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Numerical Algebraic Geometry

Goal:  To develop and implement numerical algorithms, 
based on algebraic geometry:

To solve problems from engineering and science that 
currently do not have a solution
To do exploratory computations in algebraic 
geometry

Technical Challenge:  To combine high performance 
numerics with algebraic geometry
Applications:

Robotics and Mechanism Theory
Computation of algebraic-geometric invariants
Solution of discretizations of nonlinear differential 
equations
Chemical Reactions including combustion

Robotics/Mechanism Theory

Combustion

graphics on right from Sommese-Wampler Book
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Overview of Talk

Solving Polynomial Systems
Homotopy Continuation to Compute Isolated Solutions.           

Alt’s Problem: a case study.

Positive Dimensional Solution Sets
Numerical issues and Bertini

Deflation and Endgames to deal with multiple components
The need for adaptive precision

Regeneration: a new approach to finding isolated 
solutions
Two applications

Overconstrained Mechanisms and Fiber Products
Geometric Genus of Curve Components



University of California 
Berkeley   October 2, 2007 4

Solving Polynomial Systems

Find all solutions of a polynomial system 
��:
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Computing Isolated Solutions

Find all isolated solutions in �N of a system 
on n polynomials:
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Solving a system

Homotopy continuation is our main tool: 
Start with known solutions of a known start 
system and then track those solutions as we 
deform the start system into the system that we 
wish to solve.
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Continuation’s Core Computations

Given a system f(z) = 0 of N polynomials in 
N unknowns, continuation computes a finite 
set S of solutions such that:

any isolated root of f(z) = 0 is contained in S; 
any isolated root “occurs” a number of times 
equal to its multiplicity as a solution of f(z) = 0;
S is often larger than the set of isolated 
solutions.

Continuation allows us to vary parameters.
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Path Tracking

This method takes a system g(z) = 0, whose 
solutions we know, and makes use of a 
homotopy, e.g.,

Hopefully, H(z,t) defines “paths” z(t) as t runs 
from 1 to 0.  They start at known solutions of 
g(z) = 0 and end at the solutions of f(z) at t = 0.

tg(z). t)f(z)-(1  t)H(z, +=
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The paths satisfy the Davidenko equation

To compute the paths: use ODE methods to 
predict and Newton’s method to correct.
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Solutions of  

f(z)=0

Known 
solutions of 
g(z)=0

t=0 t=1H(z,t) = (1-t) f(z) + t g(z)

z3(t)

z1(t)

z2(t)

x4(t)
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Newton 
correction

prediction

{

∆ t

zj(t)

z*

0
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A Guiding Principle Then

Algorithms must be structured – when 
possible – to avoid paths leading to singular 
solutions: find a way to never follow the 
paths in the first place.
Special Homotopies to take advantage of 
sparseness
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Hardware

Continuation is computationally intensive.     
On average:

in 1985: 3 minutes/path on largest mainframes.
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Hardware

Continuation is computationally intensive.     
On average:

in 1985: 3 minutes/path on largest mainframes.
in 1991: over 8 seconds/path on an IBM 3081; 
2.5 seconds/path on a top-of-the-line IBM 3090.
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Hardware

Continuation is computationally intensive.     
On average:

in 1985: 3 minutes/path on largest mainframes.
in 1991: over 8 seconds/path on an IBM 3081; 
2.5 seconds/path on a top-of-the-line IBM 3090.
2006: about 10 paths a second on an single 
processor desktop CPU; 1000’s of paths/second 
on moderately sized clusters.



University of California 
Berkeley   October 2, 2007 16

Positive Dimensional Solution Sets

We now turn to finding the positive dimensional 
solution sets of a system
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Representing positive dimensional components

Use the intersection of a component 
with generic linear space of 
complementary dimension.  
By using continuation and deforming 
the linear space, as many points as are 
desired can be chosen on a component.
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Use a generic flag of 
affine linear spaces
to get witness point 
supersets
This approach has 19th

century roots in 
algebraic geometry
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Numerical issues and Bertini

Endgames and Deflation to deal with 
multiplicity greater than one components

The need for adaptive precision
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Numerical issues posed by multiple components

Consider a toy homotopy

Continuation is a problem because the Jacobian with
respect to the x variables is singular.

How do we deal with this?
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Deflation for isolated singularities

The basic idea introduced by Ojika in 1983 is 
to differentiate the multiplicity away. Leykin, 
Verschelde, and Zhao gave an algorithm for an 
isolated point that they showed terminated.

Given a system f, replace it with
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To make a viable algorithm for multiple 
components, it is necessary to make 
decisions on ranks of singular matrices.  To 
do this reliably, endgames are needed.
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Endgames (Morgan, Wampler, and S.)

Example: (z – 1)2 - t = 0
We can uniformize around 
a solution at t = 0.  Letting
t = s2, knowing the solution
at t = 0.01, we can track
around |s| = 0.1 and use
Cauchy’s Integral Theorem 
to compute x at s = 0.
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Bertini and the need for adaptive precision

High precision was not practical in the 90’s!
Highly nontrivial to design and dependent on 
hardware
Hardware too slow
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Why use Multiprecision?

to ensure that the region where an endgame 
works is not contained in the region where the 
numerics break down; 
to ensure that a polynomial is zero at a point is 
the same as the polynomial numerically being 
approximately zero at the point;
to prevent the linear algebra in continuation from 
falling apart.
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Evaluation

p(z) = z10 – 28z9 + 1
To 15 digits of accuracy one of the roots of this 
polynomial is a = 27.9999999999999. Evaluating 
p(a) to 15 digits, we find that 
p(a) = -0.05784559534077. 
Even with 17 digit accuracy, the approximate root a 
is a = 27.999999999999905 and we still only have 
p(a) = -0.0049533155737293.
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Wilkinson’s Theorem Numerical Linear Algebra

Solving Az = f,  with A an N by N matrix,
we must expect to lose                           digits of
accuracy.  Geometrically,                                is
on the order of the inverse of the distance in 
from A to to the set defined by det(A) = 0.

)](cond[log10 A

||||||||)( cond 1−⋅= AAA
1−×NNP
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Using Higher Precision

One approach is to simply run paths that fail 
over at a higher precision, e.g., this is an option 
in Jan Verschelde’s code, PHC.
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Using Higher Precision

One approach is to simply run paths that fail 
over at a higher precision, e.g., this is an option 
in Jan Verschelde’s code, PHC.

This is computationally very expensive!
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Bertini

Bertini uses data types modeled on the 
geometry and is designed to dynamically 
adjust the precision to achieve a solution 
with a prespecified error.  

Bertini is being developed by Daniel Bates, Jon 
Hauenstein, Charles Wampler, and myself.
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Issues

You need to stay on the parameter space 
your problem is on.
You need rules to decide when to change 
precision and by how much to change it.
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Near-singular conditions actually arise.  For 
the best known polynomial system to solve 
Alt’s problem:

Out of 143,360 paths:
1184 paths (0.826%) used higher precision and then 
dropped back to double precision before starting the 
endgame
680 paths (0.474%) used at least 96-bit precision and 
then dropped back to double precision before starting the 
endgame
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Equation-by-Equation Methods

Potential to solve systems with relatively few 
solutions that are completely outside of the 
beyond the pale of standard continuation 
methods  

Intersection Method by Sommese, Verschelde, 
and Wampler
Regeneration Method by Hauenstein, Sommese, 
and Wampler
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Basic Idea
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Numerical Equation by Equation
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Diagonal Approach of S., V., & W.
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The Intrinsic Diagonal Homotopy

=
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Numerical Equation by Equation
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Regeneration: Jon Hauenstein, S., &W.
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Both methods generate a witness set for f1,..,fk+1
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Alt’s System

in the 24 variables
with j from 1 to 8.

[ ] [ ] 0δδ - x) -a (δ )x̂ - â(δγ̂ x̂)δ -(a  γ)xδ - â( jjjjjjjj =+++

[ ] [ ] 0δδ -  y)- b(δ )ŷ - b̂(δγ̂ ŷ)δ - (b γ)yδ - b̂( jjjjjjjj =+++

0γ̂γγ̂γ jjjj =++

jj γ̂, γand ŷ ,x̂ ,b̂ ,â  y,x, b, ,a
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Freudenstein-Roth system

Using Cramers rule and substitution we have 
what is essentially the Freudenstein-Roth 
system consisting of 8 equations of degree 7.
In 1991, this was impractical to solve: 

78 = 5,764,801solutions.
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Timings: Alt’s Problem

Timings are by Jon Hauenstein
� � �"�� ��� �" ��� #����� 2 �"�� ���"� �"� 3 (���" �
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Further Timings: Alt’s Problem
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More dramatic with the simpler system
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Conclusions from Equation-by-Equation Runs

Equation-by-equation methods may be much 
faster than using standard continuation
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Conclusions from Equation-by-Equation Runs

Equation-by-equation methods may be much 
faster than using standard continuation
On a badly formulated system, equation-by-
equation may dramatically beat standard 
continuation 
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Conclusions from Equation-by-Equation Runs

Equation-by-equation methods may be much 
faster than using standard continuation
On a badly formulated system, equation-by-
equation may dramatically beat standard 
continuation 
Equation-by-equation methods used on badly 
formulated systems may be comparable to 
standard continuation used on optimally 
formulated systems
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Diagonal versus Regeneration

Regeneration can easily take advantage of 
special product structures of the equations.
Diagonal homotopies allow us to intersect 
solution components of the same system, 
while regeneration does not.
Regeneration is roughly twice as fast an 
equation-by-equation method as the diagonal 
method.
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Overconstrained Mechanisms

Special platform robotGeneral platform robot

Leg Lengths =  FixedLeg Lengths = Not Fixed
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To automate the finding of such mechanisms, 
we need to solve the following problem:

Given an algebraic map p between irreducible 
algebraic affine varieties X and Y, find the 
irreducible components of the algebraic subset 
of X consisting of points x with the dimension of 
the fiber of p at x greater than the generic fiber 
dimension of the map p.
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An approach

A method to find the exceptional sets
A.J. Sommese and C.W. Wampler, Exceptional 
sets and fiber products, to appear Foundations of 
Computational Mathematics.

Equation-by-equation approach
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Computing the geometric genus of a curve

Bates, Chris Peterson, Sommese, Wampler
Key observation: the geometric genus of a 
curve depends only on monodromy around 
images of singularities, which is easy to 
compute numerically.
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Numerical approach by using Hurwitz’s formula

Given an irreducible curve X that is a component of V(f) of 
a polynomial system,

X is represented by a generic hyperplane L = 0 plus W, the 
set of degree X points where L meets X.
L = 0 is the fiber of a general projection p from CN to C.
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Use the Hurwitz formula
g = -deg X + 1 + ρ/2
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A general planar four-bar coupler curve C

C is a (3,3) curve in P1 x P1.  Arithmetic genus at 
most 4 with at least 3 singularities: so geometric 
genus is at most 1.
Treating it as a degree 6 curve in P2.  We compute 
30 potential branch points counting multiplicities:

2 potential branch points with multiplicity 6 each make a 
local contribution 0 to ρ;
3 potential branch points with multiplicity 2 each make a 
contribution of 0 to ρ;
12 potential branch points contribute one each to ρ.
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The geometric genus is 1
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Algebraic vs. Geometric Approaches

Pros Cons
Highly developed Parallelizes very poorly
Can give exact answers Very unstable dependence on inputs

Parallelizes almost perfectly New--less developed than 
algebraic/symbolic approach 

Relatively stable dependence on 
inputs

Geometric/ 
Numerical Methods Depending on # of digits used, 

gives answers reasonable for that 
accuracy

Certifiably exact answers are 
computationally very expensive

Algebraic/Symbolic
Not restricted to characteristic 
zero

Memory requirements grow rapidly 
with number of variables

Restricted to real and complex 
numbers
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Summary

Many Problems in Engineering and Science are 
naturally phrased as problems about algebraic sets 
and maps.
Numerical analysis (using continuation) gives a 
geometric method to manipulate algebraic sets and 
give practical answers.
Increasing speedup of computers, e.g., the recent 
jump into multicore processors, continually 
expands  the practical boundary into the purely 
theoretical region.
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