
A Framework for User Assisted Design Space Exploration�

X. Hua G. W. Greenwoodb S. Ravichandranb G. Quana

aDept. of Computer Science & Engineering, University of Notre Dame, Notre Dame, IN 46556
bDept. of Electrical & Computer Engineering, Western Michigan University, Kalamazoo, MI 49008

Abstract

Much e�ort in hardware/software co-design has been de-
voted to developing \push-button" types of tools for auto-
matic hardware/software partitioning. However, given the
highly complex nature of embedded system design, user
guided design exploration can be more e�ective. In this pa-
per, we propose a framework for designer assisted partition-
ing that can be used in conjunction with any given search
strategy. A key component of this framework is the visual-
ization of the design space, without enumerating all possible
design con�gurations. Furthermore, this design space rep-
resentation provides a straightforward way for a designer to
identify promising partitions and hence guide the subsequent
exploration process. Experiments have shown the e�ective-
ness of this approach.

1 Introduction

Codesign has emerged as a promising methodology for devel-
oping complex computer systems. Ideally, co-design should
allow designers to make decisions early in the development
cycle regarding how tasks should be partitioned between
hardware and software components [1, 2]. Equally impor-
tant is the ability to rapidly determine the performance re-
sulting from a particular partition. Successful co-design re-
quires that speci�cation, partitioning, and co-veri�cation all
be appropriately addressed. In this paper we will deal only
with the partitioning issue|one of the challenging aspects
of co-design. It is important to emphasize the importance of
correct partitioning. Designers rapidly move to the imple-
mentation phase once a partition has been de�ned. Improper
partitioning leads to constrained designs which are diÆcult
(and costly) to change in the future.

A number of interesting research results have been pub-
lished, which attempt to produce tools or methodologies that
automatically partition tasks among processors and other
hardware components (e.g., [3, 4, 5, 6, 7, 8, 9, 10]). Al-
though these papers describe di�erent levels of abstraction
or di�erent system organization, and use di�erent optimiza-
tion algorithms, the underlying goal is to provide a \push

�This research is sponsored in part by DARPA under contract

number DABT63-97-C-0048, by NSF under grant number MIP-

9701416, and by Hewlett-Packard Laboratories, Bristol, England.

button" design environment. Several electronic design au-
tomation vendors are currently attempting to develop au-
tomated partitioning tools [11]. Although it is desirable to
have these tools take over menial, low-level tasks associated
with partitioning, it can be much more e�ective for design-
ers to retain certain control of the complex design process.
Incorporation of a designers expertise, done in an intelligent
manner, will improve the partitioning process in terms of
both speed and quality.

The space of all possible hardware/software parti-
tions is enormous, which requires an intelligent search
methodology|something most e�ectively provided by a de-
signer. This paper describes a framework for user assisted
partitioning that can be used in conjunction with any given
search strategy. One key component of this framework is a
visual means of depicting the design space, without enumer-
ating all possible design con�gurations. Furthermore, this
design space representation provides a straightforward way
for a designer to identify promising partitions without wor-
rying about the underlying, low-level details of the design.
It will also be shown how user feedback helps to identify
partitions that produce robust designs. By robustness, we
mean that a design is more tolerant to perturbations in the
modules used.

The paper is organized as follows. Section 2 describes the
problem domain and speci�cally illustrates the complexity
of searching for good partitions. Section 3 gives a detailed
discussion of our approach for capturing and depicting cer-
tain characteristics of the solution space that are essential
for user guided search. Section 4 describes our proposed
framework and how it is used to provide feedback, which
guides the search for good partitions. Section 5 shows how
the framework is used on a real-world example taken from
the automotive industry. Finally, Section 6 summarizes our
work and discuss future extensions.

2 Preliminaries

This section provides essential de�nitions of the problem of
interest, �tness landscapes, and the complexity of searching
for solutions to combinatorial optimization problems.

2.1 Partitioning Problem Domain

The approach to hardware/software partitioning that we
take is at the system level. In system-level design, system
speci�cations are modeled as a collection of functions, F ,
(also referred to as tasks in some literature). Associated
with each function, there are generic measurement of the
complexity of the function (such as instruction counts and
memory requirements), timing constraints (such as a dead-
line and a period), and other performance related require-
ments. The set of requirements and constraints are stated
in the system speci�cations.

_

Permission to make digital/hardcopy of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, the copyright notice, the title of the publication
and its date appear, and notice is given that copying is by permission of ACM, Inc.
To copy otherwise, to republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
DAC 99, New Orleans, Louisiana
(c) 1999 ACM 1-58113-109-7/99/06..$5.00

Each function may be implemented in either hardware or
software. The candidate hardware components are collected
in a hardware library H as a list of hardware modules. For
each hardware module, the types of functions it implements
and performance data such as execution speed, power con-
sumption and cost are speci�ed. Note that the hardware
library can include not only existing components but also
hypothetical ones for those not yet developed.

For those functions that may be implemented in software,
respective software modules are constructed and collected in
a software library S. Each module includes the information
on the functions it implements and its complexity measured
by execution time or instruction counts when executed on
a particular processor. Although estimating the processing
time of software modules on a wide variety of di�erent im-
plementations of di�erent architectures is not practical, we
believe these estimates are possible as long as the choice
of architectures is limited. By establishing standard bench-
marks that characterize the performance of a processor for
di�erent instruction mixes, and by analyzing the instruction
mix of software modules, we have found it possible to rea-
sonably predict the performance of software modules over
di�erent implementations of di�erent processor families.

In most real-world applications, more than one attribute
are used to gauge the quality of a system (e.g., cost and
power consumption). To �nd an optimal implementation for
a given system speci�cation, a weighted sum form or other
forms of quality measure may be used [8, 10, 12]. The opti-
mization problem becomes one of �nding an implementation
Xopt for the speci�ed functions F such that the hardware and
software components are modules from the given libraries H
and S and that the quality measure is optimized. Of course,
the constraints associated with each function should be met
by each feasible implementation.

It is important to realize that the above issues are equally
important in existing designs that must be modi�ed. These
modi�cations may result from customer requests, correction
of bugs, or normally scheduled upgrades.

2.2 Fitness Landscapes and Search Complexity

The partitioning problem described in the previous section is
an example of a combinatorial optimization problem. There
has been considerable recent interest in the design of eÆ-
cient algorithms which are capable of �nding good solutions
to these types of problems. Implicit is the idea that the
solutions to optimization problems reside in an abstract so-
lution space and two solutions are neighbors if they di�er
by a single mutation of a problem parameter. Associated
with each solution is a real number that reects �tness or
quality of that solution. This space and the associated �t-
ness values form a �tness landscape1. Any algorithm that
\solves" an optimization problem is therefore a search algo-
rithm that explores the �tness landscape. Put another way,
optimization problems are search problems.

Unfortunately, the �tness landscape often contains an ex-
tremely large number of points, which precludes an exhaus-
tive search for optimally �t solutions. Indeed, the system
design problem is NP-complete [13] which means �nding the
optimal solution in �nite time is unlikely. This has lead re-
searchers to adopt heuristic search strategies.

One obvious method of reducing the level of e�ort re-
quired to search the �tness landscape is to reduce the size

1In practice, �tness will be with respect to one or more at-

tributes such as cost or power consumption; high �tness is asso-

ciated with good values of the attribute.

of that landscape by removing some of the problem param-
eters (which reduces the dimensionality) or by reducing the
number of values a problem parameter may assume. This
smaller search space, in principle, should be easier to search.
Some caution is warranted|the reduced search space may
still contain an exponential number of points!

All heuristic search operators take current solutions and
perturb the problem parameters in some stochastic manner
to produce new solutions for evaluation. A more e�ective ap-
proach is to construct an \intelligent" search operator that
is constrained to search in only speci�ed regions on the �t-
ness landscape. This intelligence can be manifested by i)
constraining search operators to make only speci�c modi-
�cations to speci�c problem parameters, or ii) penalizing
solutions from undesirable regions by arti�cially reducing
their natural �tness values [14]. Either technique forces the
search algorithm to explore in a reduced solution space.

The most e�ective way of constructing an intelligent
search operator is to actively involve the designer in the
search process. The designer assists the search process
by identifying regions on the �tness landscape to avoid or
regions to explore more thoroughly. The user must be
able to quickly identify critical regions in the landscape,
and the feedback to the search process must be done in a
clean, straightforward manner. The best way of present-
ing information to the user is via a graphical image of the
landscape|something not easy to do since the landscape
is normally a high-dimensional, multi-modal entity with an
exponential number of points! Nevertheless, we have devel-
oped a technique which constructs a 3D image of the �tness
landscape regardless of how many dimensions actually ex-
ist. In the following sections, we present our technique for
depicting the topology of the �tness landscape. It will then
be shown how this knowledge can be exploited to guide the
search process.

3 Landscape Representation

This section discusses our technique for constructing a 3-D
landscape from a high-dimensional landscape.

3.1 Portraying Fitness Landscapes in 3 Dimensions

Every adjustable design parameter in a partitioning problem
adds another degree of freedom to the problem. Examples
include the choice of processors, the number of ASICs, hard-
ware/software partitions, and so on. Each degree of freedom
adds increasing levels of complexity and each adds another
dimension to the �tness landscape. Real-world instances
of partitioning problems can be expected to have far more
than 3 dimensions making the �tness landscape diÆcult to
visualize. One-dimensional techniques such as computing
correlations from random walks have been presented as a
means of characterizing these high-dimensional landscapes
[15]. Unfortunately, correlation computed from a single ran-
dom walk is error prone because the landscape is likely to
be anisotropic [16]. We have developed a mapping technique
that can graph higher dimensional landscapes. Admittedly
our approach also has a shortcoming typical of 1-dimensional
techniques|information contained in higher dimensions is
lost. Nevertheless, it does present more information than
does a simple correlation, and it does graphically reect
landscape ruggedness. The basic concept relies on the abil-
ity to isomorphically embed a lattice into a m-ary n-cube.
First, however, it is necessary to digress for some de�nitions.

Let b1b2 : : : bn be a n-bit binary string where bi 2 f0; 1g.
There are 2n unique binary patterns that can be formed with
n-bit binary strings. A sequence of length L contains L n-bit
binary strings no two of which are identical. This sequence
is a Gray code sequence if any two successive strings di�er
in one and only one bit position. Note that this requirement
must also hold between the �rst and last n-bit strings in the
sequence. For example, f00; 01; 11; 10g and f00; 01; 10; 11g
are both sequences of 2-bit binary strings but only the �rst
one is a Gray code sequence.

Figure 1: A k-ary n-cube with k = 4 and n = 3. Hidden
nodes and edges are not shown to preserve clarity.

Without loss in generality, we assume in the m-ary n-
cube that m is an integer power of two. Each node in the
m-ary n-cube is labeled with a n logm bit binary label. The
labeling is done in a Gray code manner such that any two
nodes connected by an edge di�er in only one bit position.
In other words, the labels identify 1-mutant neighbors.

Let A and B be integer powers of two. The binary la-
bel associated with each node in the m-ary n-cube can be
partitioned into two parts which is written in the form

fb1 : : : br
| {z }

logA

br+1 : : : bn logm
| {z }

logB

g

Thus any point (x; y) in the 2-dimensional lattice uses the
logA most signi�cant bits to de�ne the x coordinate, and
the logB least signi�cant bits to de�ne the y coordinate.
Since the embedding of the lattice is isomorphic in the m-
ary n-cube [17], any two adjacent nodes in the cube are also
adjacent in the lattice. Figure 2 shows a portion of an 4�16
lattice embedding into the 4-ary 3-cube of Figure 1.

In e�ect, this embedding has \unfolded" a high dimen-
sional cube into a 2-dimensional lattice. This unfolding pro-
cess does break edges in the cube and so some neighbor
relationships are lost. Nevertheless, a fraction of the neigh-
bor relationships are preserved; adding �tness now forms a
3-dimensional graph of the �tness landscape. A step-by-step
algorithm for constructing this 3-dimensional graph is avail-
able in [18]. In Section 5 we will show several of these �tness
landscapes. But �rst, we need to discuss neighborhood rela-
tionships for partitioning problems.

3.2 Who Are My Neighbors?

The data structure for a partitioning problem can be rep-
resented by a binary string where distinct �elds represent
distinct design parameters. For example, in a problem with

...0000 0001 0011 1001 1000... 1100 1101 1101

00

01

11

10

Figure 2: A 4� 16 grid embedding into a 4-ary 3-cube. The
rows are assigned the logA most signi�cant bits and the
columns are labeled with the remaining bits of the binary
label.

N tasks, a design solution could be represented by a k � N
bit string, where each task has k bits to de�ne one of 2k

possible hardware modules that it could be assigned to for
execution. If the k-bit encoding were done in a Gray code
manner, then two hardware modules that di�er in only one
bit position would be considered 1-mutant neighbors.

As discussed in the previous section, each design parame-
ter adds a dimension to the �tness landscape. Since there are
n total parameters with up to k total values per parameter,
the original �tness landscape is a homomorphism on a k-ary
n-cube. This high-dimensional landscape is then mapped
into two dimensions and a third dimension, which represents
�tness, is added. For the moment, consider just one design
parameter. With a little thought it should become apparent
that the juxtaposition of values for the design parameter de-
�nes the distribution of �tness values, which also de�nes the
topology of the �tness landscape.

There are no universal rules for de�ning 1-mutant neigh-
bors that will apply in all situations. In principle, smooth
�tness landscapes should be easier to explore than rugged
landscapes. There are some general guidelines which we
have found will tend to keep the �tness values of 1-mutant
neighbors from becoming drastically di�erent. Processors
often come in several di�erent versions, but the only signif-
icant di�erence is in the clock speed or amount of on-chip
memory. Try to keep processors with similar clock speeds
as neighbors and then order them according to the amount
of on-chip memory. ASICs with a similar number of pro-
grammable cells and similar pin-outs should be neighbors.
In other words, modules that have similar attributes should
be placed as 1-mutant neighbors.

4 Landscape Guided Search

This section provides detailed information about our user-
assisted framework for exploring design solution space. Fig-
ure 3 shows the framework of our proposed design environ-
ment. The user plays a role in three key areas:

1. construction of the solution space

The solution space can be constructed once a data
structure and �tness function have been de�ned. This
information is derived from the system speci�cation.
The hardware and software libraries provide the design
parameters for the data structure. The user is respon-
sible for \ordering" this library data to establish the
neighborhood relationships. The user also de�nes the
�tness function using information extracted from the
system speci�cations.

System
Specification

designer

construct
solution space

construct 3D
landscape

search
algorithm

solutions
acceptable

HW Lib

SW Lib

Functions
F

H

S

Figure 3: Overview of the design framework. User provides
guidelines for constructing neighbors to assist construction
of solution space and the quantization step size for the 3D
landscape depiction. Information obtained from the quan-
tized landscape allows the user to develop guidelines for con-
straining the search algorithms to speci�ed regions of the
solution space.

2. construction of the �tness landscape

The �tness landscape is normally constructed with re-
spect to only one attribute (e.g., power). Complete enu-
meration of the �tness landscape is rarely feasible due
to the large number of potential solutions. Therefore,
a \quantized" landscape is often depicted (see below).
The user speci�es the degree of quantization and can
zoom in on speci�ed regions for greater detail.

3. guiding the search process

Figure 4 shows a representative 3-dimensional land-
scape. (This particular landscape is with respect to the
attribute of power. See Section 5 for further details.)
Notice that the X-Y axis are expressed as integers|a
technique that hides the underlying details of the so-
lutions. This approach was intentional. The user need
only identify regions on the X-Y plane that warrant a
detailed exploration. Conversely, the user can specify
regions to avoid. This information is provided to the
search algorithm, which automatically designs search
operators that are constrained to search (or avoid) re-
gions identi�ed by the user.

As stated earlier, complete enumeration of the �tness
landscape of a partitioning problem is time consuming and
often computationally impossible. However, if the solution
space is formed following the guidelines given in Section 3,
such complete enumeration is not necessary. A �tness land-
scape can be depicted with varying levels of granularity.
The user can specify a quantization degree which plots only
a subset of the points. For example, the user may only
want every tenth point on each axis plotted. The quantized
landscape illustrates only the prominent landscape features.
Nevertheless, often this will be a suÆcient level of detail
to identify regions of low �tness, which should be avoided

during the search process. Furthermore, if the user likes to
investigate some regions in greater detail, s/he can use the
X-Y coordinates to \zoom in" on the selected regions.

Note that each solution in the �tness landscape is assigned
unique X-Y coordinates. Using integers on the axes provides
a natural method for a user to select regions for further ex-
ploration or avoidance without worrying about speci�c pa-
rameter values|only intervals on the X and Y axis need to
be provided to the search algorithm. The search process it-
self can take place in the X-Y plane, hiding the underlying
details from the user. Monte Carlo techniques and evolu-
tionary algorithms are ideally suited for searching this type
of �tness landscape. A mapping from the X-Y plane to the
corresponding solution space must be done in order to de-
termine the �tness value. Nevertheless, this mapping can be
done in a straightforward manner.

To illustrate the search process, suppose a Monte Carlo
search algorithm is being used. The current solution would
have X-Y coordinates of, say, (62, 34). A new solution could
be generated by stochastically perturbing X and/or Y. If the
new X-Y values are in a region to avoid, the solution should
be discarded and a new candidate solution created. The
X-Y values should then be converted into binary patterns
(see Section 3.2) and subsequently decoded to calculate the
actual �tness. If the candidate solution has a lower power
consumption|which denotes higher �tness|it replaces the
existing solution. Otherwise, it is accepted with an expo-
nentially decreasing probability.

A couple of items are particularly worth noting. First, re-
stricting the search algorithm to explore X-Y space hides the
details of the underlying solutions beings evaluated. More
speci�cally, the search algorithm is only concerned with ex-
ploring an integer space which is completely independent
of the complexity of the design task. Secondly, the user is
not burdened with identifying design restrictions via cum-
bersome if-then-else rules or some other type of abstraction;
design constraints are provided by just listing avoidance re-
gions in terms of X-Y coordinates|a process which is both
natural and universally applicable.

5 An Example

We use a real-world design example presented in [12] to illus-
trate our approach presented in the previous sections. Due
to the page limit, we omit the actual problem description
which can be found in [12]. For this example, the search
itself was conducted by a software package we had previ-
ously developed called EvoC, which uses an evolutionary
algorithm for exploration. Details on EvoC can be found
elsewhere [12]. The focus here is not on the speci�cs of a par-
ticular search algorithm, but rather on how our 3D �tness
landscape representation assists the designer in guiding the
search for good solutions. It is important to re-emphasize
that our landscape representation is not restricted to only
certain types of search algorithms. Indeed, it is entirely in-
dependent of the search mechanism.

In one experiment for this example, we considered a �t-
ness landscape based upon power consumption alone. (Note
that our approach can combine more than one landscape to
limit the search space. For simplicity, we only discuss the
single attribute case here.) Figure 4 depicts the quantized
�tness landscape with a quantization step size of 5000 for
both X and Y coordinates. Since lower power consumption
implies higher �tness, �tness is proportional to the inverse of
power consumption. Notice there are numerous regions that
contain sinkholes, which are regions where solutions have

a power consumption exceeding 20W. All solutions resid-
ing in sinkholes have their �tness values �xed to a constant
of 0, regardless of the actual value. This value is deemed
low enough so that a search algorithm would discard the
solution. In practice, the user could tell the search algo-
rithm to avoid certain regions in the �tness landscape by
merely inputting X-Y coordinates (e.g., \avoid for all X,
0:6� 105 < Y < 1:3� 105").
A stochastic search operation should be more computa-

tionally eÆcient if the search algorithm knows a priori which
regions to avoid. To test this hypothesis and hence illustrate
the value of user guided design exploration, we conducted a
series of search operations using EvoC in which avoidance
regions were identi�ed in some runs, but not in others. To
make the comparisons fair, all runs started with the same
initial conditions and results were averaged over 20 runs.
One set of search results from EvoC are depicted in Fig-
ure 5, where the goal is to minimize power consumption.
The �gure shows that the convergence rate has improved by
speci�cally avoiding regions of known low �tness. Moreover,
the quality of the �nal solution has improved. Given that
only a single avoidance region is used in this example|and
the overhead for doing this quite low|the improvement is
quite appreciable.
In another experiment for the engine control example, we

investigated a �tness landscape based upon a feasibility fac-
tor, which measures the capability of the system to satisfy
the real-time requirements [19]. A high feasibility value im-
plies high �tness. Figure 6 depicts the quantized �tness land-
scape with a quantization step size of 5000 for both X and Y
coordinates. Notice there are numerous regions that contain
sinkholes, which are regions where solutions have a feasibil-
ity factor value less than 0.7. Again, all solutions residing
in sinkholes have their �tness value �xed to a constant of
0, regardless of the actual value. Based on the landscape
information, we conducted a search which avoids the region
of 1:3 � 105 < X < 2:3 � 105 for any Y value, and com-
pared this search results with those with using any avoid-
ance regions. The �tness for the searches is de�ned to be a
weighted sum of scaled cost, power consumption and feasi-
bility factor (with weights of 0.4, 0.3 and 0.3, respectively).
The comparison results are depicted in Figure 7. The in-
crease in the convergence rate is not as large as the other
cases, which is partially attributed to the fact that the con-
tribution of the feasibility factor to the overall �tness is less
than the power consumption and cost (due to the scaling
and weight choices). Nevertheless, some improvement in the
convergence rate is still observable from Figure 7. It was
also noted that the optimal solution was found at the 70th
generation of EvoC if the sinkhole region was used in the
search process, while the search without the sinkhole region
constraint was not able to �nd the optimal solution at the
end of the 100th generation.

6 Discussion & Future Work

We have presented a framework for a designer to guide the
search process in solving the hardware/software partition-
ing problem. The main contributions of our work include
mapping a high dimensional �tness landscape to a three di-
mensional surface for easier visualization and interpretation.
By using an appropriate quantization step size, a 3-D �t-
ness landscape can be readily generated and depicted. Fur-
thermore, we show that such landscape information can be
used by a designer to constrain the search space. The intro-
duction of the integer X and Y coordinates for capturing a

high-dimensional solution space greatly facilitates the spec-
i�cation and avoidance of low �tness regions.
The approach presented in this paper is quite general.

First, as we pointed out previously, it is independent of the
search mechanism used and is readily applicable to several
di�erent stochastic search techniques, e.g., evolutionary al-
gorithms and simulated annealing algorithms. Secondly, in
generating a �tness landscape for identifying bad solution
regions, the designer can incorporate various design require-
ments. We have shown the use of a power consumption
limitation and a feasibility factor bound in the examples pre-
sented. In real applications, there may be other constraints
to be considered, e.g., the compatibility among modules and
availability of certain modules. All these constraints can be
included in the generation of �tness landscapes. Moreover,
there can be more than one landscape which capture di�er-
ent types of constraints. Eventually, all that a designer needs
to do is to specify the \forbidden" regions in each landscape
and let the search process quickly eliminate design candi-
dates in these regions.
We have obtained quite encouraging results by using the

landscape information to guide search in our partitioning
tool EvoC. We are working on integrating the landscape
generation process into EvoC in order to provide the user
with a uniform environment for design space exploration.
In addition, since the de�nition of neighbors plays a key
role in determining the ruggedness of a �tness landscape,
we intend to conduct a more in-depth study of neighbor
relations. The goal is to de�ne permutations of neighbors,
which lead to smoother landscapes. This should help to
reduce the diÆculty of the search process.

0
0.5

1
1.5

2
2.5

3

x 10
5

0

0.5

1

1.5

2

2.5

3

x 10
5

0

0.05

0.1

0.15

0.2

0.25

YX

Fi
tn

es
s

Figure 4: A �tness landscape for the power consumption
attribute.

References

[1] W. H. Wolf. Hardware-software co-design of embedded
systems. Proc. IEEE, 82:967{989, 1994.

[2] M. Chiodo, P. Giusto, A. Jurecska, H. Hsieh,
A. Sangiovanni-Vincentelli, and L. Lavagno. Hardware-
software codesign of embedded systems. IEEE Micro,
14:26{36, 1994.

[3] R. Ernst, J. Henkel, and T. Benner. Hardware-software
cosynthesis for microcontrollers. IEEE Design & Test
of Computers, 10:64{75, 1993.

0 5 10 15 20 25 30 35 40 45 50

generations

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

�tness

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
....
.......
.......
.......
.......
.......
.......
...
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..

..
..
..
..
..
..
.

..
..
..
..
..
..
.

..
..
..
..
..
..
.

..
..
..
..
..
..
.

..
..
..
..
..
..
.

..
..
..
..
..
..
.

..
..
..
..
..
..
.

..
..
...
..
..
..

..
..
..
..
..
..
.

..
..
..
..
..
..
.

.....
.....
...

.....
.....
...

..
..
..
..
..
..
.

..
..
..
..
..
..
.

..
..
..
..
..
..
.

..
..
..
..
..
..
.

...
...
...
...
.

...
...
...
...
.

.............

Figure 5: Fitness versus number of generations. Depicted
results are averaged over 20 runs of EvoC, searching on the
power consumption �tness landscape representation. The
solid (dashed) line is for searches conducted with (without)
constraints. Fitness is inversely proportional to power con-
sumption.

0
0.5

1
1.5

2
2.5

3

x 10
5

0

0.5

1

1.5

2

2.5

3

x 10
5

0

0.2

0.4

0.6

0.8

1

YX

Fi
tn

es
s

Figure 6: A �tness landscape for the feasibility factor at-
tribute.

0 10 20 30 40 50 60 70 80 90 100

generations

0.55

0.60

0.65

0.70

0.75

�tness

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

..

.

.

..

.

..

.

.

..

.

.

..

.

..

.

.

..

.

.

..

.

.

..

.

..

.

.

..

.

.

..

.

..

.

.

..

.

.

..

.

..

.

.

..

.

.

..

.

.

..

.

..

.

.

...
..
..
..
..
..
...
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
....
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
...
..
..
..
..
..
..
......
.....
....
.....
....
.....
....
.....
....
......
.....
......
.....
.....
......
.....
.....
.....
.................

...............
...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

..

.

..

.

.

.

..

.

..

.

..

..

.

.

.

..
.
..
.
..
.
..

..
..
..
...
...
.

..
..
...
...
...

..
...
...
...
..

...
...
...
...
.

...
...
...
..
..

...
...
...
...
.

.............
.........
....

........
.....

........
.....

.............
.............

Figure 7: Fitness versus number of generations. Depicted
results are averaged over 20 runs of EvoC, searching on the
feasibility factor �tness landscape representation. The solid
(dashed) line is for searches conducted with (without) con-
straints. The �tness is a weighted sum of power consump-
tion, cost and feasibility factor.

[4] R. Gupta and G. De Micheli. Hardware-software cosyn-
thesis for digital systems. IEEE Design & Test of Com-
puters, 10:29{40, 1993.

[5] E. Barros, W. Rosenstiel, and X. Xiong. A method for
partitioning unity language to hardware and software.
Proc. European Design Automation Conf., pages 220{
225, 1994.

[6] S. Prakash and A. Parker. Sos: Synthesis of application-
speci�c heterogeneous multiprocessor systems. J. Para.
& Dist. Computers, 16:338{351, 1992.

[7] S. Kumar, J. Aylor, B. Johnson, and W. Wulf. Object-
oriented techniques in hardware design. IEEE Com-
puter, 27:64{70, 1994.

[8] B. Dave, G. Lakshminarayana, and N. Jha. Cosyn:
Hardware-software co-synthesis of embedded systems.
Proc. Design Automation Conf., pages 703{708, 1997.

[9] J. Teich, T. Blickle, and L. Thiele. An evolutionary ap-
proach to system-level synthesis. Proc. Int'l Workshop
Hardware/Software Codesign, pages 167{171, 1997.

[10] R. Dick and N. Jha. Mogac: A multiobjective genetic
algorithm for the co-synthesis of hardware-software em-
bedded systems. IEEE/ACM Int'l Conf. on CAD,
pages 522{529, 1997.

[11] L. Garber and D. Sims. In pursuit of hardware-software
codesign. IEEE Computer, 31:12{14, 1998.

[12] X. Hu and G. Greenwood. Evolutionary approach to
hardware/software partitioning. IEE Proc.{Comput.
Digit. Tech., 145:203{209, 1998.

[13] W. Chapman and J. Rozenblit. The system design prob-
lem is np-complete. IEEE. Conf. Sys., Man, & Cyber.,
pages 1880{1884, 1994.

[14] Z. Michalewicz and M. Schoenauer. Evolutionary al-
gorithms for constrained parameter optimization prob-
lems. Evolutionary Comp., 4:1{32, 1996.

[15] E. Weinberger. Correlated and uncorrelated landscapes
and how to tell the di�erence. J. Biol. Cybern., 63:325{
336, 1990.

[16] G. Greenwood and X. Hu. Are landscapes for con-
strained optimization problems statistically isotropic?
Physica Scripta, 57:321{323, 1998.

[17] Y. Saad and M. H. Schultz. Topological properties of
hypercube. IEEE Trans. on Computers, 37:867{870,
1988.

[18] G. Greenwood and S. Ravichandran. Fitness landscapes
on torus.

[19] R. Sambandam and X. Hu. Predicting timing behav-
ior in architectural design exploration of real-time em-
bedded systems. Proceedings of the 34th IEEE/ACM
Design Automation Conference, pages 157{160, 1997.

