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ABSTRACT

An approach of doing register allocation beyond basic blocks for
low energy is presented in this paper. With careful analysis of
boundary conditions between consecutive blocks, our approach
achieves the allocation results benefiting the whole program. By
allowing the allocation results to propagate down block by block
without backtracking, we avoid excessive computational cost.

1. INTRODUCTION

Memory access is a major source of power consumption in many
computer systems. For some data-intensive applications, energy
consumption due to memory access can be more than 50% [6].
Since access to different types of memory components, such as
register, cache, main memory and magnetic disk, differs dramati-
cally in speed and power consumption [7], appropriately allocat-
ing data variables in a program to different memory elements can
play an important role toward achieving high performance and low
energy consumption [4]. In this paper, we study the problem of
partitioning variables between registers and memory and mapping
variables to registers (referred to as the register allocation prob-
lem) for the purpose of achieving both short execution time and
low energy consumption.

Most existing register allocation techniques have focused on
reducing program execution time on a given system (e.g., [3, 5]).
However, an optimal-time register allocation does not necessarily
consume the least amount of energy [8]. Some researchers have
proposed approaches to deal with the optimal-energy register al-
location problem [1, 2, 4, 10]. Chang and Pedram [2] gave an
approach to find the lowest-energy assignment of variables to reg-
isters. Their techniques cannot be readily applied to the register
allocation problem since they do not consider the partitioning be-
tween registers and memory. Gebotys [4] presented algorithms for
determining both the partition between registers and memory and
the assignment of variables to registers in order to minimize en-
ergy consumption. Nonetheless, these algorithms only consider
variables within a piece of straight-line code called a basic block.

In this paper, we extend the work in [4] by investigating the
register allocation problem for low energy beyond basic blocks. In
particular, we consider the allocation of variables in a program
with branches. As a fundamental structure, branches make up
about 15% of instructions in a program [7]. Furthermore, loops
and procedure calls can be considered as branches with additional
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features. We have developed algorithms for handling the bound-
ary conditions between consecutive blocks. With our approach,
one can greatly reduce the computational cost due to examining
all possible paths of execution in a program and resolving any con-
flicting assignments that may arise. Furthermore, by carefully han-
dling those variables used in multiple blocks, the resulting energy
consumption is much lower than simply applying the algorithms
in [4] separately to each basic block.

2. PRELIMINARIES

Many optimization techniques carried earlier than register alloca-
tion in a compiler can affect the register allocation results. In this
paper, we assume that such optimization techniques have been ap-
plied and a satisfactory schedule of the program is already given.

We assume that there arek registers in the system. LetV =
fv1; v2; : : : ; vng (n > k) be the set of variables in a given pro-
gram, andVR/VM represent the set of variables assigned to reg-
isters/memory. Furthermore, leteRr=w (resp. eMr=w) be the energy
consumed by reading/writing a variable from register (resp. mem-
ory). The total energy consumed by a program is the sum of en-
ergy consumed by register accesses and memory accesses. Then,
the register allocation problem we consider can be formulated as
one of partitioningV intoVR andVM such thatVR[VM = V and
mapping each variablev 2 VR to one of thek registers to achieve
the least energy consumption due to data accesses.

Different energy and data access models have been proposed
in the literature [2, 4, 8]. The calculation of energy consumption
depends on the particular models used. A simple model, called
static energy model, assumes that references to the same type of
storage component consume the same amount of energy regardless
of the actual data. Under this model, optimizing energy consump-
tion is equivalent to minimizing the number of accesses to mem-
ory [11], which is also equivalent to optimizing execution time.

A more sophisticated energy model, called activity based en-
ergy model, is proposed in [2, 8]. Under this model, the energy
consumed by a program is dependent on the switched capacitance
of successive accesses of data variables that share the same stor-
age location. The Hamming distance between two subsequent data
items in the same storage location has been used to compute the to-
tal switched capacitance between two consecutive accesses to the
same location. Here we will only discuss the activity based energy
model for assessing the register file in order to simplify the prob-
lem formulation. (Adopting the activity based model for memory
is a simple extension to the algorithm discussed later in this paper.)

LetH(vi; vj) be the average Hamming distance between vari-
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rw be the average switched capacitance per bit

by the register access operations, andV be the operational voltage.
Then, the total energy consumption of a program can be calculated
asE = NM
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whereNM
r andNM

w are the total numbers of read and write ac-
cesses to memory, andvi ! vj indicates that a register content
switches fromvi to vj .

Techniques for minimizing energy consumption based on the
above model were proposed by Gebotys in [4]. Her approach
transforms the problem to an instance of the network flow prob-
lem. However, only variables within a single basic block are con-
sidered in [4]. Programs from real application unavoidably con-
tain branches and some other control structures. In this paper, we
focus on solving the register allocation problem for programs con-
taining branches. Though our approach does not cover all possible
structures of programs, it is a basic step towards solving a general
energy-optimal register allocation problem.

One way to solve the register allocation problem is simply
applying the existing algorithms in [4] to each basic block in a
program. However, without considering the relations between dif-
ferent blocks, such an approach may lead to many unnecessary
memory/register references at blocks boundaries [11]. Another ap-
proach is to enumerate all possible execution paths in a given pro-
gram and apply the algorithms in [4] to each path. However, the
allocation results from different paths can potentially be different
from each other for the same variable. Resolving these conflicts is
not a trivial task as it requires examining the global structure again.

In the rest of the paper, we discuss an efficient heuristic which
can find a nearly optimal solution for low energy register alloca-
tion. Our heuristic can work with both energy models discussed
earlier. Due to the page limit, we will only discuss our results for
the activity based energy model.

3. OUR APPROACH

To avoid the problems encountered by the known approaches dis-
cussed in the above section, we propose an iterative approach to
handle programs containing branches.

A program with branches can be modeled as a treeT and each
basic block as a nodeB in T . Let the parent block ofB beBp,
and one of its children beBc. We solve the register allocation
problem for eachB in the depth-first search order ofT . A main
challenge is how to handle those variables whose lifetimes extend
beyond a basic block such that the overall energy consumption of
the program is minimized. We have made several observations to
help deal with such variables. The key idea is to set up appropriate
boundary conditions between parent and child basic blocks. We
use the allocation result fromBp as an initial assignment to guide
the allocation ofB. By allowing the allocation results to propagate
down the treeT without back-tracking, we eliminate the excessive
computational cost yet obtain superior allocations.

We first describe our graph model, which is an extension to the
model introduced in [4]. For each basic blockB in T , there is a
generalized directed interval graphG = (N;A) associated with it.
Typically, there are three kinds of arcs inG. The first kind of arcs,
a(v), are those associated with each variablev 2 B. (Note thatv
can be either a variable referenced inB or a variable which will
be referenced byB’s descendents.) We denote the two end nodes
of a(v) byns(v) andnf (v), which correspond to the starting time
ts(v) (whenv is first written) and the finishing timetf (v) (when
v is last read), respectively.

The second kinds of arcs are those going in between some
variables. To define this kind of arcs, we first define some sets of
variables. Let a critical set,Ci, be a set of variables with over-
lapping lifetimes to one another such that the number of variables
in the set is greater than the numberk of available registers. For
each pair ofCi andCi+1 (the index ordering is based on scanning
the variables from the beginning to the end of blockB), letDi be
the set of variables whose lifetimes are in between the minimum
finishing time of all variables inCi and the maximum start time of
all variables inCi+1. Note thatD0 contains the variables whose
lifetimes are in between the start time ofB and the maximum start
time of all variables inC1, and thatDg is the set of variables whose
lifetimes are in between the minimum finish time of all variables in
Cg (the last critical set inB) and the finish time ofB. Now, an arc,
which belongs the the second kind, is introduced fromnf (u) for
eachu 2 (Ci [Di) tons(v) for eachv 2 (Di [ Ci+1) such that
tf (u) < ts(v). Intuitively, these arcs represent allowable register
sharing among subsequent data reference.

In [4], a source node,S, and a finish node,F , are introduced
at the beginning and end ofB, respectively. The third kind of arcs
are used to connectS tons(v) for eachv 2 (D0[C1) and connect
nf (u) for eachu 2 (Cg [Dg) to F . The nodesS andF can be
considered as the registers available at the beginning and end ofB.

To handle the allocation beyond a block boundary, our ap-
proach is to decide the register allocation for blockB based on
the allocation result fromB’s parent block,Bp. Depending on
which variable is assigned to which register prior to enteringB,
the amount of energy consumption by each variable inB can be
different. Therefore, simply using a single sourceS to represent
the registers available at the beginning ofB is no longer sufficient.
We need to introduce a forth kind of arcs to represent the different
register sources for the variables inD0 [ C1.

The construction of graphG for B, whereB has both a parent
and at least one child, is generalized as follows. (The graphs for
the root and leave blocks inT are simply special cases ofG.)

For those variables that are referenced only inB, we intro-
duce arcs and nodes associated with them in the same way as
we discussed above. The start and finish nodes,S andF , for B
are also maintained. Let the starting and finishing times of block
B be ts(B) and tf(B), respectively. For each variablev in B
whose starting (resp. finishing) time is earlier (resp. later) than
the starting (resp. finishing) time ofB, i.e.,ts(v) < ts(B) (resp.
tf (v) > tf (B)), we still use two end nodesns(v) andnf (v) in
G for the associated arca(v) (which means thatv is considered
by all the graphs corresponding to the blocks with which the life-
time ofv overlaps). The arcs between these nodes andS or F are
defined in the same ways as discussed in the previous paragraphs.
Furthermore, we introduce a register set,VRB, which contains the
variables residing in registers at the completion of the allocation
process for blockB. Note thatVRB becomes uniquely defined
after the allocation process ofB is completed, and that the size
of VRB , jVRB j, is always less than or equal tok, the number of
available registers. We expandG by adding a nodenp(v) for each
v 2 VRBp , whereBp is the parent block ofB. It is not difficult to
see that the variables inVRBp are the only variables which have a
chance to pass on their register locations to variables inB directly.
Now, we insert an arc, which is the forth kind, from eachnp(u) to
ns(v) for eachv 2 (D0 [C1) (whereD0 andC1 for blockB are
as defined in the previous paragraphs). Comparing our generalized
graph with a typical network flow graph, one can see that at most
k additional nodes andk � jD0 [ C1j additional arcs are used in



the generalized graph. Figure 1 shows an example graphG for the
current blockB assuming that there are three available registers.

Sometimes, a program may read a variable,v, more than once,
In this case, we introduce an additional nodenri(v) for each read
of v except the last read. Additional arcs are also introduced to
model possible register sharing between variables. Due to the page
limit, we omit the discussion on this part.

Given the directed graphG for B, we are ready to construct
the network flow problem associated withG. Letx(nf(u); ns(v))
and c(nf (u); ns(v)) be the amount of flow and the cost of one
unit of flow on arca(nf(u); ns(v)), respectively. Denote the total
amount of energy consumed byB asE. The objective function of
our network flow problem can be written as:

Minimize: E =
X

v2B

(eMrv + e
M
wv) �

X

v2Bjts(v)<ts(B)

e
M
wv

�
X

v2Bjtf (v)>tf (B)

e
M
rv �

X

a(p;q)2A

c(p; q) � x(p; q)

whereA is the set of arcs inG, the first three terms are the amount
of energy consumed byB if all the variables are assigned to mem-
ory, and the last term represents the energy saved by allocating
certain variables to registers. The values ofx(p; q) are unknown
and to be determined. Ifx(p; q) = 1 and arca(p; q) corresponds
to a variablev, thenv will be assigned to a register. The values
of c(p; q) are dependent on the types of arcs associated with them,
and can be categorized into the following cases.
1) For an arc from a node of typenf to another node of typens,
i.e. a(nf (u); ns(v)), the cost associated to the arc is computed by
c(nf (u); ns(v)) = eMw +eMr �H(u; v)CR

rwV
2 8u; v 2 N , where

N is the set of nodes inG. This is the amount of energy saved by
readingu from a register and writingv to the same register.
2) For an arc from a node of typenp to another node of typens,
i.e. a(np(u); ns(v)), the cost associated to the arc is defined dif-
ferently. There are a total of 7 cases to be considered.

2.1) If u is not inB(i.e.,u’s lifetime does not overlap with that
of B), andv is written inB, c(np(u); ns(v)) = eMw �
H(u; v)CR

rwV
2.

2.2) If u is not inB, andv has been assigned to a register inBp,
c(np(u); ns(v)) = �H(u; v)CR

rwV
2.

2.3) If u is not inB, andv has been assigned to memory during
the allocation process ofBp, c(np(u); np(v)) = �eMr �
H(u; v)CR

rwV
2.

2.4) If u is inB, andv is written inB, the costc(np(u); ns(v))
is the same as defined for Case 2.2.

2.5) If u is in B, andv has been assigned to a register during
the allocation process ofBp, c(np(u); ns(v)) = �eMw �
H(u; v)CR

rwV
2.

2.6) If u is inB, andv has been assigned to memory during the
allocation process ofBp, c(np(u); np(v)) = �eMw �eMr �
H(u; v)CR

rwV
2.

2.7) Ifu andv represent the same variable, the costc(np(u); ns(v))
is simply assigned to zero.

3) For an arc from start nodeS to another node of typens, i.e.
a(S; ns(v)) for v 2 D0 [C1, we need to have three different cost
functions.

3.1) If v is written inB, c(S; ns(v)) = eMw �H(0; v)CR
rwV

2,where
H(0; v) is the average Hamming distance between0 and a
variablev, and is normally assumed to be 0.5.

3.2) If v has been assigned to a register during the allocation pro-
cess ofBp, c(S; ns(v)) = �H(0; v)CR

rwV
2.

3.3) If v has been assigned to memory during the allocation pro-
cess ofBp, c(S; ns(v)) = �eMw �H(0; v)CR

rwV
2.

4) For an arc from a node of typenf to the finish node,F , i.e.
a(nf (v); F ) for v 2 Dg [ Cg, we need to have two different cost
functions.

4.1) If v is read inB, c(nf (v); F ) = eMr .

4.2) If v is not read inB, the costc(nf (v); F ) is simply assigned
to zero.

5) For an arc from a node of typens to another node of typenf ,
which is the arc corresponding to the same variable, the cost asso-
ciated to the arc is assigned to zero.

Using the above equations, the objective function for the net-
work flow problem will be uniquely defined. The constrains in-
clude the capacity constraint and flow conservation for a network
flow problem. Additionally, the total flow into the graphG should
be less than the total number of available registers.

Applying a network flow algorithm such as the one in [9] to
our network flow problem instance, we can obtain the value of each
x(p; q) in O(kn2) time for the blockB, wherek is the number of
available registers andn is the number of variables whose lifetimes
overlap with the lifetime ofB. If x(ns(v); nf (v)) for v in B is
one, the variablev is assigned to the appropriate register based on
the flow information. The above formulation can then be applied
to each basic block in the program tree in the depth-first search
order as we discussed at the beginning of this section.

Here we should point out that our method can also be used if
one wishes to explore program execution paths to determine the
register allocation. For example, we can associate each execution
path of a program with a priority. By applying our algorithm to
different paths following the priority order, the variable allocation
decisions made for the higher priority paths will not be changed
by the allocation processes of the lower priority paths. Rather,
the results from the higher priority paths are used to insure that
good allocations are found for the lower priority paths based on
these results. Hence, we have effectively eliminated the conflicting
assignments that can arise when solving the allocation problem for
each path separately. For more details, see [11].

4. EXAMPLE

Our algorithm is simple to implement and thus more efficient in
both running time and space cost than other global register allo-
cation algorithms. We have carried out several examples and the
results are very promising. Due to the page limit, we only show a
small example here.

The dataflow of an example program containing a branch is
shown in Figure 2. Each line segment in the figure indicates the
lifetime of a variable. Note that variablesc andd are referenced in
more than one block andc is referenced in two different execution
paths. We assume that there are two general purpose data registers.
Applying our algorithm, we begin withB1, proceed toB2 and then
B3. The allocation result is shown in Figure 2, where the variables
represented by solid line segments are allocated to registers and the
variables represented by the dashed lines are assigned to memory.



Execution Paths Energy differences
100%B1-B2 eMr + eMr
100%B1-B3 only -(eRr + eRw)
%20B1-B2 0.2(eMr + eMw )-0.8(eRr + eRw)
%50B1-B2 0.5(eMr + eMw )-0.5(eRr + eRw)
%80B1-B2 0.8(eMr + eMw )-0.2(eRr + eRw)

Table 1: Energy consumption differences due to the exhaustive
approach and our approach.

If the register allocation were done through enumerating all
execution paths, we would need to perform allocation for each of
the two possible paths separately. Unfortunately, the allocation
result forc in different paths are different. In the path containing
B1 andB2, c was assigned to a register, whilec was assigned to
memory in the other path. The conflicting results is not easy to
resolve in a real program.

For the above example, we compare the energy dissipation
based on our allocation algorithm and by enumerating all paths.
We summarize in Table 1 the differences in the energy dissipa-
tion (due to accessing only data) during executing each path and
during executing the entire program with varying probabilities of
traversing each path. Three probability combinations are included
in Table 1. By considering the fact that memory references con-
sume much more energy than register references, the energy con-
sumption based on our algorithm is less than that based on the ex-
haustive approach, except when the program mainly exercisesB1

andB3. If this is the case, we can use the priority-based approach
discussed at the end of the last section to eliminate the conflicting
assignments. Hence, our algorithm is quite powerful for solving
the register allocation problem for programs with branches.

5. CONCLUSION

In this paper, we proposed an algorithm for optimal energy register
allocation beyond basic blocks. Our algorithm has much less time
and space complexity than other approaches. The results so far are
very promising and the result for the example in Section 4 shows
this clearly. We are now investigating on how to deal with more
complex control flow structures, such as loops and procedure calls.
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