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Abstract
In this paper we investigate the class of rigid monomial ideals.

We give a characterization of the minimal free resolutions of certain
classes of these ideals. Specifically, we show that the ideals in a par-
ticular subclass of rigid monomial ideals are lattice-linear and thus
their minimal resolution can be constructed as a poset resolution. We
then use this result to give a description of the minimal free resolu-
tion of a larger class of rigid monomial ideals by using L(n), the lattice
of all lcm-lattices of monomial ideals with n generators. By fixing a
stratum in L(n) where all ideals have the same total Betti numbers
we show that rigidity is a property which is upward closed in L(n).
Furthermore, the minimal resolution of all rigid ideals contained in a
fixed stratum is shown to be isomorphic to the constructed minimal
resolution.

Introduction

Giving a constructive method for finding the minimal free resolution of a
monomial ideal is a question which has motivated a wide variety of projects in
commutative algebra. Various methods are known for computing the multi-
graded Betti numbers in the general case, and there are numerous strategies
for constructing the maps in free resolutions. Despite this diversity of results
it is still not known how to construct the maps in a minimal free resolu-
tion except for certain subclasses of monomial ideals (generic and Borel are
examples).

In this paper we explore the class of rigid monomial ideals which were
introduced to us by Ezra Miller [8]. By definition, a rigid ideal has the fol-
lowing two properties; (R1) every nonzero multigraded Betti number equals
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1 and (R2) multigraded Betti numbers which are nonzero in the same ho-
mological degree correspond to incomparable monomials in the lcm-lattice.
Rigid ideals include as subclasses the generic monomial ideals and the mono-
mial ideals whose minimal resolution is supported on their Scarf complex.
Furthermore, rigid ideals are a generalization of the monomial ideals in three
variables whose minimal resolution may be constructed using a rigid embed-
ding, introduced by Miller [7].

Theorem 1.4, which was communicated along with the definition [8], char-
acterizes rigid monomial ideals as having a unique finely graded minimal
resolution up to independently rescaling the finely graded basis vectors. As
such, the maps in such a minimal resolution should be explicitly describable.
Our interest in studying rigid ideals stems from a desire to identify combi-
natorial objects which encode the data of these maps. We propose that the
lcm-lattice or more specifically the subposet of the lcm-lattice consisting of
Betti degrees is the appropriate combinatorial object. The techniques of this
paper allow us to prove such a statement for a subclass of rigid monomial
ideals. We give a detailed description of the obstruction to using these new
methods on all rigid monomial ideals.

More precisely, given that the minimal resolution of a rigid monomial
ideal is unique up to scaling, and that the Betti numbers can be computed
from the lcm-lattice it seems that a description of the resolution’s maps using
the relations in the lcm-lattice should be possible. We aim toward this goal
by taking advantage of the construction described by the first author in [3].
This construction takes as its input the lcm-lattice of a monomial ideal and
produces an approximation to the minimal free resolution of the given ideal.
In the case when the minimal free resolution is indeed obtained, the ideal
is said to be lattice-linear. More generally, if a multigraded poset is used as
input for this construction and the resulting sequence is an exact complex of
multigraded modules, it is called a poset resolution.

In this paper we focus attention on a subclass of rigid ideals which we call
concentrated. In general, an ideal is said to be concentrated if its Betti (con-
tributing) multidegrees are less than all the multidegrees in the lcm-lattice
which are not Betti multidegrees. In particular, Theorem 2.4 states that a
rigid monomial ideal is concentrated if and only if it is lattice-linear. We
therefore construct a minimal poset resolution for the class of concentrated
rigid monomial ideals.

The remainder of the paper focuses on the development of a method for
transferring the resolution information of a rigid monomial ideal to related
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ideals which have the same total Betti numbers. In particular, we consider
rigid ideals in relation to their neighbors in L(n), which is the set of all finite
atomic lattices (or lcm-lattices) with n ordered atoms. In [10], Theorem 4.2
shows that under an appropriate partial order, L(n) is itself a finite atomic
lattice. Furthermore, Theorem 3.3 in [5] implies that total Betti numbers
increase along chains in L(n). It is therefore natural to study subposets of
L(n) with fixed total Betti numbers, which we refer to individually as Betti
stratum. Within a fixed Betti stratum it is useful to describe families of
monomial ideals within these subposets with isomorphic minimal resolutions
(while allowing non isomorphic lcm-lattices). Precisely, Theorem 3.3 states
that any two rigid monomial ideals in a fixed Betti stratum whose lcm-
lattices are comparable in L(n) must have isomorphic minimal resolutions.
This allows us to construct a minimal poset resolution for a larger class of
rigid monomial ideals than guaranteed by Theorem 2.4.

The final section of this paper discusses precisely how the methods of this
paper can fail for rigid monomial ideals which are not concentrated. It should
be noted that this failure is theoretical, for we have yet to construct examples
of rigid monomial ideals whose minimal resolution cannot be constructed as
a poset resolution on the subposet of Betti degrees in the lcm-lattice.

Acknowledgements. We would like to thank Ezra Miller and Irena Peeva
for comments which helped improve the clarity of this paper and for their
fundamental definitions and observations for without which this paper would
not exist.

1 Rigid monomial ideals

Let R = k[x1, . . . , xd]. We write xa = xa1
1 · · ·x

ad
d for a monomial in R and

investigate properties of ideals in R which are generated by monomials.
Recall that for a monomial ideal M whose set of minimal generators is

G(M) = {m1, . . . ,mn}, the finite atomic lcm-lattice LCM(M) has the mono-
mials of G(M) as its atoms and the least common multiples of m1, . . . ,mn

as its ground set. The monomials in LCM(M) are ordered by divisibility,
the maximal element of LCM(M) is lcm(m1, . . . ,mn) and the minimal ele-
ment is 1, considered as the lcm of the empty set of monomials. Gasharov,
Peeva and Welker first defined this combinatorial object in [5] and derived a
formula for the multigraded Betti numbers of M based on the homology of
its open intervals.
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Figure 1: lcm-lattices of monomial ideals M (rigid) and N (non-rigid)

The following definition was communicated to the second author by Miller
[8].

Definition 1.1. A rigid monomial ideal is a monomial ideal whose multi-
graded Betti numbers satisfy the following two properties:

(R1) βi,b is either 1 or 0 for all i and all multidegrees b.

(R2) If βi,b = 1 and βi,b′ = 1 then xb and xb′ are not comparable in
LCM(M), the lcm-lattice of M .

Note that since (multigraded) Betti numbers are dependent on the char-
acteristic of the field k, the condition of being rigid is as well. In fact, the
well-known example of the monomial ideal arising from a triangulation of
the real projective plane is rigid in characteristic other than 2 and not rigid
when the characteristic is 2.

Example 1.2. The monomial ideal M = (a2, ab, b2) is rigid since the first
syzygies a2b and ab2 are not comparable in LCM(M), whereas the monomial
ideal N = (bc, ac, a2b) is not rigid since the first syzygies abc and a2bc are
comparable in LCM(N).

Our main interest in studying rigid monomial ideals follows from the fact
that their minimal resolutions are unique up to scaling. To state precisely and
prove this property, we first discuss the automorphisms of minimal resolutions
of a multigraded module.

Definition 1.3. Let F be a multigraded free resolution of a multigraded
module. An automorphism of F is a collection of multigraded (degree 0)
isomorphisms fi : Fi → Fi which has the property that d′i ◦ fi = fi−1 ◦ di for
every i ≥ 1. Here, {di} and {d′i} are the representatives of the differential of
F which come as a result of distinct basis choices.
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For an arbitrary monomial ideal, the isomorphism fi may be realized as
an element of GLβi

(R) for every 0 ≤ i ≤ p and as such, the automorphism
group of F is a subgroup of

⊕p
i=0GLβi

(R). We say that an automorphism
of F is trivial if the maps representing the isomorphisms {fi} are diagonal
matrices with units of k along the diagonal. The following characterization of
rigid monomial ideals was also communicated to the second author by Miller
[8] without proof. We restate the result here and provide our own proof since
it does not appear in the literature.

Proposition 1.4. The automorphisms of the minimal resolution of R/M
are trivial if and only if M is rigid.

Proof. Write F for the minimal free resolution of R/M . To consider auto-
morphisms on F we address on a case by case basis the automorphisms of the
free module Fi which are possible. The fact that the maps fi must commute
with the differentials gives the condition

di = f−1
i−1 ◦ d′i ◦ fi

for 1 ≤ i ≤ p . As such, we consider how each fi acts on d′i.
The minimal free resolution of an arbitrary monomial ideal has F0, a

free module of rank one, appearing in homological degree zero of its minimal
resolution. This module has a basis element of multidegree 0 = (0, . . . , 0)
and as such, any automorphism f0 is represented by a 1 × 1 matrix whose
entry is a unit of k.

Since the r minimal generators of a monomial ideal are unique, the free
module F1 consists of r free modules of rank one whose individual shifts
match the multidegrees of the monomial generators. Any automorphism of
the free module F1 therefore may only send a basis element of multidegree
a to a scalar multiple of itself. We therefore see that that there is only one
choice for d1 (up to scaling) and hence, f1 is a matrix with units along its
diagonal.

Note that we have not as yet assumed rigidity, so that for any auto-
morphism of the minimal free resolution of a monomial ideal, the individual
module automorphisms f0 and f1 are trivial.

In what follows, we assume that M is a rigid monomial ideal and proceed
with the proof that the automorphisms of F are trivial by induction on
homological degree.

Let i > 1 and suppose that fi−1 is a matrix with units along the diagonal,
so that we need to show the same is true for fi. Since fi is a multigraded
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isomorphism, it is possible to more precisely describe how its matrix entries
relate to the multidegrees of the source and target basis elements, whose
relationship fi encodes. Indeed, write b for the multidegree of a basis element
b in the free module Fi. In order for the map fi to preserve the multidegree
b, the monomial xb must be divisible by the monomials whose multidegrees
index the rows of fi and which correspond to the nonzero entries of the
column of fi that is of multidegree b. Precisely, for a basis element b ∈ Fi
of multidegree b, we write b = mb,c1c1 + · · · + mb,cpcp for its expansion in
an alternate basis and conclude that the monomial factor of the coefficients
mb,cj ∈ R must satisfy b = mdeg(mb,cj ) + cj for all j.

Since fi is an automorphism of a free module then it must be the prod-
uct of elementary matrices which correspond to one of the following column
operations:

1. interchange two columns in d′i

2. multiply a column in d′i by an element of R

3. add a ring element multiple of a column in d′i to another column.

We consider each case individually.
Since M is rigid, the basis elements in the free module Fi have unique

multidegrees due to condition (R1). Furthermore, these multidegrees corre-
spond to monomials which are pairwise incomparable in LCM(M) due to
condition (R2). We therefore know that the free module Fi contains only
one shifted copy of the ring for each multidegree.

Suppose that Fi may be realized using either the choice of multigraded
basis Bi or the choice of multigraded basis Ci. Without loss of generality,
we may assume that the bases Bi and Ci have a fixed ordering in which bt
and cs have the same multidegree if and only if t = s. This rules out the
possibility of maps of type 1 occurring in the structure of fi.

For maps of type 2, the equality of the multidegrees of the target and
source basis elements forces each of the nonzero entries of the matrix of fi to
be a unit in k since the degree preserving nature of the map must be upheld.

Finally, considering maps of type 3, we see that the fact that bk and
fi(bk) have the same multidegree for each k implies that if fi adds a multiple
of a column l to the column k then in order for multidegrees to be preserved,
it must be that xbl divides xbk . This however, implies that either xbl and xbk

are comparable in LCM(M) or that they are equal, contradicting condition
(R2) or (R1) respectively.
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Together, these facts imply that the matrix of fi must be invertible, diag-
onal and degree preserving so that it has only units along its diagonal. Thus,
the only automorphisms of F are trivial and specifically, the differential maps
in F are unique up to scaling.

Conversely, suppose that a monomial ideal M has a free resolution which
admits only trivial automorphisms. Since the individual maps in such an
automorphism cannot be constructed from a product of elementary matrices
which interchange two columns, the multidegrees of the free modules must
be unique. Since these maps also cannot be constructed from a product
of elementary matrices which multiply a column in d′i by an element of R
or which add a ring element multiple of a column in d′i to another column,
the multidegrees of the free modules are not comparable to one another in
LCM(M). Thus, conditions (R1) and (R2) are satisfied and M is a rigid
ideal.

2 Minimal resolutions as poset resolutions

The benefit of looking at rigid monomial ideals instead of the entire class
of monomial ideals is that we have some hope of writing down a closed
form description of the minimal free resolution. We do not give a complete
description here, but provide descriptions of resolutions for a subclass of rigid
monomial ideals and describe the remaining types to consider.

We begin by introducing a notion that describes the multidegrees con-
tributing to the minimal resolution in the context of the poset relations of
the lcm-lattice. We call M concentrated if every multidegree from LCM(M)
which does not contribute to the minimal free resolution appears higher than
all the contributing multidegrees in LCM(M). In other words, every mul-
tidegree which is smaller than a contributing multidegree must itself con-
tribute. Formally, we have the following.

Definition 2.1. A monomial ideal is said to be concentrated if it has the
property that for every xa ∈ LCM(M) such that βj,a(R/M) = 0 for all j then
xa > xb ∈ LCM(M) for every xb ∈ LCM(M) for which βi,b(R/M) 6= 0 for
some i. A monomial ideal which is not concentrated is said to be dispersed.

The class of concentrated monomial ideals is a generalization of the class
of lattice-linear monomial ideals, whose minimal free resolution was con-
structed in [3].
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Definition 2.2. A monomial ideal M is lattice-linear if multigraded bases
Bk of the free modules Fk appearing in the minimal free resolution of R/M
can be fixed for all k so that for any i ≥ 1 and any b ∈ Bi the differential

di(b) =
∑

b′∈Bi−1

mb,b′ · b′

has the property that if the coefficient mb,b′ 6= 0 then xb′ is covered by xb in
the lcm-lattice LCM(M).

The property of being concentrated is indeed a generalization of lattice-
linearity, for if an ideal is lattice-linear, the coverings in the lcm-lattice are
mirrored by the action of the differential on the corresponding basis elements.
Were any noncontributing element dispersed between contributing elements
within LCM(M), the assumption of lattice-linearity would immediately be
contradicted. Thus, every ideal which is lattice-linear is a concentrated ideal.

Remark 2.3. For an arbitrary monomial ideal, the property of being con-
centrated is not enough to guarantee lattice-linearity.

Consider the example of the monomial ideal whose lcm-lattice is the aug-
mented face poset of the simplicial complex on six vertices which consists of
three triangles attached pairwise at three vertices. Note here that to create
the augmented face poset a maximal element is introduced to the existing
face poset (which is a meet-semilattice) in order to create a finite atomic
lattice. One coordinatization of this lcm-lattice has as a minimal generating
set consisting of the monomial vertex labels in Figure 2. The monomial ideal
M is concentrated since it has a ranked lcm-lattice, but is clearly not lattice-
linear since the free module whose multidegree matches a2bcu2vwx2yz, the
top element of LCM(M), appears in homological degree three. The free
modules whose multidegrees are covered by a2bcu2vwx2yz in the lcm-lattice
also appear in homological degree three.

For the class of rigid monomial ideals however, the properties of being
concentrated and being lattice-linear coincide.

Theorem 2.4. A rigid monomial ideal is concentrated if and only if it is
lattice-linear.

Proof. We need only show that a rigid ideal which is concentrated must be
lattice-linear and proceed by proving the contrapositive of this implication.
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Figure 2: A concentrated ideal which is not rigid

Suppose that M is a rigid monomial ideal which is not lattice-linear. By
the definition of rigidity, the automorphisms of the minimal free resolution
of M are trivial and M has a unique minimal free resolution (F , d). For each
`, write B` for the unique choice of basis of the free module F` appearing in
the resolution. Our supposition that M is not lattice-linear implies that for
some i, there exists a basis element c of multidegree c in Bi, such that there
exists some multidegree a with the property that the coefficient ma,c in the
expansion of di(c) is nonzero but that xa is not covered by xc in LCM(M).
In other words, there exists xb ∈ LCM(M) such that xa � xb � xc.

Since M is assumed to be rigid, we have βj,b(R/M) 6= 0 for some j. Since
xa � xb � xc there exist multigraded strands within the free resolution
which have the following containment structure;

F≤a ⊂ F≤b ⊂ F≤c.

This structure is contradicted if j > i since the degree c strand terminates
in homological degree i and the degree b strand terminates in homological
degree j. If j = i (or respectively j = i − 1), then we have identified
two multidegrees which contribute in homological degree i (or respectively
i − 1) that are comparable to one another in LCM(M), a contradiction to
the second property in the definition of rigidity. Lastly, if j < i − 1 the
strand inclusion above is again contradicted since the degree b strand must
terminate at a higher homological degree than the degree a strand.

Such an integer j therefore does not exist and β`,b(R/M) = 0 for every
`. Hence, if a rigid ideal is not lattice-linear then it is not concentrated.
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3 Stability of resolutions for subsets of L(n)

Let L(n) be the set of all finite atomic lattices with n ordered atoms. Phan in
[10] defines a partial order on L(n) as P ≥ Q if there exists a join preserving
map f : P → Q which is a bijection on atoms. Theorem 4.2 in [10] shows
that under this partial order, L(n) is itself a finite atomic lattice. Moreover,
Theorem 3.3 in [5] indicates that total Betti numbers weakly increase as
one moves up chains in L(n). Additionally, Theorem 5.1 in [10] shows that
every finite atomic lattice is the lcm-lattice of some monommial ideal. Thus,
L(n) can be thought of as the lattice of all monomial ideals with n ordered
generators up to equivalence of lcm-lattices.

Using the formulas for multigraded Betti numbers which utilize order
complexes of intervals in the lcm-lattice (see Theorem 2.1 in [5]), we can inter-
changeably refer to the Betti numbers of a finite atomic lattice and the Betti
numbers of a monomial ideal. Specifically, for a monomial xb ∈ LCM(M)
the formula for computing multigraded Betti numbers in homological degree
i is:

βi,b(R/M) = dim H̃i−2(∆(0̂,xb);k),

where ∆(0̂,xb) is the order complex of the open interval from 0̂ to xb. Since
rigid monomial ideals are defined by the behavior of their multigraded Betti
numbers, we call a finite atomic lattice rigid (or not) using the same defi-
nition. In this section we will often refer to the Betti numbers of a finite
atomic lattice P rather than the Betti numbers of a specific monomial ideal.
As such, we use as βi,p where p ∈ P to denote these Betti numbers.

Let βi =
∑
βi,b be the total Betti numbers of the ideal M and write

β = (β0, β1, . . . , βt) for the vector of total Betti numbers. It is reasonable
then to fix subposets of L(n) which consist of all the finite atomic lattices
with the same total Betti numbers. We refer to these subposets as Betti
stratum and denote them L(n)β. Given a rigid monomial ideal M whose
total Betti numbers are β we now examine the relationship between M and
ideals whose lcm-lattices are in L(n)β.

Proposition 3.1. Let Q,P ∈ L(n)β for some β such that Q covers P (i.e.
Q > P and there is no lattice T such that Q > T > P ). If P is rigid then Q
is rigid.

Proof. From proposition 5.1 in [6] we know that if Q covers P then as a set
Q = P ∪ {q} for some q. Moreover, since P is a finite atomic lattice, we
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know that q ∈ Q must be meet-irreducible (it is not the meet of any two
elements in P ). So there is a unique element p′ ∈ Q which covers q. To check
that Q is rigid we need to check conditions (R1) and (R2). Note that for
all p < q in Q, the interval (0̂, p) in Q is identical to the interval (0̂, p) in P
so the associated Betti number is unchanged. Similarly, the Betti number is
unchanged for all elements p ∈ Q which are not comparable to q.

Finally for any p  p′ in Q (or P for that matter) we will show that the
Betti number is also unchanged. To see this, consider the join preserving
bijection on atoms from Q → P . The fiber over a point p ∈ P is {p} for
p 6= p′ or {p, q} in the case when p = p′. Restrict this map to those intervals
(0̂, p) in Q where p  p′. The fibers of this map are contractible and by
Quillen’s Fiber Theorem (see Theorem 10.5 in [2]) the order complexes of
these intervals are homotopy equivalent.

It is therefore only necessary to check the conditions of rigidity for mul-
tidegrees corresponding to p′ and q. Since the total Betti numbers of P and
Q are the same and for all other multidegrees p ∈ Q we have seen that βi,p
is the same as in P , if βi,p′ = 0 in P for all i then the same is true in Q
and βi,q = 0 in Q. Otherwise either βi,q or βi,p′ is 1 in Q for some i. Thus
condition (R1) is satisfied.

To see that condition (R2) holds, consider the following. If βi,p = 1 in Q
then since P is rigid, condition (R2) is satisfied for Q as well. Alternatively,
if βi,q = 1 in Q and condition (R2) is not satisfied then there is some p ∈ Q
such that βi,p = 1 and q and p are comparable in Q. By the above argument
however, we know that βi,p = 1 in P and so if p and q are comparable then p
must also be comparable to p′ which contradicts the fact that P is rigid. As
such, (R2) must be satisfied for Q.

An easy corollary of this is the following.

Corollary 3.2. Let P and Q be in the same Betti stratum L(n)β with Q > P .
If P is rigid then Q is rigid.

The following extends the result of Theorem 2.4 and allows the construc-
tion of the minimal free resolution of all dispersed rigid monomial ideals
within a Betti stratum which are greater than a concentrated rigid mono-
mial ideal appearing in the same stratum.

Theorem 3.3. Let P,Q ∈ L(n)β for some β. If P is rigid and Q > P then
the minimal resolution of P is isomorphic to the minimal resolution of Q.
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Proof. By Corollary 3.2 we know that Q is rigid. Using the fact that Q > P
means that there exists a join preserving map f : Q→ P which is a bijection
on atoms. We can therefore apply Theorem 3.3 in [5] which says: if F is a
minimal resolution of Q then f(F) is a resolution of P . Since the total Betti
numbers are the same for both P and Q it follows that f(F) is a minimal
resolution of P .

Using rigidity we see that P has a unique minimal resolution up to scaling,
thus F must be isomorphic to the minimal resolution of P . Moreover since
Q is itself rigid, the minimal resolution of Q is isomorphic to that of P .

Remark 3.4. In the situation when one knows the minimal free resolution of
a monomial ideal whose lcm-lattice is Q, the ability to transfer this resolution
information to the minimal resolution of P appearing lower in the stratum
L(n)β is an artifact of Theorem 3.3 in [5]. The new information of Theorem
3.3 is that if the minimal resolution of the rigid ideal P is known then it can
be used to construct the minimal resolution of Q, the ideal appearing higher
in the stratum L(n)β. This is not true if P is not rigid.

In the following example we see how to combine Theorem 2.4 and The-
orem 3.3 to construct minimal resolutions for a larger set of rigid monomial
ideals than just the concentrated ones.

Example 3.5. Figure 3 shows an interval of the Betti stratum L(4)(1,4,4,1).
The finite atomic lattice at the bottom represents the lcm-lattice of a con-
centrated rigid monomial ideal, and therefore its minimal resolution can be
constructed by using the poset resolution construction on the lcm-lattice.

The finite atomic lattices above this lattice represent lcm-lattices of dis-
persed rigid monomial ideals, since the maximal element in all of the lattices
corresponds to a second syzygy. Due to Theorem 3.3 each of these ideals ad-
mit a minimal poset resolution whose maps mirror those of the concentrated
rigid ideal.

The following proposition and corollary show how we can use rigidity to
understand some cellular resolutions.

Proposition 3.6. Let PX be the augmented face poset of a regular CW com-
plex X. If PX is a finite atomic lattice and X is acyclic, then PX is rigid.

Proof. By Proposition 6.5 in [6] we know that a minimal resolution of PX is
supported on X. Clearly each cell α contributes a different Betti degree and
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Figure 3: Rigid ideals whose minimal resolution can be constructed as a
poset resolution

no two cells of the same dimension are contained in each other. Thus the
non-comparability condition is satisfied.

In fact, using rigidity and the previous proposition we can improve Propo-
sition 6.5 in [6] with this easy corollary to Theorem 3.3.

Corollary 3.7. Let PX be the augmented face poset of an acyclic regular
CW complex X. Let β be the vector of total Betti numbers for PX . If PX is
a finite atomic lattice and Q > PX ∈ L(n)β then Q has a minimal resolution
supported on X.

Proof. By Proposition 3.6 we see that PX is rigid. Thus, Theorem 3.3 guar-
antees that the minimal resolution of PX will give a minimal resolution of Q.
Since the minimal resolution of PX is supported on X by Proposition 6.5 in
[6] then the minimal resolution of Q is also supported on X.

4 Directions for future work

The following example shows the limitations of resolving dispersed rigid
monomial ideals by obtaining resolution information from concentrated rigid
ideals appearing lower in the same Betti stratum. Indeed, for a given ideal,
such comparable ideals need not exist. We are unaware of any conditions
which guarantee the existence of such a comparable concentrated rigid ideal.

Example 4.1. The rigid monomial ideal M = 〈bd, cd2, ac, c2d, ab〉 is min-
imally resolved on the 3-dimensional regular CW complex X pictured in

13



4
3

2

1
5

X

Figure 4: The regular CW complex of Example 4.1

Figure 4, where the multidegree of each vertex matches that of the mono-
mial appearing in the given ordered list of generators. Note that X has
(1, 5, 7, 4, 1) as its face vector.

The face poset of this cell complex, PX , is not a meet semi-lattice and
therefore is not contained in any Betti stratum of L(5). Furthermore, the
lattice LCM(M) is PX ∪{p = a1∨a3∨a5} where the ai are the atoms in PX
corresponding to vertex i. The element p ∈ LCM(M) does not correspond
to a Betti degree and therefore M is a dispersed rigid monomial ideal. Since
removing the element p from LCM(M) produces a poset which is not a
lattice, there is no finite atomic lattice less than LCM(M) which appears in
the same stratum and is a rigid concentrated monomial ideal. We therefore
cannot apply the combination of Theorem 3.3 and Theorem 2.4 to construct
a resolution of M .

In actuality one may consider the following reinterpretation of Theorems
2.4 and 3.3. Define β(LCM(M)) to be the subposet of LCM(M) consisting
of p ∈ LCM(M) such that βi,b 6= 0 for some i. Call this the Betti subposet
of LCM(M). In the situation where M is concentrated rigid β(LCM(M)) is
the union of intervals [0̂, p] in LCM(M) where βi,p is a Betti number. Thus
one can compute the ranks of the free modules by using either LCM(M) or
β(LCM(M)) as the pertinent information has not changed. Notice too that
if M ′ is a rigid monomial ideal such that LCM(M ′) > LCM(M) and M ′

and M are in the same Betti stratum then β(LCM(M)) = β(LCM(M ′)).
So we can say that the minimal free resolution for both M and M ′ can be
constructed as a poset resolution on β(LCM(M)).

We believe that this approach should be applicable to all rigid monomial
ideals. In Example 4.1 we can realize the minimal resolution as a poset
resolution on β(LCM(M)) = PX . Indeed, removing the element p = a1 ∨
a3∨a5 does not change the homology of the order complex for intervals (0̂, q)
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where q > p in PX .

Question 1. Is the minimal free resolution of any rigid monomial ideal M
a poset resolution on β(LCM(M)?
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