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Abstract—
We present SoCExplore, a framework for fast communication-

centric design space exploration of complex SoCs with network-
based interconnects. Speed-up in exploration is achieved through
abstraction of computation as a high-level trace, and accuracy
is maintained through cycle-accurate interconnect simulation.
The flexibility offered allows for fast partition/mapping and
interconnect design space exploration. Error analysis of such
frameworks is non-trivial and is presented for the first time. As
a case study, a speed-up of 94% over architectural simulation is
reported for the MPEG application.

I. INTRODUCTION

Future SoCs with 1 billion transistors will comprise hun-
dreds or even thousands of heterogeneous multiprocessors on
a single chip. In these systems, communication will become
a major concern since it eventually determines whether or
not the computation resources can efficiently be deployed
i.e. communicate with each other. In recent years the design
paradigm of Networks-on-Chips (NoC) has evolved as a
possible solution ( [2] [4]).

One of the challenges of introducing networks on chips is
to efficiently evaluate different communication architectures.
To achieve high efficiency, works like [3], [6] and [13] employ
statistical models to generate interconnect traffic and conduct
necessary analysis based on the statistically distributed pack-
ets. Such frameworks might not be able to capture true com-
munication behavior in an application. To overcome this prob-
lem, simulation tools that resort to a complete execution model
have been proposed (e.g., [1] [8]). Here, an application is re-
written to make communication explicit, and encapsulated in
a system-level language such as SystemC. The demands on
understanding and re-writing application code together with
the detailed simulation can make the design space exploration
rather inefficient. Trace-based/compiled-code simulation ap-
proaches (e.g., [9]) can significantly speedup the design space
exploration process. Existing frameworks, however, assume
that the task execution order of an application does not change
according to interconnect behavior (e.g, [7] [11] [14]). In such
cases, even though the functional behavior of the application
is captured, the true execution order is not.

Consider the example in Fig. 1(a) where two tasks (
���������

)
are assigned to a single core ( �
	 ) in a multiprocessor sys-
tem.

���
has three computation blocks (

�����
��������������
) with data

transactions � � and � � after
� ���

and
� ���

respectively.
� �

has
the computation blocks

��������������������
with data transactions � 

and ��� . Say,
� �

has been constrained to execute after
� �

even
though

���
and

���
are independent processes. The time line

for the system is shown in Fig. 1(b). The gaps indicate core-
idle time due to interconnect delay in satisfying the data
transactions. However, in a real system where the cores would
context switch, the time-line is as shown in Fig. 1(c). The
task execution order, communication event profile and total
execution time are all affected due to constrained execution.

In this paper, we overcome the shortcomings of previ-
ous trace-based simulation through two contributions: (1) a
flexible communication event simulator that does not require
task execution order be given and that can take traces at
different levels of abstraction. (2) a detailed error analysis of
trace-driven simulators based on a novel bounded interconnect

T1

t13

t12

t11
d1

d2

T2
t21

t22

t23

d3

d4
c1

c2
m1

b1

(a) T1 and T2 on Core 
C1,data transactions 
to memory m1

t11 t12 t13 t21 t22 t23d1 d2 d3 d4

(b) For constrained order execution
Time

(c) Unconstrained (true) execution order

t11 t12 t13t21 t22 t23
d1 d2d3 d4

Time

Fig. 1. Effect of constrained execution order
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Fig. 2. The SoCExplore Framework

access model and synchronization points. The effectiveness of
the framework is demonstrated through a case study.

II. SOCEXPLORE

We present our framework, SoCExplore in Fig. 2. The
central component is the event-driven cycle-accurate intercon-
nect simulator, SoCNet (Fig. 2(a)). Interconnect and other
system events in SoCNet are triggered by hooks to higher level
mechanisms. Next we propose SoCTraceSim, a trace-based
system simulation platform that incorporates SoCNet and is
based on the use of concurrent execution traces. An original
application trace (interconnect transaction triggers interspersed
with computation events) is modified to extract concur-
rency(parallelism) in SoCTraceGen (Fig. 2(b)). This extrac-
tion separates application space from system design space to a
great extent and thus multiple interconnect/partition/mapping
configurations; and systems with multiple copies of the ap-
plications, can be explored through multiple runs of SoCNet
without involving trace-regeneration. Interconnect events di-
rectly influence the release of computation events through a
feedback mechanism and thus task execution order is main-
tained close to that in a real system. Trace-based frameworks
abstract computation and trade accuracy for speed and induce
errors in communication-event release times. As such, we
built a reference platform, SoCArchSim (Fig. 2(c))(which
uses SoCNet for cycle-accurate communication and architec-
tural simulators for computation simulation) for design space
exploration at later stages as well as to quantify the error
in SoCTraceSim when needed. In the following we describe
application modeling in SoCExplore followed by details of its
various components.
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A. Modeling in SoCExplore

An application is described by A(T, D, R) where
T : the set of tasks

���
(assuming that the high-level specifi-

cation is given as a C/C++ code,
� �

represent the functions in
the code to be mapped as a whole to computation nodes).
D : the set of data variables � � , accessed by T.
R : the control relation among

���
’s, e.g., (

���
calls

���
).

The SoC system is represented as S(C, M, I), where C is the
set of concurrently executing cores (or computation nodes),
� � ; M is the set of memory units, � �

; and I is the communi-
cation architecture describing the interconnect elements such
as buses, arbiters, routers as well as the protocols that define
their functionality, such as interconnect-access model, request-
scheduling at routers/arbiters. The goal of communication-
centric design space exploration is to find superior mappings
(
��� � �	� � 


) in terms of communication cost (e.g.,
buffer sizes) and/or performance (e.g., total cycles needed for
data transfer). Next we discuss the details of the interconnect
simulator, SoCNet.

B. SoCNet: Interconnect Simulator for On-Chip Networks

SoCNet evaluates the performance of an application A(T, D,
R) on a system S(C, M, I) by simulating its communication
behavior. The inputs to SoCNet are the system configuration
file (SF), a user-defined mapping granularity file (UDGF), and
a high-level concurrent execution mechanism (HCEM), e.g.
a multi-processor architectural simulator; or its abstraction,
ACEM, such as a concurrent execution trace. We discuss
HCEM and ACEM later.

Each component of S(C, M, I) is described in SoCNet
as a composition of some basic entities shown in Fig. 3(a).�

unit � schedulers order the events in a �
unit � (execution

core, memory unit, etc.) and � INT � schedulers order the
data transactions at the corresponding interconnect interface,� INT � (please refer to [5] for a detailed description). These
entities are described at the needed complexity to achieve
cycle-level accuracy for interconnect events. A sample system
is shown in Fig. 3(b).

SoCNet is closely coupled to a HCEM/ACEM through
event-triggers(the ET entity). The ETs in the computa-
tion nodes pass triggers ( � task start � , �

task resume � )
from HCEM/ACEM to the execution cores. When these
tasks generate interconnect transactions, a �

context switch �
feedback-trigger is passed on to the HCEM/ACEM through
the ET. Also when interconnect transactions are satisfied,
a �

transaction complete � feedback is passed on to the
HCEM/ACEM. The interconnect events are simulated at cycle-
level accuracy whereas that of task execution can be controlled
by the user to achieve accuracy (HCEM) or speed and flexi-
bility (ACEM). These are described in the following sections.

C. SoCTraceGen: High-Level Trace Generator

The goal of employing ACEM is to speedup design space
exploration through 1) abstraction of computation complex-
ity into events and 2) concurrency extraction to reduce

(a) Instrumented 
Application code

...
exec event : 10 units

exec event : 15 units
...

data event  : 10 B, read

(b) high-level trace
timer_start

timer_stop

timer_start

timer_stop

data_access

extra code

a = a + b;

b = data [ i ];

a = a + b;

...

...

"tracked data"
(from UDGF)

computation
event

data-acess
event

Fig. 4. Transformation of trace

application-to-system mapping complexity. SoCTraceGen ac-
complishes these tasks with the help of UDGF through the
following phases:

High-level trace generation : The UDGF contains infor-
mation regarding shared data elements among tasks as well
as those that might generate interconnect transactions under a
mapping (these data elements might be mapped to non-local
storage structures). Based on this information, the application
code is manually instrumented as shown in Fig. 4 and executed
on a host machine. Computation between accesses to the
“tracked” data, ���� , is abstracted along with the details of the
data access into a high-level trace.

Concurrency extraction : To support rapid exploration of
system configurations, application space (C/C++ code descrip-
tion) has to be separated from system space so that a code
re-write is not necessary for changes in mapping (T

�
C, D�

M) or components (number of cores, memory units, etc).
This separation is achieved by extracting concurrency from the
application.

Concurrencies among the tasks are determined by
� �� /control dependencies. Tasks are annotated with multiple
suspend/resume points similar to context-switch points in a
process in a multi-tasking environment. These points cor-
respond to function calls/returns/non-local ���� accesses. We
refer to segments of code between suspend/resume points
as task segments. Extracting temporal concurrency involves
identifying the instances of task segments (belonging to dif-
ferent tasks) that can be executed concurrently if allowed
by a mapping. This bears similarities with what is done in
parallel compilers or extracting data/control flow graphs from
sequential code. The difference is that the extraction is carried
out on an execution trace rather than on a high-level code.(we
skip the details due to the page limit)

As can be guessed from the above description, there can
be several factors that might contribute to an error in the
input trace to SoCNet which are discussed in later sections.
As such, the SoCExplore framework also incorporates a lower
abstraction level approach, which is described next.

D. SoCArchSim: Micro-architectural System Simulation
SoCArchSim (Fig. 2(c)) is a multiprocessor micro-

architectural simulator that interacts with SoCNet. It can be
used in later stages for design refinement and can also provide
a reference for evaluating ACEM based approaches. It consists
of a set of cycle-accurate architecture simulators( [12]) that are
hooked up to SoCNet to generate event-triggers. Simulation
proceeds similar to the case when high-level traces are used,
except that computation events are now cycle-accurate. Unlike
the SoCTraceGen approach, no extra code is embedded into
the application. Instruction and data addresses are monitored
as they are put on the address bus of the architecture simulator
and appropriate events are generated when “tracked” tasks
or data are accessed. Thus computation and data access
abstractions are accurate.

III. ERROR ANALYSIS

In this section we discuss various sources of errors in
SoCExplore and their bounds (if any). An “error” in this
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context means the following: the deviation between the output
of SoCTraceSim (referred to as trace-based behavior) and of
SoCArchSim (referred to as “true” behavior).

A. Error Sources

We categorize errors of trace-based behavior into two types:
a) Input-trace error : The input trace is an abstraction of
computation events and data transactions on the interconnect,
generated from a particular input-data set. There can be errors
in both types of events if the architectures of the target
core (in SoCNet) and that of the host (where the trace is
generated) do not match. An error in computation events is due
to factors such as in-order/out-of-order execution, instruction
fetch/issue bandwidths, cache sizes and hierarchy. An error in
data transactions is typically due to the size of store-forward
queues and speculative fetches. The former hides certain
transactions from coming out onto the interconnect while the
later might result in extra transactions. Instrumentation code
might further disturb normal execution and add to the error.
Input-data variations also induce input-trace error. Please refer
to [5] for detailed experimental data on the above issues. We
denote the input-trace error as � ������� ���
	�� � � ����  ��� , where� �
	�� � and � ��  � can be defined at different complexities such
as per-event, per-task-instance, etc.
b) Simulation error : This error occurs during the simula-
tion process of SoCNet due to execution order perturbation.
Error in abstraction of computation events can perturb the
release/propagation of interconnect events. This in turn per-
turbs the choice/release of the next computation event to be
scheduled on the execution cores. We denote this error as� 	 �  . The error due to the concurrency extraction phase of
SoCTraceGen can be minimized with a well-defined UDGF.

A framework is useful only if error bounds can be defined
and are non-trivial (maximum or minimum possible activity).
In the following, we investigate the impact of a given � ��� , and��	 �  on the output data.

B. Impact of Trace Error and Interconnect Access Models

Here we examine the two components of � ��� : ���
	�� � and� ��  � , respectively. The error � �
	�� � impacts the timing data
of a computation event in the trace, which in turn impacts the
timing data of the output. Since we have isolated the effect of
errors in timing data on the execution order as a simulation
error; we only need to focus on how � �
	�� � impacts the total
execution latency of the system. In the worst case, ���
	�� � for
each computation event on each core is accumulated (which
is similar to the effect observed in a system with a single
execution core).

The effect of ����  � is more complex. Each data transaction
generates certain interconnect events based on the access
model of the interconnect. An error in a data transaction causes
additional or reduced number of interconnect events. If we can
bound the interconnect events generated per data transaction
by � � , the total error in interconnect events due to � ��  � is
bounded by ����  ����� � . The error bound in system latency due
to � ��  � can be determined similarly.

As to whether � � exists or not in the first place, depends
on the interconnect access model. Consider a system where
all components on a bus have limited receive buffers (rxbuf).
Consider the following access models:
AM1: When the rxbuf at the destination is full, the source
attempts to query the receiver continuously till the transaction
is resumed.
AM2: The state of the rxbuf at each component is maintained
at every other component and a source transmits only when
acceptable by the receiver.

Now consider a transaction where a core writes a large
data packet to memory which requires several interconnect
transfers. If the core and the memory are on a single bus,
AM1 and AM2 result in a fixed number of interconnect
events with AM1 generating extra query-events. Now consider
a more complex case where this transaction has to travel
through multiple buses with buffers at each router along the
path. Assume that all buffers are full and are waiting for the
memory to complete a write cycle. The query-transactions
will show a domino effect and hence each data transaction
can be expected to generate maximum workload. � ��  � can be
magnified “infinitely” under model AM1 in such transactions.
However, consider AM2 which does not have any redundant
query transactions. Here the activity is bounded per data
transaction and hence a non-trivial error bound does exist.

C. Impact of Execution-Order Error and Observation Points
The execution-order error, ��	 �  , which is induced by the

input-trace error, does not affect the total system latency
or the total interconnect activity since it does not alter the
total number of transactions (under access models like AM2
in the previous section). However, its effect becomes non-
negligible if the designer wishes to observe the instantaneous
interconnect/system state. As such, trace-based simulation
results would not provide reliable information except at the
end of simulation.

The reason why a (high-level) trace-based simulation cannot
bound the error at instants other than the end of simulation is
due to the absence of “synchronization” information which
would otherwise establish a deterministic state in a “true”
system (a system architecture simulator such as SoCArchSim)
at a certain instant. This limitation can be relaxed for many
applications where one can actually define some intermediate
synchronization points. Consider a system that receives input
data frames at a periodic rate and has a hard deadline for
processing these frames, i.e., the system has to process a
data frame before the next one arrives. Let the arrival of a
frame be indicated by an interrupt. This system inherently
has a deterministic state, (i.e.“system idle”), at the instant
before the interrupt occurs. In such a context, traced-based
simulation is capable of providing instantaneous interconnect
state at instants when the interrupt occurs. In the general case,
assume that � applications with input data frame rates, � �
for � � 	 ��� � ����� � � , are executed on a system. There exists a
point �! #"%$ �'& � 
 � � �
� � � � ����� � �!(!� , where LCM is the
least common multiple, at which instant all applications have
completed processing and the system is at an instantaneous
“idle-state”. Trace-based simulation can provide reliable in-
formation about the total activity during the last �) #"%$ with
well-defined error bounds which can be computed as described
in [5]. We illustrate the above developed concepts with a case
study in the next section.

IV. CASE STUDY FOR THE MPEG APPLICATION

The case study for the MPEG application( [10]) is summa-
rized in Fig. 5. Six tasks and twelve data variables are used
in the UDGF for a sample system consisting of five execu-
tion cores and four memory units. The different interconnect
topologies considered are as shown. Multiple (three in our
case) copies of MPEG are taken as the base application since
this might be typical of future SoCs.

To illustrate the flexibility and speedup of SoCNet in the
case of load balancing in a system, we present the following:
Tab. I illustrates how the load on different components can be
balanced by using different mappings. It presents the utiliza-
tion of each component in Config. 5 (Fig. 5). Concentrating
on the results from SoCTraceSim, it can be seen that M2 has
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TABLE I
LOAD BALANCING AND ACCURACY RESULTS USING SOCEXPLORE FOR CONFIG. 5 (REF. FIG. 5)

Mapping Framework Total Core Utilization Memory Utilization Bus Utilization
Cycles c0 c1 c2 c3 c4 m1 m2 m3 m4 b0 b1 b2 b3 b4 b5

Map 1 SoCTraceSim 28,497,339 0.22 0.33 0.39 0.19 0.12 0.00 0.00 0.50 0.07 0.25 0.07 0.16 0.42 0.07 0.15
SoCArchSim 26,679,673 0.15 0.21 0.25 0.15 0.13 0.0 0.00 0.49 0.06 0.25 0.08 0.16 0.43 0.06 0.14

Map 2 SoCTraceSim 23,780,310 0.34 0.15 0.34 0.15 0.49 0.20 0.23 0.22 0.03 0.20 0.28 0.12 0.23 0.23 0.25
SoCArchSim 21,686,957 0.23 0.13 0.23 0.13 0.37 0.18 0.21 0.21 0.03 0.20 0.29 0.12 0.23 0.23 0.27

Case Study : MPEG 
1. 6 functions
2. 12 data variables

Partition Configurations :
1. M1: random mapping of 3 copies
3. M2: fair mapping of 3 copies of MPEG

Interconnect Configurations :

corememory arbiter routerbridgebus

Config 3Config 2

Config 4 Config 5Config 1

0

b0

b1

1 1b2

2

2
3

b3

4
b5

43

b4

01234

1234

b0
b2

b1

Fig. 5. Design space exploration for MPEG
TABLE II

PERFORMANCE OF DIFFERENT FRAMEWORKS

Framework Phases Time Total Time
(1st run) (for 20 configs)

SoCTraceSim Trace Generation 7 min
Concurrency Extraction � 1 min
SoCNet 3 min 68 min.
Total (for initial run) 11 min (94% speedup)

SoCArchSim for each configuration 52 min 1040 min.

spread the core/memory and bus utilization more evenly (e.g.,
highlighted values in Tab. I). (We omit detailed results on a
per-component basis such as temporal behavior, etc., for lack
of space). Consider the computation expense involved in trace-
based and architectural simulation as shown in Tab. II. A 94%
speedup is achieved using SoCTraceSim. The obtained speed-
up comes at a slight loss of accuracy as noticed from the
results of SoCArchSim shown in Tab. I. The errors are due to
the many factors as explained in Sec. III.

As a detailed example, refer to Fig. 6 which depicts the bus
activity (total clocks for which the bus was active) for bus 1
in Config. 5 in Fig. 5. It can be seen that the errors are quite
small. However one may not trust these results unless error
bounds are established. Using the equations developed in [5],
the calculated error bounds are presented in Fig. 6.

Note that the upper bound has a linear rise corresponding
to maximum possible activity and then flattens out once it
reaches the maximum. The previous analysis was for a run
where each MPEG application processed 5 frames of data. As
can be seen, the reliability of the framework is best at the end
of the simulation, i.e, parameters like total energy and run-
time can be specified more accurately at end-point of the run,
but not at other instants (greater error).

As described in Sec. III-C, synchronization points, however,
increase the reliability of the results from the framework.
Fig. 7 illustrates the significance of synchronization points.
The system is the same as before with 3 copies of MPEG
application. Only now, frames are delivered to the system
at particular points (after the previous frames finish) and an
interrupt is generated. The error bounds at the end of the
frame and during a frame are presented. Note the increase
in reliability through the application run. Also note that the
bounds diverge as the number of frames increase. This is due
to the cumulative effect of the error from previous frames.

As a conclusion, it can be seen that error analysis for trace-
based communication-centric exploration frameworks such as
SoCExplore is non-trivial. However the speedup (over 94%)
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and flexibility (multiple mappings, one-time trace generation)
offered by SoCExplore cannot be ignored. Presently we are
concentrating our efforts on fine-tuning techniques to establish
more accurate bounds on trace-based simulation results which
will ultimately add to the value of SoCExplore.
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