the
output. Here, it’s assumed that fn(i) gives the desired output for
the input LL[[i]].



Objects that Hold Data

The lapply Function

The format:

FF <- lapply( 1:n, fn)

Then FF is a list with n components, FF[[i]] is the result of
applying the function to LL[[i]].



Objects that Hold Data

The lapply Function
Example

Consider the for loop example in which all list components are
character vectors and we want to extract the first entry from each
component. This is done with lapply as follows. Note, LL already
exists.

> M <- lapply(1:length(LL), function(x) {

+ LL[[x]][1]

+ })

> unlist(M)

[1] "a" "p" "x"


	Objects that Hold Data
	Simple Example of Manipulating Data Frames
	Writing functions, loops and conditionals


