
SCHEDULING FOR POWER REDUCTION

IN A REAL-TIME SYSTEM

Jason J. Brown1 Danny Z. Chen2 Garrison W. Greenwood3

Xiaobo (Sharon) Hu2 Richard W. Taylor1

ABSTRACT

This paper describes how, through a combination of
scheduling and bu�er insertion, real-time systems may be
optimized for power consumption while maintaining dead-
lines. Beginning with simple examples (components that
have no internal pipelines and in which the only design free-
doms are bu�er insertion and scheduling), we illustrate the
e�ect of adjusting the time at which data are processed on
power consumption. Algorithms for optimizing the energy
saving are proposed for several real-time system implemen-
tations including non-pipelined and pipelined. We also dis-
cuss extension to this preliminary work including selection
of alternate processing units in order to reduce power con-
sumption while maintaining deadlines.

1. INTRODUCTION

Power management [2, 9] is increasingly becoming a design
factor in portable, hand-held computing systems. Since
many such power-sensitive systems are also real-time, it
makes sense to consider the e�ect that deadlines have on
the ability of the designer to restructure and reschedule for
power reduction. A combination of advances in hardware-
software codesign and increased silicon capacity make it
possible to consider sophisticated techniques for power man-
agement that rely on an ability to restructure software,
hardware and schedules.
It is important to emphasize that optimizing a design for

reduced energy consumption must be addressed at the sys-
tem level. Embedded real-time systems are made up of a
diverse set of components (e.g., actuators, sensors, ASICs,
microcontrollers, etc.). While it is possible to optimize in-
dividual components, this does not guarantee a minimal
energy consumption at the system level because compo-
nents do not operate in isolation. Indeed, changing the
operation of one component may a�ect the operation (and
hence, the energy consumption) of other components. It is
therefore only at the system level that the interaction of all
components can produce a global energy consumption esti-
mate. Ultimately, one should aim at optimizing the power
consumption of the complete system{actuators, sensors and
computing hardware.
Re-scheduling and power-down techniques have been ap-

plied variously to minimize the power dissipation of a sys-
tem. However, most of the these works focus on the tech-
niques at the logic or behavioral levels of architectural ab-
straction. In particular, Monteiro et al. [7], describe a tech-
nique for rescheduling and pipelining of a control dataow
graph (CDFG) that enables the circuit in one part of a

1Hewlett-Packard Laboratories, Bristol, UK.
2Dept. of Computer Science & Engineering, Univ. of Notre

Dame, Notre Dame, IN, USA. Chen's research was supported in
part by NSF under Grant CCR-9623585. Hu's research was sup-
ported in part by HP Labs, Bristol, England under an external
research program grant, and by NSF under grant MIP-9701416.

3Dept. of Electrical & Computer Engineering, Western Michi-
gan Univ., Kalamazoo, MI, USA. The research was supported in
part by HP Labs, Bristol, England under an external research
program grant.

branch to be powered down once the value of branches
conditional is known. This technique increases the con-
trol steps, however by using pipelined units they can over-
come the throughput degradation. The somewhat related
techniques of precomputation [1] and guarded evaluation [10]
provide circuitry for powering down logic that is unused for
the computation of the current clock cycle.
In this paper, we present some preliminary results of our

work on system-level power management for real-time sys-
tems. We describe a technique based on rescheduling, bu�er
insertion and power down to reduced the energy consump-
tion of a system of processing units. The technique draws
on the vectorization idea from parallel processing. Vector-
ization (or block-processing) through rescheduling has been
successfully used for improving the computation speed of
DSP applications [5, 8]. Our goal, however, is to minimize
system power consumption through rescheduling. Our main
contribution is in identifying the e�ect of data execution
rescheduling on the overall system power consumption. We
also propose algorithms for optimizing the energy saving
in several real-time system implementations including non-
pipelined and pipelined.
The paper is organized as follows. Section 2. intro-

duces some needed terminology and notation and then de-
scribes the problem through an example. Solutions to the
rescheduling and bu�er insertion problem for non-pipelined
and pipelined systems are presented in Section 3. Finally
Section 4. discusses how these techniques might be extended
to allow multi-choice component selection, when competing
components have di�erent timing and energy properties.

2. PROBLEM DESCRIPTION

In this paper a set of real-time tasks is modeled as a di-
rected acyclic graph (DAG). Each node represents a group
of computations (or a task) and each edge represents a de-
pendency between tasks. Further, we assume that each task
is to be executed by a processing unit (PU). (Extensions to
these assumptions will be discussed in the last section.) In-
terconnections between PUs are determined by the system
architecture (e.g., global bus or local bus). Each PU has
a number of parameters. In particular, we are interested
in the power dissipated while (i) starting up, (ii) running
(computing), (iii) idle (powered up but not computing),
and (iv) powering down. Also, we are concerned with time
taken to start up, compute and shutdown. Each PU has an
associated energy dissipation graph, such as the one shown
in Figure 1 where the parameters are de�ned as follows:

�u(i): the time required to power up the i-th PU from o�
(note that \o�" means the clock to the PU is gated)

�d(i): the time required to power down the i-th PU

�a(i): the time the i-th PU spends in active state (i.e.,
computing its function) which is dependent on the data
parameters to the PU

�id(i): the time the i-th PU spends in the idle state (i.e.,
computing nothing)

�ai(i): the time required by the i-th PU to go from active
state to idle state



Figure 1. Example energy graph for a processing
unit

�ia(i): the time required by the i-th PU to go from idle
state to active state

pa(i): power dissipation of the i-th PU in the active state

pid(i): power dissipation of the i-th PU in the idle state

To simplify the formulation of the problem, we assume that
�a is �xed for a PU on all possible inputs. Furthermore for
each PU (denoted by Ui), the time to power up and power
down is �xed. The energy dissipated when powering up and
powering down is 1

2
[�u(i)pa(i) + �d(i)pa(i)] and is denoted

by EO(i). In our following deposition, we will ignore the
energy due to the transitions between idle and active states
in order to simplify the analysis.
Referring to Figure 1 it is easy to see that energy con-

sumption could be reduced by powering down a PU while it
is in idle state. However, the energy associated with pow-
ering down and up a unit may not be negligible. Repeated
shutting down during short idle intervals may not be desir-
able. On the other hand, if one can adjust the time at which
data is processed (i.e., rescheduling), it may be possible to
minimize the number of power down and power up cycles,
and hence achieve a greater energy saving.
To illustrate this idea, let us consider a simple example

real-time system in which two tasks, A andB, are connected
in series and the output of T1 is the input of T2. Two PUs,
U1 and U2 are used to implement the two tasks, respectively.
Figure 2 shows the basic schedule for this system in which

Figure 2. Example simple schedule

four data elements are to be processed. Observe that both
units have idle time (indicated by the shaded areas) during
which no active data processing occurs. In this case the
total energy consumption can be calculated as

E1 = 4 � [�a(1) � pa(1) + �a(2) � pa(2)] + 3 � [�a(2) � pid(1)

+�a(1) � pid(2)] +EO(1) +EO(2) (1)

For the same schedule, if we introduce one bu�er to store
the data produced by U1, the energy consumption can be

modi�ed to

E2 = 4 �

2X
i=1

�a(i) � pa(i) +EO(1) +EO(2) +EB (2)

where EB is the energy consumption by the bu�er. (En-
ergy consumption of a bu�er is assumed to be a constant.
This may be modi�ed as pointed out in the last section.)
Comparing Equations (1) and (2) a relationship can be de-
rived between the parameters so that energy savings can be
achieved. The energy savings di�er depending on the num-
ber of inserted bu�ers. If there are four bu�ers available
instead of one, a new schedule can be designed as shown
in Figure 3. In this case, the energy consumption can be

Figure 3. Example schedule for PUs and bu�er

computed as

E3 = 4�[�a(1)�pa(1)+�a(2)�pa(2)]+EO(1)+EO(2)+4�EB

(3)
Again, greater energy saving could be obtained for certain
combinations of �a; pid; EO and EB values.
In the rest of this paper we will discuss the scheduling

and bu�er insertion idea for several types of real-time sys-
tem implementations. We �rst introduce some notation and
terminology. Since we are focusing on real-time systems
whose tasks can be represented as directed acyclic graph,
we will represent the PUs that implement these tasks also
as a DAG G = (V;A) where a node vi 2 V corresponds
to the processing unit Ui. (Associated with each vi are the
timing and power parameters that were de�ned earlier in
this section.) An arc ai;j 2 A represents a dependency be-
tween processing units Ui and Uj . Finally, let PC � V be
the nodes on the longest path from input to output.
As illustrated previously, inserting bu�ers into arcs can

be exploited to reduce the number of power up and power
down cycles. Let �i;j denote the number of bu�ers needed
at the arc ai;j when a single data element is processed at
a time. If k input data elements are to be processed at a
time, the number of bu�ers needed in ai;j increases by a
factor of k. Speci�cally, the number of bu�ers required on
ai;j becomes bi;j(k) = k � �i;j . The total number of bu�ers
required in a system then becomes

B(k) =
X
i

X
j

bi;j(k) (4)

For a given real-time application, a deadline D(1) is de-
�ned such that the time it takes to process the �rst data
element cannot exceed D(1). D(m) is de�ned similarly. If
k data are processed at a time, the actual times it takes
to process the �rst data element and m data elements are
denoted as T (1; k) and T (m;k), respectively. Further, let
ÆE(m;k) be the di�erence in energy consumption between



two schedules that either process k data at a time or simply
one data at a time (assuming power-down is used). Then,
the problem of scheduling and bu�er insertion for reducing
power can be described as follows.

Given a DAG representing the system under considera-
tion, �nd k and B(k) such that

(i) the total energy saving ÆE(m;k) is maximized,
(ii) the deadline constraints D(1) and D(m) are

satis�ed, and that
(iii) the data dependencies of the original DAG

are preserved.

3. PROBLEM SOLUTIONS

In this section, we discuss our preliminary results for solv-
ing the scheduling and bu�er insertion problem for several
system implementations.

3.1. Non-pipelined systems

Consider a general non-pipelined system with m data el-
ements to be processed. If k data elements are sched-
uled to be processed at a time, one method is to insert
bi;j(k) = k � �i;j bu�ers at each arc, ai;j . In this treatment,
the processing time T (1; k) and T (m;k) can be calculated
as

T (1; k) =
X

vi2fPC�vng

k � �a(i) + �a(n) (5)

T (m; k) = m �
X
vi2PC

�a(i) (6)

where vn is the last node on the longest path. Note that
rescheduling in this case does not increase the total pro-
cessing time of m data. The total energy saving can be
computed as

ÆE(m;k) =
X
vi2V

[m(1�
1

k
)EO(i)]� (k� 1) �EB �

X
ai;j2A

�i;j

(7)
We give a straightforward procedure in the following to

�nd the optimal schedule:
1. Find an upper bound on k based on the deadline con-

straints. That is,

kupper =
D(1)� �a(n)P
vi2fPC�vng

�a(i)

2. Using Equation (7), set @ÆE(m;k)

@k
= 0 and solve the

resulting quadratic equation for the optimum k value
(kopt).

3. Let k = minfkopt; kupperg.
The total number of bu�ers, B(k), can be reduced if the

architecture of a non-pipelined system allows time shar-
ing of the bu�ers. Here, we consider a somewhat simpli-
�ed sharing scheme in which sharing is constrained only by
data integrity and no other constraints are enforced. In
this case, the minimum number of bu�ers for processing
k data elements at a time, Bmin(k), can be expressed as
Bmin(k) = � � k. Observe that �nding � is equivalent to
�nding the maximum number of outputs that are alive at
any instant of time. An output is alive if its data have
not been consumed by the PU's that read the data. In the
following we sketch an algorithm for solving this problem.
1. Use the topological sort algorithm to �nd the length

of longest path, li, from input to each node vi, where
the path length represents the sum of �a(j)'s for every
node vj on the path.

2. Use a sorting algorithm to assign each node an index
Ii based on the ascending order of li. Nodes with equal
path lengths get the same index value.

3. Set �0 = 0.
4. For each index value Ii, compute �Ii by subtracting

the total number of inputs at every node with the same
Ii value from �Ii�1, and adding the nodes' number of
outputs to the result.

5. � = maxf�Iig

Now, by replacing the last term in Equation (7) with (k �
1) � � � EB, the procedure used for �nding the optimal k
described above can be used similarly for this bu�er sharing
scheme.

3.2. Pipelined systems

If a real-time system requires certain throughput rate, a
pipelined design may be desirable. The pipeline period is
de�ned as T = max1�i�nf�a(i)g. Then, T (1; 1) = NC � T
and T (m; 1) = (NC + (m � 1))T , where NC is the total
number of nodes along the longest path. A simple example
in Figure 4 helps to see that pipelined systems could also
bene�t from bu�er insertion. Here, two processing units are
connected in series where the output of U1 is the input of
U2. Figure 4(a) shows the basic schedule for this pipelined

3

3

1

4

2 4

U

U2

1

T

1 2 3 4

1 2 3 4

U

U2

1
1 2

T2
(b)

(a)

Figure 4. Feasible schedules for the two processing
unit problem. Shaded areas represent idle periods
for the respective processing units. Observe that
the pipeline period in (b) is twice that of (a).

system and Figure 4(b) shows a schedule if two bu�ers are
inserted to allow two data elements to be processes at a
time. Comparing the two schedules both with the power-
down option, we obtain an energy saving of

ÆE(4; 1) = 2EO(1)�EB (8)

Of course, the additional bu�er has increased the latency
by T . We have assumed that �a(1) < �a(2) in the above
example but it is easy to derive similar equations if �a(2) <
�a(1). For the case where �a(1) = �a(2) = T , no individual
powering up or down of processing units is required.
For a general pipelined system, the amount of energy

saving can be computed by

ÆE(m;k) =
X
vi2V

[m(1�
1

k
) ~EO(i)]� (k� 1) �EB �

X
ai;j2A

�i;j

(9)

where ~EO(i) = EO(i) if �a(i) < T and ~EO(i) = 0 otherwise.
The processing time can be calculated as follows.

T (1; k) = k � (NC � 1) � T + �a(n) (10)

T (m;k) = T (1; n)+(m�k)�T = k�(NC�2)�T +�a(n)+m�T
(11)



To preserve data synchronization in the original problem,
the following requirement must be satis�ed. Let in1(i) and
in2(i) be two inputs to vi, and let Nin1(i) and Nin2(i) be
the number of processing units in a path from the primary
system input to in1(i) and in2(i), respectively. Then, if
Nin1(i) > Nin2(i), k(Nin1(i) �Nin2(i)) bu�ers should be in-
serted along the path to in2(i). When there exist multiple
such paths, the locations of these bu�ers can e�ect the �nal
number of bu�ers needed. Note that k is simply a scaling
factor. Hence, we can generalize this problem as follows.
Let ~bi;j = 1+�i;j � bi;j . Then for each arc ai;j �nd ~bi;j such
that
(i) The sum of ~bi;j 's on every path from the primary input

to a node is the same.
(ii) � =

P
ai;j2A

~bi;j is minimized.

The techniques for retiming synchronous circuits [6] can
be modi�ed to solve this problem. Speci�cally, a retiming
method similar to the one proposed in [3] can be applied
to this problem. It follows then that the total number of
bu�ers needed along the arcs can be calculated as � � k.
Now, we give the following iterative procedure for �nding

k and number of bu�ers needed to design a pipelined system
for processing k data at time.
1. Find � as outlined above.
2. Find an upper bound on k based on the deadline con-

straints. That is,

kupper = min

�
D(1)� �a(n)

(NC � 1) � T
;
D(m)� �a(n)�m � T

(NC � 2) � T

�

3. With

ÆE(m;k) =
X
vi2V

[m(1�
1

k
) ~EO(i)]�(k�1)�EB �� (12)

set @ÆE(m;k)

@k
= 0 and solve the resulting quadratic

equation for the optimum k value (kopt).
4. Let k = minfkopt; kupperg.

4. DISCUSSION AND FUTURE WORK

Power management in real-time embedded systems is both
necessary and complex. There are signi�cant opportuni-
ties for optimization in both power reduction and power
smoothing. While these techniques are valuable when de�n-
ing the silicon structure and hardware-software scheduling,
they can also be applied to the complete system including
sensors and actuators (components which tend to dominate
the power budget).
In this paper, we presented our preliminary work on

rescheduling and bu�er insertion when there is slack time
available in a real-time system. Based on our observations
on several embedded systems under development, the ap-
proach seems very promising. Currently, we are collecting
data from some applications and will present such data in
the �nal version.
The problems and techniques presented here, while rea-

sonably complex, do not reect the full reality of optimiz-
ing real-time systems for energy eÆciency and performance.
First, real-time systems may contain cycles and complex
dependency constraints. Also, tasks may share same pro-
cessing units. The system architectures can also have many
variations. More sophisticated rescheduling techniques will
be necessary. Furthermore, the assumption in this paper is
that PUs are not internally pipelined, hence more complex
rescheduling is unnecessary but the techniques discussed
result in a reduced throughput. Introducing pipelined PUs

may enable this subsequent loss in throughput to be recov-
ered or even increased, but at the cost of a more complex
rescheduling algorithm. In addition pipelined PUs would
enable our model to support more realistic behavior of com-
ponents such as CPU RISC cores and DSP cores.
Currently a constant energy cost is associated with

bu�ers to enable the rescheduling, which is clearly sim-
plistic. A better cost model for bu�ers is also required,
this should include the power dissipation of bu�ers in ac-
tive and idle state and a time delay model for inserting and
retrieving data. To determine number of bu�ers needed,
fanouts of processing units and di�erent requirements on
bu�er sharing should also be considered. Such extensions
to the current model are relatively easy.
A more complex extension is to support the selection of

PUs for particular tasks, where each PU would have an as-
sociated model including latency, throughput and energy
graphs. Selection of actuators and sensors should also be
included. These introduce a set of complex trade-o�s be-
tween timing, performance and power utilization. In some
previous work [4] we have shown that it is possible to �nd
system architectures which have a good trade-o� between
conicting attributes such as cost and speed. The software
toolkit (called EvoC) will not only choose a partition of
tasks between hardware and software implementations, but
also select appropriate hardware devices. To study trade-
o�s including power consumption, we are investigating the
integration of the techniques presented in this paper into
EvoC for design space exploration of low-power, real-time
embedded systems.

REFERENCES

[1] M. Alidina, J. Monteiro, S. Devadas, A. Ghosh and
M. Papaefthymiou, \Precomputation-Based sequential
logic optimization for low power", IEEE Trans. on
VLSI Systems, 2(4), 330-335, 1994

[2] A. Bellaouar and M.I. Elmasry, Low Power Digital
VLSI Design: Circuits and Systems, Kluwer Academic
Publishers, 1995.

[3] X. Hu, S. Bass and R. Harber, \Minimizing the num-
ber of delay bu�ers in the synchronization of pipelined
systems", IEEE Trans. on CAD of Integ. Cir. & Sys,
13(12), 1441-1449, 1994

[4] X. Hu, G. Greenwood and J. D'Ambrosio, \An evo-
lutionary approach to hardware/software partition-
ing," Parallel Problem Solving from Nature IV, Lec-
ture Notes in Computer Science 1141, H.M. Voigt,
W. Ebeleing, I. Rechenberg and H.P. Schwefel (Eds.),
Springer-Verlag, 900-909, 1996

[5] K. Lalgudi, M. Papaefthymiou, and M. Potkonjak,
\Optimizing systems for e�ective block-processing :
the k-delay problem", IEEE 33rd Design Automation
Conference, pp.714-719, 1996.

[6] C. Leiserson and J. Saxe, \Retiming synchronous cir-
cuitry", Algorithmica, 6(1), 5-35, 1991

[7] J. Monteiro, S. Devadas, P. Ashar and A. Mauskar,
\Scheduling techniques to enable power management",
IEEE 33rd Design Automation Conference, 1996

[8] M. Potkonjak and J. Rabaey, \Pipelining: just an-
other transformation", Int'l Conf. on Application Spe-
ci�c Array Processors, 163-175, 1992

[9] J.M. Rabaey and M. Pedram, Low Power Design
Methodologies, Kluwer Academic Publishers, 1996.

[10] V. Tiwari, P. Ashar and S. Malik, \Guarded evalu-
ation: pushing power management to logic synthe-
sis/design", Int'l Symp. on Low Power Design, 221-
226, 1995


