
Power Aware Variable Partitioning and Instruction Scheduling for Multiple
Memory Banks ∗

Zhong Wang
Dept of Comp. Sci. & Engr
University of Notre Dame

Notre Dame, IN 46556, USA
zwang1@cse.nd.edu

Xiaobo Sharon Hu
Dept of Comp. Sci. & Engr
University of Notre Dame

Notre Dame, IN 46556, USA
shu@cse.nd.edu

Abstract

Many high-end DSP processors employ both multiple
memory banks and heterogeneous register files to improve
performance and power consumption. The complexity of
such architectures presents a great challenge to compiler
design. In this paper, we present an approach for variable
partitioning and instruction scheduling to maximally ex-
ploit the benefits provided by such architectures. Our ap-
proach is built on a novel graph model which strives to cap-
ture both performance and power demands. We propose an
algorithm to iteratively find the variable partition such that
the maximum energy saving is achieved while satisfying the
given performance constraint. Experimental results demon-
strate the effectiveness of our approach.

1. Introduction
To meet the ever increasing demands for higher perfor-

mance and lower power on embedded systems, domain spe-
cific processors with sophisticated architectures are being
designed and deployed to better match target applications.
One such architecture, often referred to as a non-orthogonal
architecture [7], is characterized by irregular data paths
comprising of a heterogeneous register set and multiple
memory banks. A number of embedded DSP processors,
e.g., Analog Device ADSP2100, Motorola DSP56000 and
NEC uPd77016, are based on this architecture.

Harvesting the benefits provided by the non-orthogonal
architecture hinges on sufficient compiler support. Parallel
operations afforded by multi-bank memory give rise to the
problem of how to maximally utilize the instruction level
parallelism. Similarly, heterogeneous register sets increase
the difficulty in deciding which register set to use for a cer-
tain instruction. It is not difficult to see that compilation
techniques for general purpose architectures are not ade-
quate to handle the irregularity in the architecture. In this
paper, we focus on two critical steps in the compilation pro-
cess, i.e., partitioning variables (or data) among the mem-
ory banks, and scheduling memory access operations. The
decisions made in the two steps can have a significant im-
pact on the overall program code size, execution time and
energy consumption.

∗ This work is in part supported by NSF under grant number CCR02-
08992.

A number of papers (e.g., [3,7,10,11,15,16,18])have in-
vestigated the use of multi-bank memory to achieve max-
imum instruction level parallelism (i.e., optimize perfor-
mance). These approaches differ in either the models or the
heuristics (to be discussed in more detail later). However,
none of these works consider the combined effect of perfor-
mance and power requirements.

It is well known that memory components in embedded
systems, particularly those for data intensive applications,
are a major power consumer [6]. To help ease the energy
demands by memory, advanced memory modules are de-
signed to operate in different modes, e.g., active, idle and
sleep [1, 2]. The exploitation of different operating modes
together with multiple memory banks further complicate
the problem of variable partitioning and memory operation
scheduling. On top of this, performance requirement of-
ten conflicts with energy saving. Previous works have stud-
ied the effects of the multiple memory operating modes at
higher levels such as program basic blocks, system tasks or
processes. However, significant energy saving and perfor-
mance improvements can be obtained by exploiting mem-
ory operating modes and multi-bank memory simultane-
ously at the instruction level.

In this paper, we discuss our approach to variable parti-
tioning and memory operation scheduling in the presence of
multi-bank memory and multiple memory operating modes
for maximizing energy saving without sacrificing perfor-
mance. We present observations to help categorize different
cases. A novel memory access graph model, capturing si-
multaneously potential energy savings and potential perfor-
mance improvements, is proposed to overcome the weak-
ness of previous techniques. Based on this model, we de-
vised an iterative technique to find best energy saving while
satisfying the performance constraint.

2. Problem Formulation and Related Work
Our target architecture consists of multiple mem-

ory banks and a heterogeneous register set. Associated
with each memory bank is an independent set of ad-
dress bus, data bus and address generation unit (AGU).
Motorola DSP56000 is an example of such architec-
ture, with three sets of register files and two memory
banks. We will use it in our experiments. However, our al-
gorithm can be easily extended to architectures with a
homogeneous register set or more memory banks.

1530-1591/04 $20.00 (c) 2004 IEEE

We consider memory modules used in the memory banks
to have two operating modes, i.e., the active mode and
the low-current mode (standby or sleep) [2]. The operating
mode transition is controlled by memory controller, whose
states can be modified through a set of configuration reg-
isters [8]. The detailed discussion of controlling memory
operating mode transition is beyond the scope of this pa-
per. In the active mode, a memory module performs nor-
mal read/write while in the low-current mode, the memory
module does not perform any memory operation and con-
sumes much lower current than in the active mode. A mem-
ory module can switch between the two operating modes
by incurring certain time overhead (and with neglectful cur-
rent overhead, which can be found in both following data
sheets). Two typical examples are Rambus RDRAM mod-
ule [1] (with 2 clock cycles mode switching time) and Mi-
cron SyncBurst SRAM module [2] (with overall 4 clock
cycles mode switching time). Clearly, in order to save en-
ergy by putting a memory module in the low-current mode,
the consecutive idle time should be long enough to com-
pensate for the transition time overhead. Furthermore, it is
more beneficial to lump the idle times to a single long idle
period than disperse them. This presents some unique chal-
lenges to the problem we want to solve, which is formally
defined as follows.

Definition 2.1 Given a program (in the form of an inter-
mediate code) and a non-orthogonal architecture specifi-
cation, generate an instruction schedule which improves
the memory operation parallelism and energy saving to the
largest extent.

Previous related work can be roughly divided into two
main categories: those that use thecompactedintermedi-
ate code as the starting point (e.g., [3, 7, 11, 15]), and those
that start with theuncompactedone (e.g., [10,18]). The for-
mer approaches often fail to exploit many optimization op-
portunities, while the latter approaches can explore all pos-
sible pairs of memory operations as long as there are no de-
pendencies between them. Therefore, we adopt the practice
of starting with the uncompacted code. However, these ex-
isting techniques not only pay no attention to energy saving
but also have some flaws. Discussing these flaws requires
an in-depth discussion of the graph models used, which we
postpone to Section 4.

Regarding saving energy through exploiting operating
mode changes, a number of research results have been pub-
lished. The key idea is to distribute idle times judiciously
through good scheduling. This can be achieved at various
abstraction levels or design stages, e.g., task level for mul-
tiple devices [12], process level for scheduling in operating
system [9], program basic block level during compile [8]
and data memory layout [5, 13]. In contrast, our work fo-
cuses on the instruction level. By integrating energy consid-
eration into the instruction scheduling stage, we can achieve
additional energy saving without sacrificing performance.
Our work complements the above mentioned techniques
since it can be applied together with these other techniques.

3. Idle Time Exploration
To exploit the low-current mode, longer consecutive idle

times are more desirable for a memory bank. However, vari-
able partitioning and instruction scheduling with only per-

formance considerations may not lead to the best schedule
in term of idle time distribution. For example, for the data
flow graph (DFG) in Fig 1(a) (in whichL (resp.,S) fol-
lowed by an integeri represents aLOAD (resp., STORE)
operation on variablei. Other nodes are non-memory oper-
ations. Edges denote the precedence constraint between op-
eration.), a schedule with only performance consideration
is shown in Fig 1(b), while better schedules with respect
to both performance and energy are shown in Fig 1(c) and
1(d). In Fig 1(b), the memory modules cannot be switched
to the low-current mode because all idle times are too short.
In Figure 1(c), both memory banks can be put into low-
current mode during the control steps3 → 5 under the
assumption that Rambus RDRAM is used, while in Fig-
ure 1(d), the second memory bank can be put into low-
current mode during the control steps4 → 6 under the as-
sumption that Micron SRAM is adopted. Thus, we gain en-
ergy saving without affecting the schedule performance.

1

4

3

S1

7

2

5

6

S2

L6

L4L3L2L1

L5

(a)

Instr
0 L1 L2
1 Op 1 L3 L4
2 Op 2
3 Op 3 L6
4 Op 5
5 Op 7 S1 L5
6 Op 4
7 Op 6
8 S2

(b)

Instr
0 L1 L2
1 Op 1 L3 L4
2 Op 2 L6 L5
3 Op 3
4 Op 5
5 Op 7
6 Op 4
7 Op 6
8 S1 S2

(c)

Instr
0 L1 L2
1 Op 1 L3 L4
2 Op 2
3 Op 3 L6
4 Op 5 L5
5 Op 7 S1
6 Op 4
7 Op 6
8 S2

(d)

Figure 1. (a) An example DFG (b –d) Various
schedules

Memory operation scheduling for energy saving is
tightly related to that for maximum parallelism, but
their different goals can lead to totally different sched-
ules. For example, one could easily sacrifice all the par-
allelism by putting all variables in one memory bank,
which gives the longest idle times for other memory
banks. A tradeoff exists between energy saving and perfor-
mance.

In the following, we examine an ideal scenario in which
no register constraint exists. The importance of this case
will become clear in Section 5, where an operation sched-
ule can be regarded as the ideal scenario after the mobility is
calculated with the register constraint in mind. Given a con-
trol data flow graph (CDFG) assume that the desired sched-
ule length ist, the number of memory operations in theith

memory bank isni and the overhead for memory module
mode transition ism clock cycles. For a givent, there are
three cases depending on the relationship oft, ni andm.
Case 1: min (t − ni) > m, ∀i

Maximal energy saving can be achieved by Lemma 3.1
(whose correctness is easy to prove and is omitted).

Lemma 3.1 If min (t − ni) > m, ∀i, by simply push-
ing the LOAD (resp., STORE) operations to the beginning
(resp., end) of the schedule, the maximal energy saving is
achieved.

For example, the schedule in Fig 1(b) belongs to this case
when the operating mode transition time is2 cycles. The
schedule with optimal energy saving in Fig 1(c) can be di-
rectly obtained.
Case 2: min (t − ni) ≤ m, ∃i andt ≥ n+m

N
In the above conditions,N denotes the number of mem-
ory banks, andn is the total number of memory operations,

i.e.,n =
N∑

i=1

ni. These two conditions mean that consecu-

tive idle times, which are long enough to change the mem-
ory module to low-current mode, can be formed in some but
not all of the memory banks. To improve energy saving, one
may consider moving memory operations between banks to
serialize more operations in one or more banks while leave
other banks with longer idle times. The goal is then to max-
imize “serialism” without hurting performance. The exam-
ple in Figure 1(d) illustrates such thought for the SRAM
memory module. The desire to increase the serialism in this
case complicates the variable partitioning problem.
Case 3: t < n+m

N
N andn have the same meaning as in Case 2. No more

optimization can be obtained in such situation. So long as
the schedule length is maintained, not enough idle time can
be formed in any memory module.

For a given problem, deciding the schedule length is
not an easy task. Even if we have a schedule, Case 2 still
presents quite a challenge. In the following, we present our
approach to tackle the problem.

4. Graph Modeling Approach
Similar to existing approaches, we use a graph to model

our problem constraints and objective. The nodes in the
graph represent all the local variables stored in memory.
Partitioning the nodes in the graph into different groups then
leads to partitioning the corresponding variables to differ-
ent memory banks. The effectiveness of such an approach
relies on modeling edge weights properly to capture all rel-
evant information. The edge weight assignments introduced
in the previous works all have some weaknesses.

A straightforward way of assigning edge weights is to
connect two nodes with an edge of weight 1 if the memory
operations involving the two corresponding variables do not
have data dependencies [10]. However, such potential par-
allelism may not be always realizable due to certain timing
constraints on the associated memory operations. To over-
come this difficulty, the authors in [18] introduced the con-
cept of possibility weight. The model does improve on the
simple minded approach above, but it still has some flaws.
To see why this is the case, we briefly review the possibility
weight idea below. From the CDFG representation of a pro-
gram, one can readily derive both the as-soon-as-possible
(ASAP) and as-late-as-possible (ALAP) schedules, consid-
ering the constraints of computation units. Let the control
steps of a memory operation,a, bets(a) andtl(a) accord-
ing to ASAP and ALAP, respectively. The mobility, i.e., the

scheduling freedom ofa, defined as [ts(a),tl(a)], represents
the time range in whicha can be scheduled without intro-
ducing additional delay. According to this definition, we
can esisly derive the mobility for each memory operation
in Fig 1(a), i.e.,[0, 0] for L1, L2, [0, 1] for L3, L4, [0, 4] for
L5, [0, 3] for L6, [4,7] for S1 and [7,7] forS2. Only when
the mobilities of two memory operations have some overlap
may parallelizing the two corresponding variables be ben-
eficial (in terms of improving performance). If the mobil-
ities of two operations are both small and their overlap is
relatively large, parallelizing the corresponding variables is
more likely to improve the schedule length. In other words,
if such variables are put in the same bank, accessing the two
variables is forced to be sequentialized which is very likely
to increase the overall schedule length. The work in [18] as-
signs a possibility weight defined below to an edge to model
this property.

1

3 4

2

5 6

(1,1/4)

(1/2)(1/2)

(1/2)

(1/2)

(1
/2)

(1/5)

(1/5) (1/4)

(1/
4)

(1/5)

(1/5,1/20)

(1/5) (1/4)

(1/4)

(a)

1

3 4

2

5 6

(1/2)

(5/6)

(5/6)

(5/6) (4/5)

(5/6)

(4/5)

(4/
5)

(1/2)

(1/2)

(1/2)

(4/5)

(1/2,2)

(1
/2)

(5/6,9/8)

(b)

Figure 2. (a) Parallelism weight (b) Serialism
weight

Definition 4.1 Given two memory operations,a and b, let
their mobilities be [ts(a), tl(a)] and [ts(b), tl(b)], and the
maximum overlap between these two mobilities be the inter-
val [t1, t2]. Thepossibility weightassigned to the edge be-
tween the two variables accessed in operationsa and b is

t2−t1+1
(tl(a)−ts(a)+1)(tl(b)−ts(b)+1)

.

Fig 2(a) shows an example of this possibility weight as-
signment for the memory operations given in Fig 1(a). In
Fig 2(a) (each node number corresponds to the associated
variable number), more than one possibility weight may be
associated with an edge. These come from different pairs
of memory operations. For instance, between variablesv1
and v5, 1/5 comes from (L1, L5) pair, while 1/20 from
(L5, S1) pair. In [18], such numbers are simply added to-
gether. Moreover, if the same operation pattern (e.g., over-
lapping ofL1 andL5) occurs in anothermobility range(A
mobility range is a period of consecutive scheduling steps
which may cover several variables’ mobility. In this paper,
whenever we talk about two different mobility ranges, they
should be independent of each other without overlap.), the
possibility weight is again added to the edge weight be-
tweenv1 andv5.

One flaw (flaw #1) of the possibility weight model
in [18] is the above mentioned summation of the possibil-
ity weights. Consider a simple example of an edge possi-
bility weight of 1. This may come from two operations as
L1 andL2 in Fig 1(a). It may also come from two occur-
rences of the operation pair such asL3 andL4 in Fig 1(a).
Though both edges have a weight of 1, it is not diffi-
cult to see that the variables in the first case should be

given a higher priority to be parallelized since the sched-
ule length will definitely be increased if the two vari-
ables are put in the same memory bank (while the variables
in the second case have an additional slack cycle). To over-
come this problem, we advocate to maintain as a list
the possibility weights from different operations involv-
ing the same variable pair instead of adding them together.
(We will discuss how to manipulate this list later.)

Another flaw (flaw #2) of the possibility weight model
is that it does not distinguish mobility overlaps within a sin-
gle mobility range from those in different mobility ranges.
Consider the following example. Given three memory op-
erations,a, b, c, in one mobility range, each has the same
mobility [0, 1]. The corresponding graph model contains an
edge with weight1/2 between the variables ina andb and
between those ina andc. Assume in the same procedure,
memory operations,a′, b′ in a different mobility range, have
the mobility [3, 4], and memory operations,a′, c′ have the
mobility [7, 8] in yet another mobility range. Then, the as-
sociated graph has an edge with weight1/2 between the
variables ina′ andb′ and between those ina′ andc′. Obvi-
ously, variables ina, b, c should be given a higher priority
to be parallelized than variables ina′, b′, c′ since putting the
former in one memory bank will definitely introduce an ad-
ditional delay (while putting the latter in the same bank does
not necessarily introduced additional delay since operations
on variables ina′, b′ are in a different mobility range from
those on variables ina′, c′). However, the model in [18]
treats the two groups indiscriminately.

Besides the above flaws, the possibility weight model
have no consideration about energy saving because the work
in [18] focuses only on performance. From the point of view
of energy saving, we prefer to serialize memory operations
as much as we can so as to leave more idle times for the low-
current mode (see the discussion of Case 2 in Section 3).
Clearly, this preference towards serialism may run against
the requirement of improving performance.

To capture the tradeoff between the desire of parallelism
and that of serialism, we propose to use two lists of weights.
The first one is the one discussed above, i.e., the list of
possibility weights, which are referred to asparallelism
weights. The second one is a new one and the weights are re-
ferred to asserialism weights. The goal of serialism weights
is to model the possibility of serializing a pair of opera-
tions without sacrificing performance. To derive the serial-
ism weight, observe that given a certain mobility range, the
more operations in the range, the more difficult it is to seri-
alize the operations without increasing the total delay. Take
the example above, serializing three operationsa, b, c in-
creases the schedule length, while serializinga′ andb′ (or
a′ andc′) has no negative effect. Based on this observation,
we formally define the serialism weight as follows.

Definition 4.2 Assume the mobilities of two memory oper-
ations,a andb, are [ts(a), tl(a)] and [ts(b), tl(b)], respec-
tively, their union is[t1, t2], and the number of operations
whose mobilities arecontainedin [t1, t2] is n. The serial-
ism weight for the edge between the variables accessed ina
andb is t2−t1+1

n .

An example of the serialism weight is shown in Figure 2(b).
Note that similar to the parallelism weights, more than one
serialism weight may be associated with an edge due to the

multiple occurrences of the memory operations involving
the corresponding variable pair. We now formally define the
Memory Access Graph(MAG) used in our approach.

Definition 4.3 A Memory Access Graph (MAG),
G = (V, E,F), is a multi-weighted undirected graph,
where V is the set of nodes representing the vari-
ables in the given code,E ∈ V × V is the set of edges,
F = (~wp, ~ws) is a function fromE to R2m represent-
ing the weight lists between the corresponding two nodes,
~wp and ~ws are the parallelism and serialism weight lists, re-
spectively.

Though we are able to indicate the requirements of per-
formance and energy saving through introducing both par-
allelism and serialism weights, we need to able to use them
effectively in partitioning the variables. The problem of
variable partitioning fork memory banks is equivalent to
the maximum k-cut problem, which is NP-complete [4]. A
number of excellent heuristics exist for solving the maxi-
mum k-cut problem [4]. To use such heuristics, we need to
reduce the two lists of weights associated with an edge to a
single weight value. To reflect the tradeoffs between perfor-
mance and energy saving, we use a weighted sum formula
to compute the average weight of an edge. Specifically, the
average weight of an edgee(i, j) is defined as

w(i, j) =
m(i,j)∑

h=1

λpwp(h, i, j) − λsws(h, i, j) (1)

whereλp, λs are two coefficients representing the trade-
offs between parallelism and serialism,wp(h, i, j) (resp.,
ws(h, i, j)) is the parallelism (resp., serialism) weight asso-
ciated with thehth pair of operations involving variables
i and j, and m(i, j) is the total number of such pairs.
The reason behind the subtraction used in (Eqn. 1) is that
wp(h, i, j) andws(h, i, j) can be viewed as measures of two
opposite forces, parallelism and serialism. Different coeffi-
cient values,λp andλs, reflect the preference between the
two forces, and hence help trade off performance with en-
ergy saving.

It is important to point out that the average weight de-
fined in (Eqn. 1) also overcome the flaws mentioned ear-
lier in the model introduced in [18]. Forflaw #1, under
our average weight model, the edge weight in the first case
is (λp − 1

2λs), while the edge weight in the second case
is (12 (λp − λs) + 1

2 (λp − λs)). (We assume that no other
variables have operations overlap with the mobilities un-
der consideration.) Given the sameλp andλs values, the
former is always greater than the latter, which correctly re-
flects the fact that it is more beneficial to put the two vari-
ables in the first case to separate memory banks as they have
more stringent timing requirement. Forflaw #2, according
to our model, the average weight on the edge betweena and
b and that betweena andc is (12λp − 2

3λs), while the aver-
age weight on the edge betweena′ andb′ and that between
a′ andc′ is (12λp −λs), (assuming no other operations over-
lap these mobilities). Again, the edges betweena, b andc
have a larger weight for a given pair of coefficients, and
hence the variables associated with these operations are fa-
vored for putting into separate banks (which is exactly what
one would like to see).

The complete algorithm in the following section will re-
veal how to select the coefficients.

5. Algorithm
Our variable partitioning and instruction scheduling al-

gorithm is intended to be used in the back end of a compiler
to optimize the intermediate code. The algorithm frame-
work is shown in Algorithm 1.

Algorithm 1
Input: Intermediate Code, Register Constraints
Output: An optimized code

1. Derive the CDFG from the intermediate code. Calculate the mobility for each
operation.
2. Construct the memory access graph (MAG) //refer to Section 4
3. λp = 1, λs = 0, λ′

s = 0, calculate the average weight for each edge and
schedule the program. (λ′

s is used to remember the value ofλs in the previous
loop iteration.)
4. Set the minimum schedule lengthLmin as the schedule length of the current
schedule,Tmax = 0.
WHILE () do

5. Find the Maximum Cut. Allocate variables to memory banks according to
the cut result.
6. Schedule the program according to the above allocation result while max-
imizing the consecutive idle time. SetLschedule andTschedule //refer to
Section 3
7. if Lschedule − Lmin ≤ φ andTschedule − Tmax ≤ η then

Nstable + +;
Record the corresponding variable partition and schedule;.

end if
8. if Lschedule − Lmin ≤ φ andTschedule − Tmax > η then

Lmin = min(Lmin, Lschedule),
Tmax = max(Tschedule, Tmax),

λs =
λp+λs

2 ,
Nstable = 0

end if
9. if Lschedule − Lmin > φ then

λs =
λs+λ′

s
2 ,λ′

s = λs, Nstable = 0
end if
10. if Nstable ≥ σ then

break;
end if
11. Recalculate the average weight of MAG.

ENDWHILE
12. Output the corresponding variable partition and schedule

In Algorithm 1,Tschedule represents the number of con-
secutive idle cycles for thecurrent schedule, while Tmax
represents the maximal value of allTschedule. Lschedule and
Lmin represent the current and minimum schedule lengths,
respectively.φ is a user specified parameter to indicate the
latency constraint and defined as the allowed difference be-
tween the final and minimum schedule lengths.η is a user-
defined threshold to measure whetherTschedule has a signif-
icant change. The algorithm will finish afterTschedule have
not shown significant changes forσ number of loops.

In Line 1 of Algorithm 1, the technique in [17] is used to
deal with heterogeneous register set and register constraint.
In Line 5, the well known maximum spanning tree algo-
rithm [14] is used as the maximum-cut heuristic.

Each member of~wp is always smaller than1, while that
of ~ws may be larger than1. In order to ensure these two
values are in the same range, each memberws(i, j) is nor-
malized with the formulaws(i, j) = ws(i,j)−wmin

wmax−wmin
, where

wmin(resp.,wmax) is the minimum (resp., maximum) value
of all ws(i, j) values.

The loop of Algorithm 1 is used to find a point where
the maximal energy saving is achieved with the accepted
performance. Because of the opposite forces of parallelism
and serialism, more parallelism (largerλp and smallerλs)
may bring better performance and less energy saving, while
more serialism (smallerλp and largerλs) may bring more

energy saving, but a possible deteriorated performance.
Through a process analogous to a binary search, we find
properλp and λs values to adjust parallelism and serial-
ism accordingly. The best tradeoff point is reached where
both the goals of performance and energy saving are ob-
tained.

6. Experimental results
We have implemented our algorithm in the SPAM com-

piler environment to replace the simulated annealing al-
gorithm [3] originally used by SPAM. Benchmarks come

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10
0

50

100

150

200
Original
SPAM
Inde Graph
VPIS

Figure 3. Assembly code size results

from DSPstone benchmark suite [19], which contains C
source code for various DSP kernels:Least Mean Square
(B1), FIR (B2), N Real Update (B3), IIR Biquad (B4), Con-
volution (B5), N Complex Update (B6), 2-Dimensional FIR
(B7), Matrix Multiplication (B8), 1st Adapted Predictor
(B9) and Tone Detector (B10) routine in ADPCM. The as-
sembly code size results are shown in Fig 3, which are the
comparison oforiginal code size (Original), code size gen-
erated by constraint graph methods (SPAM), code size gen-
erated by [18] (Inde Graph) and code size generated by
our algorithm(VPIS).

Fig 3 reveals that the methods of independence graph and
our algorithm can both perform better than SPAM. This im-
provement can be attributed to thoroughly exploit more po-
tential memory operations parallelism. Due to the compre-
hensive graph model, our algorithm demonstrates a superior
performance to the method of independence graph. The ex-
ecution time of the assembly code is correlated to the code
size [10], since the assembly code can be directly mapped to
the schedule for the basic block. Thus, we omit the data for
benchmarks’ actual execution time comparison. In fact, a
more significant improvement of execution time can be ex-
pected due to this code size improvement.

We compare the energy saving results of our algorithm
with SPAM. Results fromInde Graphmethods are not in-
cluded in this comparison, since it does not consider energy
saving. In fact, it can be regarded as a special case of our al-
gorithm with the restriction ofλp = 1, λs = 0. Fig 4 shows
the ratio of summation of all effective consecutive idle cy-
cles (the consecutive idle cycles after deducting the oper-
ating mode transition time) to the overall code size. One
can see that our algorithm can result in more effective idle
times than SPAM. The average improvement of the ratio is
19.84%. It is worthwhile pointing out that we obtain this
improvement ratio with the shorter code size.

Note in this comparisons, the control flow information of
the program is not included, though this information is con-
sidered in calculating the operations’ mobility from CDFG.

Our algorithm can achieve the larger improvements in the
data intensive than control intensive application code. We

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10
0

0.1

0.2

0.3

0.4

0.5
SPAM
VPIS

Figure 4. Percent of idle cycles over code size

anticipate better showdown of the energy saving improve-
ment since data intensive codes usually are executed many
times.

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10
0

0.2

0.4

0.6

0.8

1
SPAM
VPS

30.4 6.4 3.2 14.5 1.6 14.6 28.5 15.7 36.7 6.9

Figure 5. Algorithm execution time

As of the algorithm execution time, due to the fact that
variable partitioning is not very sensitive to the change of
average coefficientsλp andλs (small change in these two
coefficients does not change the variable partition), the al-
gorithm generally can find the best tradeoff point in at most
twenty loops. We ran the program in SUN Ultra Sparc2 and
the algorithm execution time comparison is shown in Fig-
ure 5. In the figure, we normalized the algorithm execu-
tion time by the simulated annealing algorithm (adopted by
SPAM) execution time and annotate its value in the unit of
second on the top of each benchmark.

With more complicated programs, the constraint graph
of simulated annealing algorithm becomes larger and each
step in annealing process takes longer time. The algorithm
execution time increases significantly with the constraint
graph size. While our algorithm, by contrast, does not have
to deal with the large graph for many times (at most twenty
loops for our experiments). Therefore, the execution time
improvement becomes more obvious for large benchmarks.

7. Conclusion
A variable partitioning and instruction scheduling al-

gorithm is proposed to explore the non-orthogonal archi-
tecture. The algorithm takes into account both instruction
level parallelism and reducing system energy. A novel graph
model is presented to capture both parallelism and serialism
scheduling information. The memory module consecutive
idle time is maximized under the constraint of the sched-
ule performance. Experimental results demonstrate that our
algorithm outperforms the previous techniques.

References
[1] 128/144-mbit direct rdram data sheet, May 1999. Rambus

Inc.

[2] 1mb syncburst sram data sheet, Sept. 1999. Micron Technol-
ogy Inc.

[3] S. A and T. S. Malik. Simultaneous reference allocation in
code generation for dual data memory bank asips.ACM TO-
DAES, 5(2), 2000.

[4] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann,
A. Marchetti-Spaccamela, and M. Protasi. Complex-
ity and Approximation. Springer Verlag, 1999. ISBN
3-540-65431-3.

[5] L. Benini, A. Macii, and M. Poncino. A recursive algorithm
for low-power memory partitioning. InInternational Sym-
posium on Low power Electronics and Design, Aug 2000.

[6] F. Catthoor, S. Wuytack, E. Greef, F. Balasa, L. Nachter-
gaele, and A. Vandecappelle.Custom Memory Management
Methodology –Exploration of Memory Organization for Em-
bedded Multimedia System. Kluwer Academic, 1998.

[7] J. Cho, Y. Paek, and D. Whalley. Efficient register and
memory assignment for non–orthogonal architectures via
graph coloring and mst algorithms. InACM Joint Confer-
ence LCTES-SCOPES, pages 130–138, Berlin, Germany, Jun
2002.

[8] V. Delaluz, N. V. M. Kandemir, A. Sivasubramaniam, and
M. J. Irwin. Hardware and software techniques for control-
ling dram power modes.IEEE Transactions on Computers,
50(11), Nov 2001.

[9] V. Delaluz, A. Sivasubramaniam, M. Kandemir, N. Vijaykr-
ishnan, and M. J. Irwin. Scheduling techniques for embed-
ded systems: Scheduler-based dram energy management. In
39th conference on Design automation, June 2002.

[10] R. Leupers and D. Kotte. Variable partitioning for dual mem-
ory bank dsps. InProceeding of ICASSP, 2001.

[11] M. Lorenz, D. Kottmann, S. Bashfrod, R. Leupers, and
P. Marwedel. Optimized address assignment for dsps with
simd memory accesses. InAsia South Pacific Design Au-
tomation Conference (ASP-DAC),, pages 415–420, Yoko-
hama, Japan, Jan 2001.

[12] Y. H. Lu, L. Benini, and G. D. Micheli. Low–power task
scheduling for multiple devices. In8th international work-
shop on Hardware/software codesign, May 2000.

[13] V. D. L. Luz, M. Kandemir, and I. Kolcu. Memory manage-
ment and address optimization in embedded systems: Au-
tomatic data migration for reducing energy consumption in
multi-bank memory systems. In39th conference on Design
automation, Jun 2002.

[14] R. Prim. Shortest connection networks and some generaliza-
tions. Bell Systems Technical Journal, 36(6), 1957.

[15] M. Saghir, P. Chow, and C. Lee. Exploiting dual data-
memory banks in digital signal processors. In7th Interna-
tional Conference on Architecture Support for Programming
Language and Operating Systems, pages 234–243, 1996.

[16] S. Wuytack, F. Catthoor, G. D. Jong, and H. D. Man. Min-
imizing the required memory bandwidth in vlsi system real-
izations.IEEE Trans. on VLSI Systems, 7(4), DEC 1999.

[17] T. Zeithofer and B. Wess. Integrated scheduling and register
assignment for vliw–dsp architectures. In14th Annual IEEE
International ASIC/SOC Conference, pages 339–343, 2001.

[18] Q. Zhuge, B. Xiao, and E. H.-M. Sha. Exploring variable
partitioning in dual data-memory bank processors. InProc.
of the 34th International Symposium on Micro-architecture
(MICRO-34), the 3rd Workshop on Media and Streaming
Processors (MSP-3 Workshop), pages 42–55, Dec 2001.

[19] V. Zivoljnovic, J. Velarde, C. Schager, and H. Meyr. Dsp-
stone - a dsp oriented benchmarking methodology. InPro-
ceedings of International Conference on Signal Processing
Applications and Technology, 1994.

	Main Page
	DATE'04
	Front Matter
	Table of Contents
	Author Index

