
Practical On-line DVS Scheduling for Fixed-Priority Real-Time Systems

Bren Mochocki and Xiaobo Sharon Hu
Department of CSE

University of Notre Dame
Notre Dame, IN 46556�

bmochock, shu � @cse.nd.edu

Gang Quan
Department of CSE

University of South Carolina
Columbia, South Carolina 29208

gquan@cse.sc.edu

Abstract

We present an on-line Dynamic Voltage Scaling (DVS)
algorithm for preemptive fixed-priority real-time systems
called low power Limited Demand Analysis with Transition
overhead (lpLDAT). It is the first algorithm in its class to ex-
plicitly account for transition overhead, and can reduce the
energy consumption by as much as 40% when compared to
previous methods.

1. Introduction

Real-time scheduling plays a key role in the low-power
design of real-time embedded systems, not only because
timing issues are critical, but also because low power de-
sign is essentially a resource usage optimization problem
for such systems. How to exploit the modern dynamic con-
figuration capabilities of embedded processors, such as Dy-
namic Voltage Scaling (DVS), to achieve the most energy
efficient designs has become a wide spread research area.
There has been substantial research conducted in this area,
e.g., [7, 11, 15, 17, 19, 20, 8]. These approaches differ in
many aspects, such as the scheduling algorithms being on-
line/off-line, handling hard/soft deadline requirements, as-
suming fixed/dynamic priority assignment, allowing intra-
task/inter-task voltage transitions, and single/multiple pro-
cessor systems. In addition, the applicability of the work to
real systems varies widely.

A significant limitation of DVS processors is the inabil-
ity to change the operation voltage and frequency instan-
taneously. This limitation, known as transition time over-
head can be on the order of tens of microseconds ([2, 4])
to tens of milliseconds ([6]). For systems that block execu-
tion during a transition (the dominant trend, e.g., [2, 6]), this
translates to anywhere from � � � to � � � lost execution cycles
by todays standards and will only worsen as clock speeds
continue to scale. Ignoring time overhead in this case will

likely cause deadline misses, which in turn results in de-
graded system performance or even system failure. A re-
lated problem is transition energy overhead, which can ac-
tually cause the system’s energy consumption to increase
if DVS is not used judiciously. Despite these limitations, a
common practice in the real-time system research commu-
nity is to focus on the “ideal case” in which time overhead
is considered negligible.

In this paper, we study the problem of reducing the en-
ergy consumption for fixed-priority periodic real-time tasks
executing on a single DVS processor with non-negligible
time and energy transition overhead via an on-line voltage
scheduling technique. Many real-time embedded applica-
tions adopt a fixed-priority scheme, such as Rate Mono-
tonic (RM), due to its high predictability, low overhead, and
ease of implementation [12]. While an off-line approach
can fully leverage known system specifications, using off-
line techniques alone may lead to a large waste of energy
because, to guarantee timing constraints, one must always
consider the worst case. However, the average workload of
an application may vary largely from the worst case. Due
to the dynamic and reactive nature of embedded systems,
an on-line approach that makes scheduling decisions dur-
ing run time is more robust, flexible, and adaptive.

Some previous research has been conducted regarding
this problem, e.g., [7, 11, 15], none of which accounts for
transition overhead. Pillai and Shin proposed an algorithm
called ccRM, which first computes off-line the maximum
speed necessary to meet all task deadlines based on worst-
case response time analysis. On-line, the processor speed is
scaled down when task instances complete early [15]. Al-
though the ccRM approach guarantees job deadlines, it is
not aggressive enough to fully exploit slack in the system
when tasks finish closer to their best case execution times.
In [7], Gruian presents a method of off-line task stretching
coupled with on-line slack distribution. In addition, the pa-
per presents an intra-task voltage scheduling method that
computes the optimal speed for each execution cycle of the
active task. Similar to ccRM, Gruian’s off-line scheme is

1. This work is supported in part by NSF under grants CCR02-08992
and CNS-0410771

1

Proceedings of the 11th IEEE Real Time and Embedded Technology and Applications Symposium (RTAS’05)
1080-1812/05 $ 20.00 IEEE

conservative. The intra-task method is not useful in prac-
tice because it may require the speed to change on a cy-
cle by cycle basis. When considering transition overhead,
this method is not feasible. Kim et al. in [11] developed
a method called lpWDA that uses a greedy, on-line algo-
rithm to estimate the amount of slack available and then ap-
ply it to the current job. It is unique in that it takes slack
from lower priority tasks, as opposed to the methods pre-
sented in [7] and [15] that wait for slack to filter down from
higher priority tasks. A serious drawback is that it often too
aggressive, resulting in wasted energy.

A number of researchers have studied voltage schedul-
ing when transition overhead is not negligible. Mochocki et
al. present a method that accounts for transition overhead
while scheduling a set of jobs using the Earliest Deadline
First (EDF) priority scheme off-line ([14]). In [18], Sae-
wong and Rajkumar present an algorithm to schedule fixed
priority jobs sets with a very large transition time over-
head off-line. AbouGhazaleh et al. propose an intra-task
voltage scheduling method that uses compiler support and
specially designed code to account for transition overhead
([1]). In [8], Hong et al. present two algorithms that solve
the off-line voltage scheduling problem. The first is opti-
mal and consists of a set of non-linear equations. The sec-
ond is a more efficient heuristic that iteratively approaches
the optimal solution. However, both methods assume that
cycles can be executed during a transition, which is often
not the case ([2, 6]). Zang et al. in [21] present an ILP for-
mulation that optimally solves the voltage scheduling prob-
lem for multiple processors while considering transition en-
ergy overhead. They also present an approximation formu-
lated as an LP. Both of these methods are too complex to
be used on-line. Andrei et al. in [3] also solve the volt-
age scheduling problem for multiple processors using an
ILP. Their formulation considers time and energy transi-
tion overhead as well as leakage energy dissipation. Again,
this method is too complex to effectively adapt to a varying
workload on-line. Zhang and Chakrabarty considers both
overheads when scheduling voltage levels and checkpoint
times for fault-tolerant, hard, real-time systems with peri-
odic tasks ([22]). They assume that each task can meet all
deadlines when running at the smallest processor speed if
no faults are present. This assumption eliminates the bene-
fit of DVS in a fault free environment.

Existing methods for handling transition overhead are
all for off-line algorithms and thus cannot be readily used
on-line. To the best of our knowledge, none of the ex-
isting on-line voltage scheduling algorithms can guaran-
tee task deadlines when time overhead must be considered.
In this paper, we present our algorithm, called low power
Limited Demand Analysis with Transition overhead (lpL-
DAT) that explicitly accounts for both time and energy tran-
sition overhead. Through experimentation we demonstrate

that our proposed approach can result in an energy reduc-
tion of more than 40% when compared to previous meth-
ods.

The remainder of this paper is organized as follows. Sec-
tion 2 summarizes the background material, Section 3 de-
scribes our algorithm, Section 4 presents the experimental
results and Section 5 concludes the paper.

2. Preliminaries

In this section, we first specify the type of systems under
consideration and introduce the necessary notation. Next we
briefly review low power Work Demand Analysis (lpWDA).
A motivational example is given to illustrate the difficulties
associated with accounting for transition overhead and also
to show why lpWDA is not adequate in harvesting maxi-
mally the benefit provided by DVS.

2.1. System Model

We consider real-time applications consisting of a set of� periodic tasks, � � � � 	 � � � � � � � � � � � . Task � � is said to
have a higher priority than task � � if � � � . Each task, � � ,
is described by its worst case execution cycles, � � � , aver-
age case execution cycles, � � � , and best case execution cy-
cles, ! � � , with � � � % � � � % ! � � . In addition, each task has a
period, (� , and relative deadline,) � , with) � + (� . The uti-
lization of a task set is the sum of each task’s worst case cy-
cles over its period. That is, the worst-case utilization can
be computed as ,

- / � �0
� 2 	

� � �(� 5 (1)

The average-case utilization,

,
6 / , and the best-case utiliza-

tion,

, 8
/ , can be computed similarly. Each task is invoked

periodically and we refer to the 9 -th invocation of task � � as
job : <� . Each job is described by a release time, = <� , deadline,) <� , finish time, > <� , the number of cycles that have already
been executed, ? @ <� , and actual total execution cycles, � <� ,
with A + ? @ <� + � <� and ! � � + � <� + � � � . During run-time,
we refer to the earliest job of each task that has not com-
pleted execution as the current job for that task, and we in-
dex that job with � C = , e.g., : / E G� is the current job for task� � . The estimated work remaining for job : / E G� , denoted by� / E G� , is equal to � � � I ? @ / E G� . As in most DVS work, we as-
sume that each job consumes an equal amount of energy per
cycle at a given speed, which is a valid assumption for many
applications. A ready job is any job : � at time J that satis-
fies = � + J and) � L J and > � L J , while the Active Job is
the ready job at time J with the highest priority.

A scheduling point is any time point J that satisfies ei-
ther J � = <� , J �) <� or J � > <� P � � S 5 5 � � 9 � S 5 5 Y . We
use � [to represent all scheduling points sorted in ascend-
ing order. An individual scheduling point is indexed by �

Proceedings of the 11th IEEE Real Time and Embedded Technology and Applications Symposium (RTAS’05)
1080-1812/05 $ 20.00 IEEE

and denoted by � � � . Note that finish times are not known
off-line, and are inserted into � � as they occur. Once a fin-
ish time is inserted, the corresponding deadline is removed
from � � . The subset of � � that includes all points greater
than 	
� and less than or equal to �
� is called the set of �
� -
scheduling points and is denoted by � �
� .

The DVS processor used in our system can operate at a
finite set of voltage levels � � � � � � � � � � � � � � , each with
an associated speed. To simplify the discussion, we normal-
ize the processor speeds by � � � � , the speed corresponding
to � � � � , giving � � � � � � � � � � ' � . Changing from one volt-
age level to another takes a fixed amount of time, referred
to as the transition interval (denoted) �) within which no
tasks can be executed. The transition interval length for a
DVS processor alone is usually on the order of 10 to 120+ s ([9, 2, 5, 16]). This results from the DC-DC converter
changing � - - and the phase-locked loop (or similar tech-
nology) changing / 0 2
 . However, when considering syn-
chronization with other components in a system, such as
off chip memory, the length can be on the order of millisec-
onds ([18, 6]).

A voltage transition also consumes a variable amount
of transition energy, denoted as) 4 . Transition energy in-
cludes three major parts: (1) the energy consumed by the
DC/DC converter, (2) the energy consumed by the CPU dur-
ing the transition and (3) the energy increase due to exe-
cuting cycles displaced by the transition interval at higher
speeds. This is similar to the model used in [14].

The above DVS processor model captures the main prop-
erties of most commercial DVS processors. A variable
length transition interval (e.g. the one described in [5]) can
be approximated by a fixed length interval equal to the max-
imum switching time. For processors that do not block in-
structions during a transition (e.g., [5]), a schedule that as-
sumes blocking during a transition can be pessimistic, but it
will guarantee that a valid voltage schedule is reached.

In the context of on-line scheduling algorithms, at each
scheduling point there is a particular set of speeds, called
feasible speeds, that are necessary to meet job deadlines.
The following is a formal definition of this set.

Definition 1. Feasible Speed– Any speed less than or equal
to � � � � , which guarantees that if execution of � begins by
at least time � at that speed, then all remaining cycles of �
will be completed by its deadline.

Because any feasible speed will guarantee the deadline
of its associated job, it is tempting to select the smallest
speed to save the most energy. However, this may cause
lower priority jobs to miss their deadlines, because they can-
not be executed until the higher priority job is complete.
To alleviate this problem, we introduce effective feasible
speeds.

Definition 2. Effective Feasible Speed– Any feasible speed
of � � at time � that guarantees the existence of a feasible
speed of job �
 at time / � (where / � is the completion time
of � �) for every job �
 with 6 7 8 .

Another interpretation of the effective feasible speed is
that a higher priority job running at an effective feasible
speed will not steal more slack than is available from lower
priority jobs, thus allowing all lower priority jobs to also ex-
ecute at feasible speeds when they become the active job.

2.2. Low-Power Work Demand Analysis (lpWDA)

To help put our contributions in perspective, we briefly
review the on-line DVS algorithm called lpWDA, given in
Algorithms 1 and 2 (for more details on lpWDA, see [11]).
For now, ignore lines marked by ***. Algorithm lpWDA
works in the following manner. First, the system is initial-
ized by setting the execution cycles and deadlines of each
task and by setting the initial values of 9 , where 9 � is an
over estimate of the higher priority cycles that must be exe-
cuted before � 0 < =� (Lines 1–4). Next, on each preemption or
completion, the remaining cycles of the preempted or com-
pleted job (> 0 < =?) and the estimates of higher priority cy-
cles are updated by the updateLoadInfo algorithm. Finally,
when a job � 0 < =? is scheduled for execution, the processor
speed is scaled according to the amount of slack available
(see Lines 8–10). Essentially, lpWDA takes all the slack that
it can steal from lower priority tasks in linear time and ap-
plies that slack to the active job. Lemma 1 and Theorem 1
show that lpWDA will always produce a valid schedule as
long as transition time overhead is negligible.

Algorithm 1 lpWDA (lpLDA with ***)
1: if on system start then
2: for Each Task @ � B � do
3: � 0 < =� := � � ; > 0 < =� := > D � ;
4: 9 � := E � G �I J K M O P Q S TUV W Y [> D I] ;

5: *** ^ � := E � G �I J K M O P Q S TUV W Y [a D I] ;
6: if finish/preempt the active job � 0 < =? then

updateLoadInfo(� , b);
7: if on execute the active job � ? then
8: Identify @ d e f 7 b AND � 0 < =d is minimized;
9: Compute � g a D 8 ? based on workload with respect to

@ d ;
10: / 0 2
 :=

h
Q S Tij 2 � 0
 i l h

Q S Ti [/ � � � ;

11: *** / m n o := p a s � m U l � 0 i G t �
Q S Ti

P Q S TU G u e 6 � ' � �
w � ;

12: *** / 0 2
 := p a s � / 0 2
 , / m n o � ;
13: Set the voltage according to / 0 2
 ;

Lemma 1. Algorithm lpWDA selects an effective feasible
speed for the active job at every scheduling point.

Proceedings of the 11th IEEE Real Time and Embedded Technology and Applications Symposium (RTAS’05)
1080-1812/05 $ 20.00 IEEE

Algorithm 2 updateLoadInfo(� , �)
1: input: Tasks � and the preempted/completed task in-

dex � .
2: output: Workloads are updated to reflect current exe-

cution information.
3: if � � is completed then
4: for each task � � � � with � 	 � do
5: � � � �� := � � � �� � � � ;
6: � � := � � � � � � �� � � � � " $ %&') * + � " $ %& � ' ,') * - . / 1 � ;

7: *** 2 � := 2 � � � � � �� � � � � " $ %&') * + � " $ %& � ' ,') * - .
7 1 � ;

8: for each task � � � � with � ; � do
9: � � := � � + � / 1 � + = > @� - ;

10: *** 2 � := 2 � + B 7 > D F H 7 1 � + = > @� I ;
11: / � � �� := / 1 � ; // reset for next job of � �
12: else
13: J = B � := / 1 � + = > � � �� ;
14: for each task � � � � with � ; � do
15: � � := � � + / � � �� � J = B � ;
16: *** 2 � := 2 � + / � � �� � J = B � ;
17: / � � �� := J = B � ;

Proof. See [11].

Theorem 1. The schedule produced by lpWDA will guar-
antee all system deadlines, and has a computational com-
plexity of Q � R - per scheduling point, where R is the number
of tasks in the system.

Proof. According to Lemma 1, the speed selected by lp-
WDA is always an effective feasible speed. It is trivial to see
that all deadlines will be met in this case. For a proof of the
computational complexity, see [11].

2.3. Motivational Example

Although lpWDA is effective in estimating the amount
of slack available to the active job, this slack estimation can-
not be easily modified to account for transition time over-
head. Observe the two-task system in Figure 1, where the
task parameters are given at the top of the figure. Figure 1(a)
shows the task execution schedule when tasks always take
the worst-case execution cycles and lpWDA is used. Next,
assume a transition interval of S J T V W X (i.e., 120 Y Z). Note
that lpWDA does not explicitly account for time overhead.
We could try to solve this problem by reducing the slack
identified in Line 9 of lpWDA by S J time units during ev-
ery slack calculation. The result of this modification is de-
picted in Figure 1(b).

Notice that the idle time from 8 to 10.5 consists of two
transition intervals and the deadline of []^ is missed at time
12. After the slack calculation at time 8, the scheduler finds
that []^ can run a the speed of 0.56 to complete by its dead-
line. After the transition from a speed of 1.0 to a speed of

J1
1 J2

1

J1
2

J1
3 J2

2 J1
4

1.0
0.625

0 3 4 6 8 9 122 5 10

1.0

1 7

J2
3

(b) sp
ee

d

11

1.0

(x102 µµµµs)

∆t ∆t 2∆t

deadline missed

(x102 µµµµs)

T1: p1 = d1 = 3, wc1 = 1.0, Release/Deadline:
T2: p2 = d2 = 4, wc2 = 1.0, Release/Deadline:

J1
1

J2
1

J1
2

J1
3 J2

2

J1
4

J2
3

1/2
1.0

1/3

1.0

0.4

0 3 4 6 8 9 122 7 11.5

Energy: 4.12

1/2

1.0

(a) sp
ee

d

Figure 1. An example task set consisting of
two tasks (a) scheduled by lpWDA, (b) sched-
uled by lpWDA with a simple modification to
account for transition time overhead.

0.56 at time _ W X , [a� preempts []^ . The scheduler then calcu-
lates a speed of V W F for [a� after reducing its slack by V W X F .
However, V W F is no longer sufficient to meet the deadline of

[]^ . Clearly, when transition time overhead is significantly
large, one cannot be too aggressive when employing DVS,
otherwise deadlines will be missed. Additionally, one can
easily verify that executing at the speed 2/3 without any
transitions will meet all job deadlines, and will consume
only 2.22 units of energy, less than lpWDA without time
overhead. Including transition energy overhead will only in-
crease the deficiencies of lpWDA.

In the next section, we first present our method to cor-
rectly account for transition time overhead and then prove
that no deadlines will be missed. Next, we improve upon lp-
WDA to reduce system energy consumption by as much as
40%.

3. Our Approach

First we develop a method to correctly account for transi-
tion time overhead. Next, we develop an on-line algorithm
that employs this method and uses stochastic information
about each task to reduce energy consumption when com-
pared to previous methods. Finally, we account for transi-
tion energy overhead to improve the energy performance
even more.

3.1. Transition Time Overhead

Transition time overhead can complicate voltage
scheduling in several ways. The most straightforward ef-
fect is on slack utilization, since time overhead essentially
reduces available slack. To guarantee deadlines, we will al-
ways reduce the estimated slack to ensure that there is
enough time to make a transition now to a speed lower than

b c d e , and also make another transition to b c d e later when

Proceedings of the 11th IEEE Real Time and Embedded Technology and Applications Symposium (RTAS’05)
1080-1812/05 $ 20.00 IEEE

Scheduling Interval: tL = 2∆t

pr
io

ri
ty

timet

Possible preemption error
J1

cur

J2
cur

J3
cur

Pre-release: Release: Deadline:

Possible transition error

∆t ∆t

Figure 2. An example of pre-release points,
the lookahead interval at time � , the system
lookahead (� �) and possible transition and
preemption errors. The critical job at time �
is � � � �� .

necessary. Second, a job may be released during a transi-
tion. This happens in the task set of Figure 1 when 	 � � � .
We refer to this problem as a transition error. The pres-
ence of a transition error may induce an unexpected voltage
transition. Third, notice that lpWDA only checks the dead-
lines of tasks with an equal or lesser priority than the cur-
rently executing job (Line 8 of Algorithm 1). This means
that we could scale down to a speed that guarantees the cur-
rent job, only to be preempted later by a higher priority
job that requires a higher speed. Recall that this situa-
tion occurs in Figure 1(b) at time 9.2. This is not a problem
when transitions happen instantly, but with time over-
head we must be more careful. We refer to this problem as
a preemption error. These scenarios are illustrated graphi-
cally in Figure 2.

To deal with time overhead we must look ahead and
predict potential future necessary transitions. How much
lookahead, is needed deserves careful examination since too
much will increase scheduling complexity and too little may
not be sufficient for meeting deadlines. To simplify our dis-
cussion, we first present the following formal definitions.

Definition 3. Pre-release Scheduling Point– Any time
point � that satisfies � � � �� � 	 � � � � � � �

� � � � � � � $.
Pre-release scheduling points replace the corresponding
scheduling points that satisfy � � � �� � � � � � �

� � � � � � � $in + - whenever time transition overhead is not negligi-
ble (see Figure 2).

Pre-release scheduling points warn the system that a pre-
emption may occur in the near future, and are essential if a
feasible speed is to remain feasible after the voltage transi-
tion. However, the pre-release points alone will do no good
if the associated job is not included in the scheduling pro-
cess. To this end, we introduce the concepts of a lookahead
interval and the critical job.

Definition 4. Lookahead Interval– An interval that begins
at a specific scheduling point, � / � , and ends at time � / � 1 � � .
The value � � is referred to as the system lookahead. The
lookahead interval at time � / � is denoted by 3 � (see Fig-
ure 2).

Definition 5. Critical Job– The job with the highest pri-
ority that is ready any time during a particular lookahead
interval. The critical job of the lookahead interval 3 � is de-
noted by � 5 6 3 � 7 (see Figure 2).

Identifying the critical job of each lookahead interval
is the fist step in identifying a valid voltage schedule with a
non-negligible transition time overhead. Once these two pa-
rameters are known, the final step is to define a clear goal
for the scheduler. Our goal will be finding an overhead fea-
sible speed.

Definition 6. Overhead Feasible Speed– An effective feasi-
ble speed associated with a job � � at time � that further sat-
isfies one of the following: (a) is equal to the current speed
of the processor and permits an idle interval of length 	 �
that begins in the range 9 � � ; � > , (b) is different from the cur-
rent speed of the processor and permits two idle intervals
of length 	 � , one that begins at � and a second that be-
gins in the range 9 � 1 	 � � ; � > , (c) is different from the cur-
rent speed of the processor, is equal to ? @ A B and permits
one idle interval of length 	 � that begins at � , or (d) is the
same as the current speed of the processor and is equal to

? @ A B . The overhead feasible speed of job � � at time � is de-
noted by D 6 � � � � 7 ,

Next, we describe our method to account for time over-
head using the terminology just defined. First, pre-release
scheduling points are inserted to ensure that scheduling oc-
curs with enough time to have a speed/voltage transition.
Second, when a scheduling point is encountered, instead of
selecting the speed according to the active job, we identify
the critical job using a system lookahead of E 	 � . Looking
ahead � 	 � prevents transition errors, while looking ahead
an additional 	 � ensures that when a transition is complete,
a higher priority job that requires a larger speed is not closer
than 	 � away from the current time, thus preventing possi-
ble preemption errors directly after a transition (See the case
of � � � �� in Figure 2). Lemma 2 shows that an overhead fea-
sible speed always exists if � � � E 	 � , regardless of the
length of the transition interval.

Lemma 2. Given a transition time overhead of 	 � , a
schedulable set of tasks, + , and an initial speed of ? @ A B .
If the system lookahead, � � , is set to E 	 � , then an overhead
feasible speed exists at each scheduling point.

Proof. The proof is by induction on + - .
BASE CASE: At � / � , at least one overhead feasible

speed exists, i.e. ? @ A B , because + is schedulable and the
initial speed is ? @ A B .

Proceedings of the 11th IEEE Real Time and Embedded Technology and Applications Symposium (RTAS’05)
1080-1812/05 $ 20.00 IEEE

INDUCTION STEP: Assume that the current time
is � � � , and that an overhead feasible speed was se-
lected at the previous scheduling point, � � � � � , for the
previous critical job, 	 � � � � � � . There are two possibil-
ities for � � 	 � � � � � � � � � � � � � : (1) it is equal to � � � � , or
(2) it is less than � � � � . In case 1, � � � � is always an over-
head feasible speed for 	 � � � � . In case 2, we need to con-
sider three possible outcomes of scheduling at � � � : (i)

	 � � � � � � completes its execution, (ii) Only lower prior-
ity jobs are released in � , and (iii) One or more higher
priority jobs are released in � .
(i) Due to the definition of an overhead feasible speed and
the fact that the current speed is overhead feasible, there
must at least be time now for one idle interval of size � � .
This means that part (c) of the definition of an overhead fea-
sible speed is valid and � � � � is an overhead feasible speed
of 	 � � � � .
(ii) 	 � � � � � � is the highest priority task and is, therefore,
also 	 � � � � . The current speed must still be overhead fea-
sible based on part (a) of the definition of an overhead fea-
sible speed.
(iii) 	 � � � � � � will be preempted sometime during � by

	 � � � � . Assume an overhead feasible speed for 	 � � � �
does not exist. This means either that (a) there is no speed
that can guarantee a feasible speed will exist for lower pri-
ority jobs when they are ready to execute, or (b) no speed
less than or equal to � � � � can guarantee the deadline of

	 � � � � . We know (a) cannot be true, because the formu-
lation of � � 	 � � � � � � � � � � � � � provides that guarantee. If
(b) is true, this means either is not schedulable, a con-
tradiction, or the execution of some cycles of 	 � � � � will
be delayed. The only way for cycles of 	 � � � � to be de-
layed is the � � idle time that is introduced by the transition
from � � 	 � � % ') � � � � � � � � to � � 	 � � � � � � � � � . Recall that
there is a pre-release scheduling point exactly � � time be-
fore each job release. If scheduling occurs at the pre-release
point of 	 � � � � , then its cycles will not be delayed. The
only way for scheduling not to occur at the pre-release point
is if the pre-release point is inside the transition interval that
occurred at the previous scheduling point, � � � � � . However,
because the lookahead is equal to - � � , if the pre-release
point of 	 � � � � is inside the previous transition interval,
then the release time of 	 � � � � is inside � � � . This means
that 	 � � � � was not chosen to be the critical job instead
of 	 � � � � � � , even though it has a higher priority and was
active during � � � , a contradiction (/ 0 1� in Figure 2 illus-
trates this point).

3.2. Limited Demand Analysis

Now that we have a detailed description of a class of al-
gorithms that correctly account for time overhead, we will

develop an algorithm, which is part of this class while at the
same time consumes less energy than previous methods.

As shown in Figure 1(a), lpWDA is effective at comput-
ing the slack of lower priority jobs, but may suffer from
high energy spikes when executing near the deadlines of
lower priority tasks. An effective algorithm would utilize
any available stochastic information of the given task set to
prevent these spikes.

Limiting the slack used by higher priority tasks in lp-
WDA requires a careful trade-off between being aggressive
and being conservative. If one could compute an efficient
speed based on the average-case workload, this speed could
be used as a limiter. By limiter we mean that, if this speed
is higher than the speed predicted by lpWDA, we know that
lpWDA is being too aggressive in stealing slack from lower
priority jobs and the limiting speed should be used.

In off-line voltage scheduling algorithms, an often used
concept is the minimum constant speed that can meet all
job deadlines (e.g., [15, 17, 20]). Due to the convexity of
the power function, it is generally not energy efficient for
the processor to go below this speed and then switch to a
higher speed later, unless there is reason to expect newly
available slack ([15]). Thus the minimum constant speed
can serve as a proper limiter. To find the minimum constant
speed for a periodic task system where every job of a task
assumes the same execution cycles, one can simply exam-
ine the case when all tasks are released simultaneously, i.e.,

� 2 3 4 56 8 :
� < �

6 ? @
A B D F G IJ � L N N P � % � � � � (2)

and

� L N N P � % � � � � 4
R �S < � T A BU V W Y Z \ S

� � (3)

where ^ �� is the set of 	 �� -scheduling points.
Our idea is to perform a similar operation as above on-

line. Directly applying the formulas in (2) and (3) is not de-
sirable due to its pessimism and time complexity. To over-
come unnecessary pessimism, we recompute the minimum
constant speed for each job whenever it starts/resumes ex-
ecution. This allows the actual execution cycles of jobs ex-
ecuted earlier to be considered when appropriate. This also
removes the pessimistic assumption of the worst-case phas-
ing. Furthermore, instead of using the worst-case execu-
tion cycles, we use the average-case execution cycles. Fi-
nally, we opt to use the deadline P / 0 1� of job 	 / 0 1� rather
than checking every scheduling point in ^ / 0 1� for the min-
imum speed. This reduces the time needed to calculate the
limiter.

The necessary changes to lpWDA are marked by *** in
Algorithms 1 and 2. We refer to this addition to lpWDA as
the Average Case Limiter (ACL). In Algorithm 1, we add
Line 5 which initializes the average number of cycles that
must be completed before each job deadline. Lines 7, 10

Proceedings of the 11th IEEE Real Time and Embedded Technology and Applications Symposium (RTAS’05)
1080-1812/05 $ 20.00 IEEE

Energy: 2.47

0

J1
1 J2

1
J1

2 J1
3

J2
2

J2
3

2/3

3 4 6 8 9 121.5 7.54.5 11

0.6

J1
4 J2

3
1/2

sp
ee

d

(x102 µµµµs)

Figure 3. The schedule produced by lpLDA
when executing the task set from Figure 1.

and 16 in Algorithm 2 ensure that the current phasing and
execution information is stored. Line 11 in Algorithm 1 cal-
culates the speed required by each job to meet its deadline
on average. Finally, Line 12 of Algorithm 1 selects the max-
imum of the speeds requested by lpWDA and the limiter,
essentially restricting the amount of slack that lpWDA can
use. We refer to this algorithm as low-power Limited De-
mand Analysis (lpLDA). Applying lpLDA to the example
task set in Figure 1 produces the results in Figure 3 when all
jobs require their worst case cycles. Notice that the energy
is over 40% less than the schedule in Figure 1. Lemma 3 and
Theorem 2 state the correctness of lpLDA in terms of satis-
fying real-time requirements.

Lemma 3. Algorithm lpLDA selects an effective feasible
speed for the critical job at every scheduling point.

Proof. The speed selected by lpLDA is always greater than
or equal to the speed selected by lpWDA. It follows from
Theorem 1 that the speed selected by � � � � � is also an ef-
fective feasible speed for the critical job.

Theorem 2. The schedule produced by lpLDA will guaran-
tee all system deadlines, and has a computational complex-
ity of 	
 � � per scheduling point, where � is the number of
tasks in the system.

Proof. The deadline guarantee is provided by Lemma 3.
The computational complexity is on the same order of lp-
WDA (only a constant factor larger), which is 	
 � � by The-
orem 1.

Note that lpLDA still suffers from the same drawback
as lpWDA with regard to transition time overhead. How-
ever, all we need to do to create a valid algorithm is to (i)
replace release scheduling points with pre-release schedul-
ing points, (ii) set the system lookahead to � � and (iii) se-
lect an overhead feasible speed for the critical job of each
scheduling point. The implementation of this algorithm,
known as lpLDAt, is given in Algorithm 3. For now ignore
lines marked with ***.

Theorem 3. The schedule produced by lpLDAt will guar-
antee all system deadlines, and has a computational com-
plexity of 	
 � � per scheduling point, where � is the number
of tasks in the system.

Algorithm 3 lpLDAt (lpLDAT with ***)
1: if system start then
2: Initialize each task as lpLDA;
3: *** � � � � � � � � � � := estimate(� , � � � �);
4: *** � � � � � � � " # := estimate(� , � " #);
5: � %� � � := � � � � ;
6: *** if � � � � � � � � � � () � � � � � � � " # then � %� � � :=

� " # ;
7: + , . / := � %� � � ;
8: if current time � 2 3 � 5 and � 2 is a job completion/pre-

release then
9: Find 6 7 , the active job;

10: updateLoadInfo(� , 8);
11: 6 7 :) JC([� 2 , � 2 ; � �]);
12: � := < = > ? � 2 A � , C E7 F ;
13: Compute 2 � = H J 7 based on workload starting at � ;
14: if 2 � = H J 7 is large enough for 2 transitions at the speed

� K M O where � K M O Q � %� � � then + , . / :) � K M O ;
15: else if 2 � = H J 7 is large enough for 1 transition at the

speed � M O where � M O Q + S E T V and + S E T V is the pre-
vious speed then + , . / := + S E T V ;

16: else + , . / :) � %� � � ;
17: if + , . / X + [# \ AND + , . / ^) + S E T V then + , . / :)

+ [# \ ;
18: *** if + , . / X + S E T V then check energy overhead();

19: Set the voltage according to + , . / ;

Proof. All we need to show is that the policy adopted by
lpLDAt conforms to the policy described in Lemma 2. First,
the speed is initialized to � � � � (lines 5 and 7). When a
scheduling point � 2 b is encountered (line 8), the critical job

6 7 is selected by scanning each task and finding the highest
priority task that has a ready job in the interval c � A � ; � � d
(line 11). Next, lpWDA is used to estimate the slack avail-
able to 6 7 (line 13). The speed calculated for 6 7 using this
slack estimation is an effective feasible speed for 6 7 based
on Lemma 1. Next, the speeds for parts (a) and (b) of Defini-
tion 6 are calculated by reducing the estimated slack by one
or two transition intervals (lines 14–16). Even if there ap-
pears not to be enough slack to allow for an overhead feasi-
ble speed of type (a) or (b) based on the definition, there ac-
tually is slack available to switch the speed to � � � � (parts
(c) and (d) of Definition 6). This is due to two facts: (1)
The speed is not lowered unless a previous slack estima-
tion allows for a transition to the lower speed and one back
to � � � � later and (2) lpWDA always estimates less slack
than is actually available. If a speed different from the cur-
rent speed and lower than � � � � is selected, then the proces-
sor is set either to that speed or the ACL, whichever speed
is higher. The selected speed therefore matches Definition 6
based on the actual slack available for speed transitions and
lpLDAt follows the policy outlined in Lemma 2.

Proceedings of the 11th IEEE Real Time and Embedded Technology and Applications Symposium (RTAS’05)
1080-1812/05 $ 20.00 IEEE

Finding the critical job takes one comparison for each
task in the system. The speed decision step takes � � � � time
for the slack estimation (because it uses lpWDA) and con-
stant time to select the correct speed based on the slack. Cal-
culating the ACL also takes � � � � time. Hence, the overall
time complexity is � � � � .

3.3. Dealing with transition energy overhead

Extra energy will be consumed during a voltage tran-
sition because (1) a voltage transition itself consumes en-
ergy and (2) voltage transitions take a fixed amount of time
within which no jobs can be executed. Therefore the pro-
cessor needs to adopt a higher speed elsewhere to accom-
modate this interval.

To illustrate effect (2) from above, let us examine the
data in Figure 4(a). This figure shows the energy consumed
by executing the task set from Figure 1 at the speeds se-
lected by lpLDAt for various sizes of � � , and various val-
ues for � 	 � 	 of each task. The solid black line represents
the energy consumed when always executing at the mini-
mum constant speed, i.e., � � � according to equations (2)
and (3). All energy numbers are normalized against the en-
ergy consumed when executing at the maximum proces-
sor speed, � � � � , without DVS. The reader will immedi-
ately notice that as � � grows, the benefit gained from DVS
quickly vanishes. Such results are due to the fact that lpL-
DAt aggressively varies the processor speed to exploit slack,
which can adversely introduce more transitions than neces-
sary when transition overhead is not negligible.

To ensure that time overhead does not cause an en-
ergy increase over using just � � � , we propose exploit-
ing slack less aggressively, thus avoiding transitions that
would increase energy instead of reducing it. The maximum
speed, � � � � (which is assumed to equal 1 when normal-
ized) is used implicitly in Lines 9 and 10 of Algorithm 1
when determining � � � � . This leads to an “overestimation”
of slack time when transition overhead is not negligible. If
we choose a lower speed for � � � � , it can be readily used to
scale these workload values and will result in a more con-
servative slack exploitation. We refer to the adjusted maxi-
mum speed as � �� � � .

An interesting problem is how to select this � �� � � . One
may be tempted to select � � � as the speed for � �� � � .
Though this ensures that no curve will appear above the

� � � line in Figure 4 and also guarantees all task deadlines,
doing so would drastically reduce the amount of slack avail-
able when � � is zero and jobs finish much earlier than the
worst case. This situation is illustrated in Figure 4(b). Set-
ting � �� � � to a speed between � � � and � � � � is not effi-
cient in general. This is because the reason that we scale
back the � � � � is that we expect there to be very little slack
available (due to near worst-case cycles or high � �). Be-

0.35

0.45

0.55

0.65

0.75

0.85

0.1 0.3 0.5 0.7 0.9
1 - bc/wc

N
or

m
al

iz
ed

E
ne

rg
y

0.35

0.45

0.55

0.65

0.75

0.85

0.1 0.3 0.5 0.7 0.9
1 - bc/wc

N
or

m
al

iz
ed

E
ne

rg
y

0.35

0.45

0.55

0.65

0.75

0.85

0.1 0.3 0.5 0.7 0.9
1 - bc/wc

N
or

m
al

iz
ed

E
ne

rg
y

∆∆∆∆t = 100 µµµµs SMC∆∆∆∆t = 60 µµµµs ∆∆∆∆t = 20 µµµµs ∆∆∆∆t = 0

(a) (b) (c)

1 - bc/wc

N
or

m
al

iz
ed

E
ne

rg
y

S’max = Smax S’max = SMC Heuristic

Figure 4. The energy consumed when apply-
ing (a) lpLDAt with � �� � � " � � � � , (b) lpLDAt
with � �� � � " � � � and (c) lpLDAT to the task
set from Figure 1.

cause there is little slack, we expect to execute at � �� � � a
large percentage of the time. If this is the case then the lower

� �� � � is the less energy the system will consume. The de-
cision is made by estimating the energy that lpLDAt will
consume at each speed, which is done by simulating the ex-
ecution of tasks up to the system hyperperiod. During this
process, we assume that every job instance requires the av-
erage case execution cycles. The process is repeated twice,
once with � �� � � " � � � � and once with � �� � � " � � � . The
level that consumes less energy during this estimation step
is selected.

Algorithm 3 with the lines marked by *** represents the
new algorithm, called lpLDAT. Here we will focus on the
parts that are different from lpLDAt. Lines 3–6 determine
the adjusted maximum speed � �� � � as described above.
This step occurs off-line.

On-line, after a new speed is selected, if the selection re-
sults in a voltage transition from �) to � * , then there is one
final check (Line 18), which ensures that � , doesn’t lo-
cally dominate the energy saved by changing the voltage
level. If executing the workload of - � / 01 at �) consumes less
energy than executing at � * 3 4 � , and �) 6 � * , then the
voltage transition is rejected. Otherwise, � * is adopted as
the new processor speed. Theorem 4 states the correctness
of Algorithm 3.

Theorem 4. The policy followed by lpLDAT will guaran-
tee all system deadlines, and has a computational complex-
ity of � � � � per scheduling point, where � is the number of
tasks in the system.

Proof. Theorem 3 states that lpLDAt guarantees all dead-
lines. Algorithm lpLDAT is identical to lpLDAt, with two
key differences. First, � � � � is conditionally set to the mini-
mum constant speed that meets all deadlines under the worst
case phasing condition off-line. If � � � � is scaled down,
then Lemma 3 still holds for lpLDAT, because the system is
still schedulable at the new speed � �� � � . The second change
accounts for transition energy overhead. The modification is

Proceedings of the 11th IEEE Real Time and Embedded Technology and Applications Symposium (RTAS’05)
1080-1812/05 $ 20.00 IEEE

to only scale down to a lower speed if the energy overhead
of the transition is offset by the energy gained from exe-
cuting at a lower speed. Because the alternative is execut-
ing at a higher speed than the identified overhead-feasible
speed, the alternative speed is also overhead-feasible. The
first modification is off-line, so it doesn’t alter the on-line
complexity. The energy estimation for the second modifi-
cation takes constant time, so the complexity of lpLDAT is� � � � .

4. Experimental Results

In this section we quantify the effectiveness of lpLDAT
on several real-world and randomly generated task sets, and
compare its energy consumption with ccRM, lpWDA, FC
and SMC. Both ccRM and lpWDA were modified to ac-
count for time transition overhead. SMC simply runs at� � � and enters the sleep state when idle. FC, the off-line
algorithm from [17], is used as reference lower bound to all
three algorithms. When scheduling with FC, it is assumed
that � 	 � and exact job execution cycles are known.

The processor model we use is representative of the
ARM8 core. For all experiments we assume there are 32
frequency levels available in the range of 10 to 100 MHz,
with corresponding voltage levels of 1 to 3.3 Volts. When
idling, the processor is assumed to consume one half the
power consumed when executing at the minimum proces-
sor speed. Transition energy overhead is modeled using� � � � � � � � � � � �� � � �� � , with � � � � and � � � � ! F as presented by Burd in [4]. The energy of all the results
presented in this section are normalized against a proces-
sor running at the maximum processor speed without DVS.

First, each algorithm was applied to two real-world ex-
amples: A Computerized Numeric Controller (CNC) task
set based on the work by Kim et al. in [10] and an avion-
ics task set based on Locke’s work in [13]. For each task
set, � 	 was varied from 0 to 300 ! s in 100 ! s steps. The
results are displayed in Figures 5(a–d) and 5(e–h) respec-
tively.

For the CNC tasks set, lpLDAT is always as good as or
better than ccRM and lpWDA. Note that instead of display-
ing

"
#$ # on the & -axis, we display ' �

"
#$ # . With � 	 � ,

lpLDAT is within 2% of the lower bound and consumes as
much as 29% less energy than ccRM or lpWDA.

The second set of experiments was conducted on ran-
domly generated task sets with the number of tasks per set
varied from 2 to 10 in two task increments. Each group-
ing has 100 separate task sets, with periods and deadlines
uniformly distributed in the range [1, 100] ms, hyper peri-
ods less than or equal to 5 s, and a

*
$ # normally distributed

in the range [0.2, 0.8]. � 	 is assumed to be 100 ! s. The re-
sults are given in Figure 6. Clearly lpLDAT outperforms the
other two algorithms in all cases, and the margin of its im-

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1

lp
LD

A
T

cc
R

M

lp
W

D
A

lp
LD

A
T

cc
R

M

lp
W

D
A

lp
LD

A
T

cc
R

M

lp
W

D
A

lp
LD

A
T

cc
R

M

lp
W

D
A

lp
LD

A
T

cc
R

M

lp
W

D
A

2 Tasks 4 Tasks 6 Tasks 8 Tasks 10 Tasks

N
or

m
al

iz
ed

E
ne

rg
y

bc/wc=1 bc/wc=0.7 bc/wc=0.4 bc/wc=0.1

Figure 6. Energy consumption of various al-
gorithms when scheduling randomly gener-
ated task sets. The transition time overhead
is 100 ! s.

provement increases with the number of jobs in the system
and as the best case execution cycle to worst-case execu-
tion cycle ratio (bc/wc) decreases.

5. Summary

In this paper we presented an on-line DVS scheduling al-
gorithm called low power Limited Demand Analysis with
Transition overhead (lpLDAT). This algorithm is the first in
its class that correctly accounts for time transition overhead
to guarantee hard deadlines for real-time systems. Addition-
ally, stochastic information on task execution and transition
energy overhead are both considered during the scheduling
process, resulting in an overall energy reduction of up to
40% when compared to previous methods.

Although lpLDAT does perform well, it is not optimal.
For example, lpLDAT could benefit from a more sophis-
ticated off-line analysis of the task set, especially if more
is information is known about each task. Also, the heuris-
tic used to choose between � , - / and � � � can also be im-
proved. Future work should conduct an in depth analysis of
these issues.

References

[1] N. AbouGhazaleh, D. Mossé, B. Childers, R. Melhem, and
M. Craven. Collaborative operating system and compiler
power management for real-time applications. In Proceed-
ings of the 9th IEEE Real-Time and Embedded Technology
and Applications Symposium (RTAS), pages 133–141, May
2003.

[2] AMD. Mobile amd athlon 4 processor model 6 cpga data
sheet rev:e. Technical Report 24319, Advanced Micro De-
vices, Nov. 2001.

[3] A. Andrei, M. Schmitz, P. Eles, Z. Peng, and B. M. Al-
Hashimi. Overhead-conscious voltage selection for dynamic
and leakage energy reduction of time-constrained systems.

Proceedings of the 11th IEEE Real Time and Embedded Technology and Applications Symposium (RTAS’05)
1080-1812/05 $ 20.00 IEEE

∆∆∆∆ t = 0 µµµµ s ∆∆∆∆ t = 100 µµµµ s ∆∆∆∆ t = 200 µµµµ s ∆∆∆∆ t = 300 µµµµ s

1 - bc / w c

No
rm

al
iz

ed
En

er
gy (a) (b) (c) (d)

0.4

0.6

0.8

0.2
1.0

0.8

0.6

0.4

(e) (f) (g) (h)

0.
4

0.
2

0.
6

0.
8

0.
4

0.
2

0.
6

0.
8

0.
4

0.
2

0.
6

0.
8

0.
4

0.
2

0.
6

0.
8

ccR M lpW D A lpLD ATFPSM C

Figure 5. Energy consumption of various algorithms on the CNC (a–d) and Avionics (e–h) task sets.

In Proceedings of the conference on Design, automation and
test in Europe (DATE), 2004.

[4] T. D. Burd. Energy-Efficient Processor System Design. PhD
thesis, University of California, Berkeley, Berkeley, CA,
May 2001.

[5] T. D. Burd and R. W. Brodersen. Design issues for dy-
namic voltage scaling. In Proceedings of the 2000 Inter-
national Symposium on Low Power Electronics and Design
(ISPLED), pages 9–14, July 2000.

[6] Compaq ipaq h3600 hardware design specification - ver-
sion 0.2f. online- http: //www.handhelds.org/ Compaq/
iPAQH3600/ iPAQ H3600.html.

[7] F. Gruian. Hard real-time scheduling for low-energy us-
ing stochastic data and dvs processors. In Proceedings of
the 2001 International Symposium on Low Power Electron-
ics and Design (ISPLED), pages 46–51, Aug. 2001.

[8] I. Hong, G. Qu, M. Potkonjak, and M. B. Srivastava. Syn-
thesis techniques for low-power hard real-time systems on
variable voltage processors. In Proceedings of the 19th
Real-Time Systems Symposium (RTSS), pages 178–187, Dec.
1998.

[9] Intel. The intel xscale microarchitecture. Technical report,
Intel Corporation, 2000.

[10] N. Kim, M. Ryu, S. Hong, M. Saksena, C. ho Choi, and
H. Shin. Visual assessment of a real-time system design:
a case study on a cnc controller. In Proceedings of the 17th
Real-Time Systems Symposium (RTSS), pages 300–310, Dec.
1996.

[11] W. Kim, J. Kim, and S. L. Min. Dynamic voltage scaling al-
gorithm for dynamic-priority hard real-time systems using
work-demand analysis. In Proceedings of the 2003 Interna-
tional Symposium on Low Power Electronics and Design (IS-
PLED), pages 396–401, Aug. 2003.

[12] J. W. S. Liu. Real-Time Systems. Prentice Hall, Upper Sad-
dle River, NJ, 2000.

[13] C. D. Locke, D. R. Vogel, and T. J. Mesler. Building a
predictable avionics platform in ada: a case study. In Pro-
ceedings of the 12th Real-Time Systems Symposium (RTSS),
pages 181–189, Dec. 1991.

[14] B. Mochocki, X. S. Hu, and G. Quan. A realistic variable
voltage scheduling model for real-time applications. In Pro-
ceedings of the 2002 IEEE/ACM international conference
on Computer-Aided design (ICCAD), pages 726–731, Nov.
2002.

[15] P. Pillai and K. G. Shin. Real-time dynamic voltage scal-
ing for low-power embedded operating systems. In Proceed-
ings of the eighteenth ACM symposium on Operating systems
principles (SOSP), pages 89–102, 2001.

[16] J. Pouwelse, K. Langendoen, and H. Sips. Dynamic volt-
age scaling on a low-power microprocessor. In Proceedings
of the 7th annual international conference on Mobile com-
puting and networking (MOBICOM), pages 251–259, July
2001.

[17] G. Quan and X. S. Hu. Energy efficient fixed-priority
scheduling for real-time systems on variable voltage proces-
sors. In Proceedings of the 2001 Design Automation Confer-
ence (DAC), pages 828–833, June 2001.

[18] S. Saewong and R. Rajkumar. Practical voltage-scaling for
fixed-priority rt systems. In Proceedings of the 9th IEEE
Real-Time and Embedded Technology and Applications Sym-
posium (RTAS), pages 106–114, May 2003.

[19] D. Shin, S. Lee, and J. Kim. Intra-task voltage scheduling
for low-energy hard real-time applications. Design & Test of
Computers, 18(2):20–30, March – April 2001.

[20] F. Yao, A. Demers, and S. Shenker. A scheduling model for
reduced cpu energy. In Proceedings of the 36th Annual Sym-
posium on the Foundations of Computer Science (FOCS),
pages 374–382, Oct. 1995.

[21] Y. Zang, X. S. Hu, and D. Z. Chen. Energy minimiza-
tion of real-time tasks on viariable voltage processors with
transition energy overhead. In Proceedings of the 2003
Asian and South-Pacific Design Automation Conference (AS-
PDAC), pages 65–70, 2003.

[22] Y. Zhang and K. Chakrabarty. Task feasibility analysis and
dynamic voltage scaling in fault-tolerant real-time embed-
ded systems. In Proceedings of the Design, Automation and
Test in Europe Conference and Exhibition Volume II (DATE),
page 21170, 2004.

Proceedings of the 11th IEEE Real Time and Embedded Technology and Applications Symposium (RTAS’05)
1080-1812/05 $ 20.00 IEEE

