
A Probabilistic Performance Metric for Real-Time System Design

Tao Zhou Xiaobo(Sharon) Hu Edwin H.-M. Sha
Dept. of Computer Science and Engineering

University of Notre Dame
Notre Dame, IN 46556

Email:
�
tzhou, shu, esha@cse.nd.edu�

Tel: (219)631-6015 Fax: (219)631-9260

� � � � 	 � �

At the system level design of a real-time embedded system, a major
issue is to identify from alternative architectures the best one which
satisfies the timing constraints. This issue leads to the need of a
metric that is capable of evaluating the overall system timing per-
formance. Some of the previous work in the related areas focus on
predicting the system’s timing performance based on a fixed com-
putation time model. These approaches are often too pessimistic.
Those that do consider varying computation times for each task are
only concerned with the timing behavior of each individual task.
Such predictions may not properly capture the timing behavior of
the entire system. In this paper, we introduce a metric that reflects
the overall timing behavior of RTES. Applying this metric allows a
comprehensive comparison of alternative system level designs.

� � � � 	 � � � � � � �

A real-time embedded system(RTES) must respond to certain ex-
ternal events under timing constraints. If the system cannot func-
tion on time, the system performance will degrade. Or even worse,
a system failure will occur, which could lead to a catastrophe. There-
fore, guaranteeing that a real-time embedded system meets all its
timing constraints is a key issue in designing such a system. Many
industrial examples show that the system level design plays a dom-
inating role in determining the performance of a final product [14].
Hence, a major effort at the system level design is to identify from
alternative architectures the best design which satisfies the timing
constraints.

Many algorithms for predicting the timing performance of a real-
time embedded systems exist [1–4, 6–9, 13]. A classical paper by
Liu and Layland [9] presented an upper-bound on the overall pro-
cessor utilization in order for each independent periodic task to
complete on or before its deadline. Lehoczkyet al. [6] extended
the result by characterizing the exact behavior of each task meeting
its timing requirement. Other algorithms [1, 4] either improve the
above mentioned results or consider somewhat different task com-
positions. One common assumption used by all these papers is that
each task only has a single computation time.

In most real-world applications, the computation time of a task can
vary dramatically due to a number of factors. Imposing a fixed
computation time for each task often leads to overly pessimistic
erroneous performance estimations. A few papers published re-
cently have studied performance estimation for tasks with varying
computation times. [2, 3, 13] All of these algorithms aim at find-
ing the probability ofeach task meeting its timing constraint. Tia
el at [13] proposed a way to find the probability of any request of
a task meeting its timing constraint by checking the processor de-
mands for completing the request as well as all requests of higher
priority tasks. They assume that the computation time of each task
is described by a probability density function. Tasks are scheduled
according to a fixed-priority, preemptive policy. (The paper is not
consistent in handling requests missing their deadlines, which in-
troduces an error in performance estimation. We will discuss this
later.) Kalavade and Moghˆe [3] studied the timing performance of
networked embedded systems, which may have precedence con-
straints. Tasks are scheduled by a fixed-priority, non-preemptive
policy. The authors model the processing load of such a system by
a semi-Markov process. According to this theme they developed a
tool, which outputs an exact distribution of the processing delay of
each task. Hou and Shin [2] derived the probability of each task
meeting its timing constraint within a planning cycle, which is de-
fined to be the least common multiple (LCM) of all task periods.

In the system level design, the goal of evaluating timing perfor-
mance is to compare and perhaps rank alternative designs. Comput-
ing the probability of each task meeting its deadline by the above
mentioned algorithms may not be sufficient. Timing performance
of any individual task may not represent that of the entire task set,
unless it is the only task of the system. Through several exper-
iments, we have noticed that a high-level correlation often exist
among tasks in the same system. Hence, the overall system timing
performance cannot be evaluated by a simple average of probabil-
ities of each task meeting its deadline. We believe that there is a
need for a single system-wise parameter to measure the probability
of an entire system meeting all the timing constraints. Intuitively,
it is a measure of the probability of any task missing its deadline
at any instant. Such a parameter would reflect the quality of the
corresponding system timing implementation. In this paper we in-
troduce a new concept which can be used to define the probability
of a system meeting its timing constraints. By using this prob-
abilistic measurement one can easily evaluate timing performance
of alternative designs as the timing performance could be measured
and compared based on a single value just like cost and power con-
sumption of a system. To the authors’ knowledge, this is the first
paper that presents a metric of the overall timing performance for a
real-time embedded system, with varying computation times.

Section 2 introduces some necessary notations and analyzes sev-
eral dif� ferent methods that could give a system-wise probability
and their flaws. In section 3 we introduce the state concept to de-
fine the probability of a system being feasible, and use it to compute
the system-wise timing behavior of a RTES. Section 4 proposes a
method to approximate this system-wise probability. Experimental
results are presented in section 5. Section 6 concludes the paper.� � � � � � � � # % ' � � () + � � . � � � � � 2 � � ' 3 	 � � � � � 2 � � '
The system we consider consists ofn independent periodic tasks,
τ = 5 τ1 6 τ2 6 7 7 7 6 τn : . They are to be scheduled on a single proces-
sor. If a RTES contains multiple processors, we assume that tasks
are statically assigned to each processor. Associated with each task
τi are three parametersperiod(Ti), deadline(di), andcomputation
time(Ci). Without loss of generality, we assume thatCi is a dis-
crete random variable which takes valuesci1 6 ci2 6 7 7 7 6 ciKi . The jth
request of taskτi, ri j, requiresCi j time to finish, where the proba-
bility of Ci j equal tocil is qil . i.e., P ; Ci j < cil = < qil , 1 > l > Ki.
We assume thatP ; Ci j < x = is independent of the computation times
of any other task requests. We have the following assumptions on
the system:

1. The first request of each task is initiated at the same time,
called critical instant [9]. This assumption makes the first
request of any task has the largest response time.

2. Tasks are scheduled according to a fixed priority, preemptive
scheduling algorithm. A higher priority task can always pre-
empt a lower priority one. We assume that tasks are arranged
in the decreasing order of priority, that isτi has a higher pri-
ority thanτ j, if i ? j.

We would like to study the ability of such a RTES meeting its dead-
lines, i.e., the feasibility of this RTES, which is defined as follows:

Definition 1 A task τi is feasible if each of its requests meets the
deadline. A task set is feasible if every task is feasible.

Since the computation times of tasks are probabilistic, both the fea-
sibility of each task and that of a system also become probabilistic.
We useF ; x = < 1 (resp.F ; x = < 0) to describe the event ofx being
feasible (resp. infeasible), wherex is either a task or a system. For
exampleP ; F ; τi = < 1= is the probability ofτi being feasible.

As discussed in the introduction,P ; F ; τi = < 1= can be calculated
by algorithms in [2, 3, 13]. However, such probabilities may not
correctly capture the overall system behavior and hence cannot be
directly applied to compare different system designs. For exam-
ple, consider two alternative designs of a system consisting of two
periodic tasks. In design I, taskτ1 has a probability of 07 9 to be fea-
sible, the probability ofτ2 being feasible is 07 8. In design II, these
two probabilities are 07 8 and 07 9, respectively. It is difficult to de-
cide which is a better design by only comparing eachP ; F ; τi = < 1= .
One may argue that the relative importance of each task can be used
in conjunction with their feasibility probabilities. Yet in some sys-
tems, such importance comparison may not exist. Furthermore, the
scenarios in which timing violations in each design may not be the
same. Consider another example in Table 1 which shows two task
sets both of size two. For the ease of illustration, we assume in
this example that whenever there is a request misses its deadline, it
will be terminated and removed from the job queue. The feasibility
probability of each set is given by the last column of Table 1. As
Figure 1 shows, in set I, ifjth request ofτ1, r1 j cannot finish on
time, nor can thejth request ofτ2, r2 j be feasible. On the other
hand in set II such a dependence of two requests of different tasks
in missing timing constraints does not happen as frequently as in set
I. A request ofτ2 may finish on time when a request ofτ1 misses

τi Ti di ci1 qi1 ci2 qi2 P ; F ; τi = < 1=
set I τ1 5 5 1 0.8 6 0.2 0.8

τ2 5 5 1 1.0 0.8
set II τ1 5 5 1 0.8 6 0.2 0.8

τ2 10 10 1 0.95 9 0.05 0.8

Table 1: Each task of these two sets has a sameP ; F ; τi = < 1= , but
these two sets have different timing performance.

its deadline, or vise versa. Given a choice, a designer would prefer
set I to Set II, since the overall system is infeasible for a shorter
duration. If simply comparing eachP ; F ; τi = < 1= ’s, there would be
no difference in the timing performance of the two task sets.

We introduce a single metric for measuring the timing performance
of an entire system. When tasks computation times are random
variables, the feasibility of the task set can be measured by a proba-
bility, P ; F ; τ = < 1= . The value of this probability can be considered
as the probability of every task in the system is feasible, that is,

P @ F ; τ = < 1A < P B F ; τ1 = < 1 C F ; τ2 = < 1 C 7 7 7 F ; τn = < 1A 7 (1)

Note that formula (1) can also be written as:

P @ F ; τn = < 1 D F ; τ1τ2 7 7 7 τn E 1 = < 1F G P @ F ; τn E 1 = < 1 D
F ; τ1τ2 7 7 7 τn E 2 = < 1F 7 7 7 G P @ F ; τ1 = < 1F
It follows that a system with higherP ; F ; τ = < 1= has a better timing
performance with respect to satisfying deadlines.

JJKK LLMM N NN NO OO O P PP PQQ
R RR RS SS S T TT TU UU U V VV VWW X XY YZ ZZ Z[[[[\ \\ \]] ^^__

τ

τ

1

2

5 25201510

252015105

30

30`ab cd e fg
hijk lmmnn oopp q qq qr rr r s ss stt u uu u

vv
w ww wx xx x y yy yzzτ

τ

1

2

30252015105

302010

{ {{ {| || | } }} }} }~~~

� �� �� �� � � �� �� �� � � �� ��� � �� �
� �� � ����

� �� �� �� � � �� ���

� �� �� �� � a request cannot finish on time

Set I

Set II

a request of finishes on timeτ

a request of finishes on time

1

τ2

Figure 1: Two task sets have the same feasibility probability of each
task, yet have different timing performance.

The challenge now is how to obtainP ; F ; τ = < 1= . Let us first con-
sider some intuitive approaches and show their problems. Recall
that the probability of an event can be considered as the percent-
age of the number of events over the total number of experiments
when the number of experiments is “very large” [12]. One way to
model the events of all tasks being feasible is to consider the fea-
sible requests from all tasks. That is, letP ; F ; τ = < 1= equal to the
percentage of the number of feasible requests over the total num-
ber of requests as the number of total requests becomes infinite.
Requests from different tasks are treated equally, even though they
have different periods. (Due to the page limit, we omit further dis-
cussion on this.) Though this formulation is straightforward, the
P ; F ; τ = < 1= value obtained may not correctly reflect the actual

timing behavior.

Yet another way to determineP ; F ; τ = < 1= is to approximate equa-
tion (1) byP̃ ; F ; τ = < 1= , where

P̃ @ F � τ � � 1F � P @ F � τ1 � � 1F P @ F � τ2 � � 1F � � � P @ F � τn � � 1F 7 (2)

This formula was used by Hou and Shin in [2]. However, since
the tasks in a system are executed on a single processor, eventsτi
being feasible andτ j being feasible are dependent in the sense of
scheduling even though we assume that the tasks are independent
of one another. Examining the example illustrated in Figure 1, one
can easily see that in task set I,τ2’s feasibility is fully dependent
on that ofτ1. The conditional probability,P ; F ; τi = < 1 D F ; τ j = < 1=
represents the probability of a request ofτi meets its deadline when
a request ofτ j is feasible. ApproximatingP ; F ; τi = < 1 D F ; τ j = <
1= by P ; F ; τi = < 1= alone as did in [2] does not always properly
capture the system timing behavior.(Several other approaches were
studied but we omit these discussions due to the page limit.) In the
following sections, we introduce a rather novel concept to evaluate
P ; F ; τ = < 1= .

� % � � � � � � � 3 	 � � � � � 2 � � '

The difficulty in evaluatingP ; F ; τ = < 1= lies in how to count the
event of a system being feasible. Notice that some interval must
be used in considering whether a system is feasible and evaluating
P ; F ; τ = < 1= as given in formula (1). If an interval is specified,
the feasibility probability is simply the ratio of the expected value
of the total number of intervals within which the system is feasible
over the total number of intervals, for which the system is sched-
uled. Obviously, if a task set consists of only one task, the task
period can be chosen as such an interval. When the size of a task
set is greater than 1, a proper time interval is needed in order to
account for the differences in task periods.

One way to define such a time interval is to set it to the least
common multiple(LCM) of all task periods,R < LCM ; Ti = , for i <
1 6 2 6 7 7 7 6 n. The entire task set withinR is feasible if all requests
submitted during this time span meet their deadlines. Otherwise,
it is infeasible. Therefore,P ; F ; τ = < 1= can be evaluated by the
percentage of the number of feasibleR over the total number of
R during the time span the system is running. Unfortunately, the
P ; F ; τ = < 1= value computed based onR is usually very low. For
instance, if the period of one task is much less thanR, the task will
submit many requests withinR. The probability of at least one of
the requests misses the deadline can be rather high, and hence the
probability of the interval being feasible can be very low. This,
in turn, results in lowP ; F ; τ = < 1= . However, the system can ac-
tually satisfy most of the requests deadlines. In an extreme case,
whenR is sufficiently large(Ti’s are relatively prime), within each
R the system is always “infeasible”. Such an estimation would re-
sultP ; F ; τ = < 1= < 0, even though the system is capable of meeting
some deadline requirements.

We now propose a new concept to help define the event of a system
being feasible. Let astate cycle be the time interval between any
two consecutive requests. For example, given a task system with
three tasks as shown in Figure 2, assumeT1 < 2 6 T2 < 3 6 T3 < 4.
Then, withinR < LCM ; T1 6 T2 6 T3 = < 12, there are 8 state cycles. In
general, for a task system withn tasks, each state cycle corresponds
to a unique combination ofn requests (since the request pattern
will repeat after every R interval), with one request from each task.
We denote such a combination as astate, sq. In Figure 2,s1 <5 r11 6 r21 6 r31 : , s2 < 5 r12 6 r21 6 r31 : ,s3 < 5 r12 6 r22 6 r31 : , and so on.

s s s s s ss s1 2 3 4 5 6 7 8

2 4 6 8 10 12

3 6 9 12

4 8 12

τ

τ

τ 1

2

3

Figure 2: A state is defined by a combination ofn requests, one
from each task.

A state is said to be feasible if every request in the state is feasible.
Since the computation time of each task is stochastic, the event of
statesq being feasible is also stochastic. We denote the probability
of sq being feasible byP ; F ; sq = < 1= and we have:

P @ F � sq � � 1F � P @ F � r1q1 � � 1 � F � r2q2 � � 1 � � � � F � rnqn � � 1� F 7
According to the definition of a state,sq, one can see thatP ; F ; sq = <
1= represents the timing behavior of the entire system during the
state cycle when the system is in statesq. Different states may have
different probabilities of being feasible. Note that at any time in-
stant within the state cycle, the system exhibits the same timing
behavior, because the same requests are executed. If one of the re-
quest misses its deadline during the state cycle, the entire duration
is considered to be infeasible. Hence, by using the state concept,
we can effectively “count” the events of system being feasible. The
average of the probabilities of states being feasible would be a rep-
resentation of the timing performance of the overall system. Hence,
we define:

P @ F ; τ = < 1F < 1
ns ; R =

ns � R �
∑
q � 1

P ; F ; sq = < 1= 7 (3)

wherens ; R = is the total number of states. Since the same sequence
of states repeats after each intervalR, ns ; R = can be computed by:

ns ; R = < 1 �
n

∑
i � 1

; R
Ti � 1= �

n E 1

∑
i � 1

n

∑
j � i � 1

; R
LCM ; Ti 6 Tj = � 1= 7 (4)

The proof is omitted due to the page limit.

To determine the timing performance of a system becomes finding
P ; F ; sq = < 1= , for q < 1 6 2 6 7 7 7 , ns ; R = . Let Nf ; t = be the number of
feasible states within 0 6 t ¡ . Note thatNf ; t = is a random variable.
Furthermore, denote the expected value ofN ; t = by E ; Nf ; t = = . From
the probability theory [12], we know that:

E ; Nf ; R = = <
ns

∑
q � 1

P ; F ; sq = < 1= 7 (5)

Combining (3) & (5), we obtain:

P ; F ; τ = < 1= < 1
ns

E ; Nf ; R = = 7 (6)

To see if (6) gives a good indication of the system timing perfor-
mance, we apply the above formula to the examples discussed in
Table 1. For set IP ; F ; τ = < 1= < 0 7 8 and for set II it is 07 76, which
as analyzed in section 2, are good measurements.

¢ £ � � � (� � � � # � ¥ % � � � � � � � 3 	 � � � � � 2 � � '

Notice that using simulation to determineE ; Nf ; R = = and hence
P ; F ; τ = < 1= can be extremely time consuming. We present a

method to approximateP ; F ; τ = < 1= .

The value ofE ; Nf ; R = = can be computed directly by combining
techniques from the probability theory [12] and from scheduling
theory [6]. Consider a system withn tasks. For a given computation
time of each task request during 0 6 R ¡ , we can determine the feasi-
bility of each state by applying the algorithm in [6]. Since the task
computation times are random variables, different combinations of
these must be considered. Let the total number of combinations of
request computation times within 0 6 R ¡ bencr ; R = . Thenncr ; R = can
be calculated as:

ncr ; R = <
n

∏
i � 1

; Ki = R ¦ Ti

WhereKi is the total number of computation time variation ofτi.
The probability of a particular combination,Qk, occurring is:

Qk < P ;
n

C
i � 1

R ¦ Ti

C
j � 1

; Ci j < cil = = <
n

∏
i � 1

R ¦ Ti

∏
j � 1

qil

whereCi j is the computation time ofjth request ofτi, and takes
the valuecil (cil is any one of the possible values ofCi), with the
probabilityqil . It follows that the expected value of the number of
feasible states in 0 6 R ¡ can be computed by:

E ; Nf ; R = = <
ncr � R �
∑
k � 1

n f ; R 6 k = G Qk

wheren f ; R 6 k = is the number of feasible states for the combination
corresponding toQk in 0 6 R ¡ .

To determinen f ; R 6 k = , the algorithm presented in [6] may be used.
They found that the processor time demanded to completeτi as
well as all the higher priority tasks is

Wi ; t = <
i

∑
j � 1

Cj § t ¨ Tj © 7

The idea is to find the minimumt, such thatWi ; t = > t. If there ex-
ists such at, τi is feasible. The value oft is from the setU , where
U < 5 Tk G m D § ; j

�
1= G Ti ¨ Tk © > m > § j G di ¨ Tk © 6 k < 1 6 2 6 7 7 7 6 i : .

One problem in directly applying the algorithm is that the algo-
rithm only considers the first request of each task, since it assumes
that all requests have the same computation time and that each task
initiates its first request at the critical instant [9]. In our case, differ-
ent requests of the same task may have different computation time,
thus each task request must be checked to determine its feasibility
in order to obtainn f ; R 6 k = . We can extend the algorithm as follows.
Let Wi j ; t = be the processor time demanded to finishri j as well as
requests fromri1 to ri ª j E 1 and all the higher priority requests re-
leased during intervalIi j ; t = = 0 6 ; j

�
1= Ti � t ¡ . ThenWi j ; t = is

Wi j ; t = <
j

∑
q � 1

Ciq �
i E 1

∑
k � 1

zk � t �
∑
h � 1

Ckh (7)

wherezk ; t = < § ; ; j
�

1= Ti � t = ¨ Tk © . By the proofs given in [6], a
requestri j is feasible if there exists a valuet such that

Wi j ; t = > ; j
�

1= Ti � t (8)

Though formula (7) can be used to computen f ; R 6 k = , it can be quite
time consuming when the number of requests inR is very large. In

the following, we consider two approaches to reduce the comput-
ing time of formula (7).

The first approach focuses on reducing the interval used for deter-
mining if ri j is feasible. Tia,et.al. [13] proposed to use interval
I i j ; t = < ; j

�
1= Ti 6 ; j

�
1= Ti � t ¡ . They usedW i j ; t = > t to check if

ri j is feasible, whereW i j ; t = is the processor time demanded by all
the hinger priority tasks and the requestri j since the release ofri j.
W i j ; t = is

W i j ; t = < Ci j �
i E 1

∑
k � 1

zk � t �
∑

h � z k
Ckh (9)

wherezk̄ < § ; j
�

1= G Ti ¨ Tk © . They adjusted it by the following
formula considering that some higher priority requests that are re-
leased earlier thanri j may not have completed atri j and still de-
mand processor time afterri j is released.

W i j ; t = < Ci j �
i E 1

∑
k � 1

zk � t �
∑
h � 1

Ckh �
i E 1

∑
k � 1

∞

∑
h � 1

; 1
�

Mk = hCk ª E h

Their formulation implies that any request ofτi from ri1 to ri � j E 1�
when missing its deadline will be terminates. While requests of
higher priority when missing deadlines are executed continuously.
Hence there is an inconsistency in the use of scheduling policies
in [13]. We propose an approach based on a consistent scheduling
policy, called terminate policy. Under the terminate policy, a re-
quest is terminated and removed from the processor when missing
its deadline. Such a policy would be advantageous when the pos-
sible computation times of a task vary dramatically and the task’s
deadline is the same as or longer than its period. Notice that at
the instance the requestri j is released, ifTi mod Tk ±< 0 6 k ? i, a
higher priority taskτk has submitted a requestrkzk

, which may have
finished or only partly been executed. In formula (9),Ckzk

is fully
accounted. This introduces an error to the value ofW i j ; t = calcu-
lated by formula (9), i.e., makes the value greater than it actually
is. According to the terminate scheduling policy, the requestri j will
not be executed untilrkzk

is finished. Letti j be the instance thatri j
starts to be scheduled. We observe thatti j is the earliest time instant
at whichrkzk

(for all k < 1 6 2 6 7 7 7 6 i �
1) are finished (The finishing

time for rkzk
is Vkzk < Wkzk

; t = � tkzk
). That is,

ti j < max5 Vkzk
; t = D k < 1 6 2 6 7 7 7 6 i �

1 6 ; j
�

1= Ti : (10)

It turns out thatVkzk
are already computed when determining ifrkzk

is feasible. If we arrange the requestsri j in the increasing order of
bothi and j, we can simply recordVkzk = as needed and obtainti j by
formula (10). Now, we only need to calculateWi j ; t = in the interval

 ti j 6 ti j � t ¡ by

W i j ; t = < Ci j �
i E 1

∑
k � 1

zk � t �
∑

h � z k
Ckh (11)

wherez ¯k̄ < § ti j ¨ Tk © � 1. To determine ifri j is feasible, we check

if there exists at such thatW i j ; t = > t. Thus applying a consistent
terminate policy we can reduce the computing time for formula (7)
without an error. Yet we don’t have a way to achieve this reduction
for a system not applying a terminate scheduling policy.

We now briefly discuss another approach to approximate it. Instead
of calculating the probability in the interval 0 6 R ¡ , one could apply
the method described above within the interval 0 6 Tn ¡ . The penalty

Experiments set I set II set III set IV set V set VI set VII set VIII
P ; F ; τ = < 1= by 0 6 R ¡ 0.8 0.76 0.62 0.71 – 0.8 – –
P ; F ; τ = < 1= in 0 6 Tn ¡ 0.8 0.76 0.66 0.67 0.81 0.8 0.22 0.756

P ; F ; τ = < 1= by simulation 0.8 0.76 0.60 0.69 0.87 0.8 0.3 0.724
multiplication 0.64 0.64 0.55 0.46 0.77 0.41 0.14 0.65

Table 2: Experiment results of eight task sets

is that such an approximation introduces an error to the result, since
the states in the interval Tn 6 R ¡ are omitted. Letn f ; Tn 6 k = be the
total number of states within the interval 0 6 Tn ¡ . We have

P @ F � τ � � 1F ³³³ µ 0 ¶ Tn · � 1
ns ¸ Tn ¹ º ∑ncr ¸ R ¹

k » 1 Qk º nf � Tn ª k � (12)

wherens ; Tn = is the total number of states within 0 6 Tn ¡ . The relative
error is,therefore,

P @ F ¸ τ ¹ » 1 F ¼ P @ F ¸ τ ¹ » 1 F ³³³ µ 0 ¶ Tn ·
P @ F ¸ τ ¹ » 1 F < 1 E ns ¸ R ¹

ns ¸ Tn ¹ º ∑
ncr ¸ R ¹
k » 1 Qk ¾ n f ¸ Tn ¶ k ¹

∑
ncr ¸ R ¹
k » 1 Qk ¾ n f ¸ R ¶ k ¹

¿ £ À Á 	 � (� � � 2 Â � � 2 � �

We have used our proposed metric to evaluate a number of sys-
tems. Table 2 shows 8 example task sets, for which we have ob-
tained the probability of each set being feasible. The data of Set
VIII is from [3], which is an audio and video networked embedded
system. We use SES/Workbench as our simulator to get data of
the third row. Three data are not available for the first row because
the computing time is big. The second row is the approximation of
P ; F ; τ = < 1= within 0 6 Tn ¡ . Formula (11) is used to calculate the
processor time demanded. We use SES/Workbench as our simu-
lator to get the data of the third row. The data in the last row are
calculated according to formula (2).

Task set I and II are the same with those in Table 2. As analyzed
in section 2, even though they have the sameP ; F ; τi = < 1= , set I
actually have a better timing performance. As shown in the table,
P ; F ; τ = < 1= of set I is 07 8, while that of set II is 07 76. Also in
Section 2, we pointed out that formula (2) does not always capture
the timing performance of a system, which may cause some errors
in evaluatingP ; F ; τ = < 1= . Such an error is quite significant in
several of the task sets shown in Table 2. For example, for task set
VI, the feasibility probability is supposed to be 07 8, but the multi-
plication method estimates it as 07 41. The experiments show that
the probability of a system being feasible based on astate cycle
correctly reflects the probabilistic timing behavior of a system and
P ; F ; τ = < 1= D Ä 0 ª Tn Å is a good approximation ofP ; F ; τ = < 1= .

Æ Ç � � � � � � � �

In this paper, we show that the overall timing performance is not
properly represented by any of the individual task feasibility prob-
ability P ; F ; τi = < 1= s. We then introduce the concept of states and
propose to usestate cycle to measure the probability of an entire
system being feasible. In addition, we provide an algorithm to cal-
culate this probability based on thestate cycle. As our analysis and
examples show, the state based probability well reflects the system
timing behavior. Applying this probability allows a straightforward
comparison of timing performance among different system level
designs by comparing a single value. Taking into consideration
the variation in computation times, this probability is more flexible

than the timing performance prediction based on a fixed computa-
tion time model.

Acknolowedgement

We are grateful to Dr. Asawaree Kalavade for providing data for
some of our expriments. This work is supported in part by NSF
under grant numbers MIP97-96162, MIP97-01416, MIP95-01006,
MIP97-04276 and by an External Research Program Grant from
Hewlett-Packard Laboratories, Bristol, England.

Â È 	 � �

[1] S.C. Chenget. al. “Scheduling algorithms for hard real-time sys-
tems - a brief survey”, In Tutorial Hard Real-Time Systems,page
150-173,IEEE,1988.

[2] C.J. Hou, K.G. Shin “Allocation of Periodic Task Modules with
Precedence and Deadline Constraints in distributed Real-Time
Systems”, IEEE Transaction on Computers, Vol 46, No.12,
Wec.1997.

[3] A. Kalavade,et. al. “A Tool for Performance Estimation of Net-
worked Embedded End-Systems”, Proceeding of DAC, 1998.

[4] W.W. Leinbaugh “Guaranteed response time in a hard real-time
environment” IEEE Transaction on Software Engineering, Jan.
1980

[5] R. Jain “The Art of Computer Systems Performance Analysis”,
1991.

[6] J. Lehoczky,et. al. “The Rate Monotonic Scheduling Algorithm:
Exact Characterization And Average Case Behavior”, Real-
Time Systems Symposium, Dec. 1989.

[7] J.Y.-T. Leung, M.L. Merrill “A note on preemptive schedul-
ing of periodic, real-time tasks”, Information Proceedings Let-
ters,11(3),page 115-118, Nov. 1980.

[8] J. Y.-T. Leung, J. Whitehead “On the complexity of fixed-
priority scheduling of periodic, real-time tasks. Performance
Evaluation 2, page 237-250, 1982.

[9] C.L. Liu, J. Layland “Scheduling Algorithms for Multiprogram-
ming in a Hard Real Time Environment”, Proceeding of IEEE
Real-Time Systems Symposium, page 252-260, 1973.

[10] G.K. Manacher “Production and Stabilization of Real-time Task
Schedules”, J. ACM14’3(July 1967), page 439-465.

[11] W. Gautschi “An Introduction to Numerical Analysis”, page
74-105.

[12] S. M. Ross “Introduction to Probability Models”, 4th edition,
1989.

[13] T.-S. Tia,et. al. “Probabilistic Performance Guarantee for Real-
Time Tasks with Varying Computation Times”, Proceeding of
Real-Time Technology and Applications Symposium, page 164-
173, May 1995. IEEE.

[14] W. Wolf “Hardware-software co-design of embedded systems”,
Proceeding of the IEEE, vol 82, No7,page 967-989, July 1994.

