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1 Introduction

The problem of turbulent uid ow remains the outstand-
ing unsolved problem of classical physics. Motivated by
the fact that turbulence is the rule rather than excep-
tion in ows of technological importance, there has been
extensive theoretical and experimental work to explain
the underlying physical processes. Osborne Reynolds [1]
was the �rst who in 1894 recognized the importance of
studying turbulent ows and introduced the idea of de-
composing the velocity into time mean and uctuating
components. The so-called Reynolds-averaged Navier-
Stokes equation has traditionally been the starting point
for many investigations.

Contrasting the idea that the turbulence is completely
random, numerous experiments over the last decades have
shown the existence of large-scale quasi-organized vorti-
cal structures in a variety of free and wall bounded turbu-
lent ows. These so-called coherent structures (CS) ap-
pear to be dynamically important and play a key role in
determining the macrocharacteristics of the ow such as
mass, momentum energy and heat transports, entraining
combustion, chemical reactions, drag and aerodynamic
noise generation. Theodorsen [2] and Townsend [3] dis-
cussed an existence of organized motion (eddies) in tur-
bulent shear layers. A variety of visualization techniques
were applied in order to �nd and investigate a large-scale
structures in ows. One of the �rst visualizations were
done by Brown & Roshko [4]. They investigated a plane
turbulent mixing layer using two gases with di�erent re-
fraction properties. Shadowgraphs have reveled a well-
'organized' almost two-dimensional vortex-like coherent
structures, convecting at nearly constant speed. Those
structures were similar to the instability structures in a
laminar shear layer, but have attributes typically associ-
ated with turbulent ow: 'randomness' and broad energy
spectrum. Large-scale structures were found not changed
by changes in Re number, it a�ects only in producing
�ne-scale turbulence, superimposed on the structures. A
pairing process was suggested as a mechanism of creat-
ing the CS. Similar observations were made by Winant
& Drowand [5] using dyes in water tunnel in the initial

vortex layer at moderate Re numbers.

The importance of coherent structures in terms of their
characteristics and dynamical roles was and still is un-
der a serious discussion. Cantwell [18] in 1981 reviewed
a research of organized motion in di�erent types of tur-
bulent ows, discussed possible ways like discrete vortex
dynamics and large eddy simulation to investigate dy-
namics of coherent structures, their applications in tran-
sition and control of mixing. Hussain [35], [38], [34] have
introduced a de�nition of coherent structure as a con-
nected turbulent uid mass with instantaneously phase-
correlated vorticity over its spatial extent and emphasized
vorticity as a characteristic measure of CS. He proposed a
triple-decomposition of the ow into a mean ow, CS and
incoherent turbulence, discussed a possible origins of CS,
their time evolution as a strange attractor in phase space,
called for importance of dynamics, profound practical sig-
ni�cance, understanding of turbulent measurements and
control.

In order to qualitatively describe these structures, a
several experimental techniques were developed to extract
CS. Conditional sampling techniques (Kaplan [6], Anto-
nia [10] ) use a conditional criterion in order to investigate
structures. A linear-stochastic estimation (LSE) ( Adrian
[11] ) uses 2-point second-order correlation functions in
terms of conditional ow patterns, other techniques like
VITA technique [29] were used to investigate a spatial
shape of CS.

The disadvantage of all conditional techniques is the
dependence on a conditional criteria. The �rst rigorous
theoretical approach to investigating coherent structures
was developed by John Lumley [13],[14] and is termed the
Proper Orthogonal Decomposition (POD). This uncondi-
tional technique uses a second-order statistics in order
to extract organized large-scale structures from turbulent
ows. The mathematical basic of POD is a Karhunen-
Lo�eve expansion ( Karhunen [16], Lo�eve [17] )

In 80's a new technique of extracting CS - wavelet
transformation ([4]) was developed. This technique uti-
lizes so-called localized waveforms, which possess local
properties in both Fourier and physical spaces and ap-
pears as a generalization of Fourier transformation. It
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provides a local information about spectrum, scales and
positions of events in ows. Because this technique does
not require a priori any information about structures, now
it is widely used in analysis of intermittent events and
structures in turbulent ows.
Below three major techniques, POD, LSE and Wavelet

Transformation will be discussed. Brief theories, as well
as application to aerodynamical problems are provided.
Also VITA, WAG and Windowed Fourier transformation
techniques are briey mentioned.

2



2 Proper Orthogonal Decomposi-
tion (POD)

2.1 Theory and Properties

The body of POD technique is Karhunen-Lo�eve (KL) de-
composition. The idea is to describe a given statistical
ensemble with the minimum number of modes. Let u(t)
be a random generalized process with t as a parameter
(spatial or temporal). We would like to �nd a determin-
istic function �(t) with a structure typical of the members
of the ensemble in some sense. In other words, a func-
tional in the following form needs to be maximized :

(R(t; t0); �(t)��(t0))=(�(t); �(t)) = � � 0 (1)

where R(t; t0) = Efu(t)�u(t0)g is the autocorrelation func-
tion of u(t) and u(t0), Eff(u)g is the average or expected
value of f(u), (�; �) is a scalar product and the asterisk
denotes a complex conjugate. The classical methods of
the calculus of variations gives the �nal result for �, if
R(t; t0) is an integrable functionZ

R(t; t0)��(t0)dt0 = ��(t) (2)

The solution of (2) forms a complete set of a square-
integrable orthogonal functions �n(t) with associated
eigenvalues �n. It was shown that any ensemble of ran-
dom generalized functions can be represented by a series
of orthonormal functions with random coe�cients, the
coe�cients being uncorrelated with one another:

u =

1X
n=1

an�n ; Efanamg = �nm�m (3)

These functions are the eigenfunctions of the autocorre-
lation with positive eigenvalues. The eigenvalues are the
energy of the various eigenfunctions (modes). Moreover,
since the modes were determined by maximizing � (the
energy of a mode), the series (3) converges as rapidly as
possible. This means that it gives rise to an optimal set
of basis functions from all possible sets.
If the averaging is performed in time domain, then

u(t;x) (here t is a time parameter) can be represented
as follows:

u(t;x) =

1X
n=1

an(t)�n(x); (4)

where a's are temporal coe�cients and �'s are the spatial
eigenfunctions or modes.
The transformation (2)-(3) is POD transformation.
Because of discretization of experimental data, a vec-

tor form of POD is widely used. In this case u becomes
an ensemble of �nite-dimensional vectors, the correlation

function R is a correlation matrix and the eigenfunctions
are called eigenvectors.

On practical grounds, (3) (or(4)) usually is represented
only in terms of a �nite set of functions,

u � uL =

LX
l=1

al�l (5)

Briey, some important properties of POD:

1. The generalized coordinate system de�ned by the
eigenfunctions of the correlation matrix is optimal in
the sense that the mean-square error resulting from
a �nite representation of the process is minimized.
That is for any �xed L:

RL =

Z T

0

[u(t)�
LX

n=1

an�n(t)]
2dt! min (6)

i� �n(t) are KL eigenfunctions of (2).

2. The random variables appearing in an expansion of
the kind given by the equation (3) are orthonormal
if and only if the orthonormal functions and the con-
stants are respectively the eigenfunctions and the
eigenvalues of the correlation matrix.

3. In addition to the mean-square error minimizing
property, the POD has some additional desirable
properties. Of these, the minimum representation
entropy property and satisfaction of the continuity
equations are worth mentioning.

4. Algazi and Sakrison [43] showed that Karhunen-
Lo�eve expansion is optimal not only in terms of mini-
mizing mean-square error between the signal and it's
truncated representation (Property 1), but also min-
imizes a number of modes to describe the signal for
a given error.

5. For homogeneous directions POD modes are Fourier
modes [14].

In the case of large number of elements in second-
order correlation tensor the direct method of �nding the
eigenfunctions becomes practically impossible. Sirovich
[36] pointed out that the temporal correlation matrix
will yield the same dominant spatial modes, while of-
ten giving rise to a much smaller and computation-
ally more tractable eigenproblem - the method of snap-
shots. Mathematically, for a process u(t; x) instead of
�nding a spatial two-point correlation matrix Rij =

1=M
PM

m=1[u(xi; tm)u(xj ; tm)], where N is a number of
spatial points and solving (2) (N � N -matrix), one can
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compute a temporal correlationM�M -matrix Amn over
spatial averaging,

Amn =
1

M

Z
V

u(x; tm)u(x; tn)dx; (7)

where M is number of temporal snapshots and calculate
�i(x) from um(x) = u(tm; x) series as

�i(x) =

MX
n=1

bm;ium(x) (8)

where bm;i's are the solutions of the equation Ab = �b.
UsuallyM � N and the computational cost of �nding �'s
can be reduced dramatically. The method of snapshots
also overcomes the di�culties associated with the large
data sets that accompany more than one dimension.
The optimality of POD reduces the amount of informa-

tion required to represent statistically dependent data to
a minimum. This crucial feature explains the wide usage
of POD, also known as Karhunen-Lo�eve expansion in a
process of analyzing data.
In [50] the limitations of POD with temporal averaging

were discussed. It was shown that in this case the analy-
sis uses only information that is close to a particular �nal
state of the system and thus cannot be used for the sys-
tem which has a several �nal states. Also it was pointed
out that the analysis de-emphasizes infrequent events, al-
though they could be dynamically very important (burst-
like events in a turbulent boundary layer). Alternative av-
eraging techniques were proposed and shown to be more
informative in terms of investigating the system dynam-
ics. Delville [64] pointed out that POD technique can be
treated as generalization of Fourier transform in inhomo-
geneous direction.
The Proper Orthogonal Decomposition was proposed

by Lumley, 1967, [13]. The mathematical background
behind POD is essentially Karhunen-Lo�eve procedure
Karhunen [16] (1946), Lo�eve [17] (1955). But the
method itself is known under a variety of names in dif-
ferent �elds: Principal Component or Hotelling Analy-
sis (Hotelling, 1953, [45]), Empirical Component Analy-
sis (Lorenz, 1956, [44]), Quasiharmonic Modes (Brooks
el at., 1988, [46]), Singular Value Decomposition (Golub
and Van Loan, 1983, [47]), Empirical Eigenfunction De-
composition (Sirovich, 1987, [36]) and others. Closely
related to this technique is factor analysis, which is used
in psychology and economics (Harman, 1960, [48]).
From the mathematical point of view POD or KL ex-

pansion (2) is nothing else but a transformation which
diagonalizes a given matrixR and brings it to a canonical
form R=ULV, where L is a diagonal matrix. Therefore
the roots of KL actually go into the middle of the last
century. A review of the early history of KL expansion
can be found in [51]. The mathematical content of KL

procedure is therefore classical and is contained in paper
by Schmidt [49] (1907).

In homogeneous directions POD reduces to Fourier-
Stiltjes integral and gives Fourier modes in CS expan-
sion. These function are not well-suited to describe com-
pact CS. Lumley [23] proposed a noise-shot method to
reconstruct CS in these homogeneous direction. Recently
Berkooz et al. [39] have proposed a usage of wavelets on
homogeneous directions.

Because of the large amount of computations required
to �nd the eigenvectors, POD technique was virtually un-
used until the middle of the century. Radical changes
came with the appearance of powerful computers and de-
velopment of e�cient algorithms to compute the eigen-
functions (method of snapshots, [36]). Now POD (KL
expansion) is used extensively in the �elds of detection,
estimation, pattern recognition, and image processing as
an e�cient tool to store random processes, in system
controls. Proper Orthogonal Decomposition is used in
connection with stochastic turbulence problems (Lumley,
1967, [13]). In that context, the associated eigenfunc-
tions can be identi�ed with the characteristic eddies of
the turbulence �eld [12]. A really good review of POD
application in turbulence can be found in [15]. Brief the-
ory of POD, as well as other techniques of extracting CS
are presented.

2.2 Application to turbulent ows

POD extracts a complete set of orthogonal modes by
maximizing the energy of the modes. Any member of
statistical ensemble can be expanded on this set, and
this series converges as fast as possible. Also POD gives
the eigenvalues, corresponding to the kinetic energy of
each mode. But the serious requirements to experimen-
tal equipment like an availability of big data storage and
automated computer-controlled experiments to obtain a
detailed second-order statistics from the ow have de-
layed the wide application of POD basically until the last
decade of the century.

Historically the �rst attempts were applied to turbulent
boundary layers. One of the reasons to look at the bound-
ary layer was an existence of a strong peak of a produc-
tion of turbulent energy on the outer edge of the viscous
sublayer. Kline et al. [37] were �rst to observe stream-
wise vortex pairs in the boundary layer near the wall and
bursting events associated with them. Bakewell et al.[22]
using experimentally obtained 2-point correlation matrix,
have sketched dominant structures within the wall region
consisting of randomly distributed counter-rotating eddy
pairs elongated in streamwise direction. They showed
that the sublayer and the adjacent wall region play an ac-
tive role in the generation and preservation of a turbulent
shear ow. Nonlinear mechanism of vortex stretching sug-
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gests that linearized theories cannot provide an adequate
description of the viscous sublayer. Later these structures
were identi�ed with burst-like events in the boundary
layer. Cantwell [18] provided a detailed discussion of the
research of turbulent boundary layer. Aubry et al. [19]
were able to model a turbulent boundary layer by expand-
ing the instantaneous �led in experimentally founded as a
streamwise rolls eigenfunctions. By truncation of the se-
ries a low-dimensional system was obtained from Navier-
Stokes equation via Galerkin procedure. This model rep-
resented the dynamical behavior of the rolls and was an-
alyzed by methods of dynamical systems theory. The
model captured major aspects of the ejection and burst-
ing events associated with streamwise vortex pairs. This
paper appeared to be the �rst to provide a reasonably
coherent link between low-dimensional chaotic dynamics
and realistic turbulent open ow system. Spatio-temporal
three-dimensional structures in a numerically simulated
transitional boundary layer (Re�2 = 283) was examined
by Rempfer & Fasel [65] using POD. �-shaped vortices
were found to be the most energetic modes in the ow.
They correspond to physically observed structures and
resemble bursting events in fully turbulent boundary lay-
ers. POD modes was argued to correspond to physically
existing structures, when the most energy is collected in
a �rst mode.

Bounded Flows

Because of the experimental di�culties in obtaining
second-order statistics from the ow, a number of compu-
tational simulation results were used to apply POD tech-
nique to. Moin & Moser [21] made direct numerical simu-
lations of N-S equations in turbulent channel for 128 x 129
x 128 grid points and Re=3200. The shot-noise expan-
sion proposed by Lumley [23] was used to �nd the spatial
shape of the CS. A dominant eddy was found to keep 76%
of the turbulent kinetic energy. Similar computational re-
search was done by Ball et al. [20] for 24 x 32 x 12 grid
points, Re=1500. Snapshot technique (Sirovich [36]) was
applied in order to extract the modes. The eigenfunctions
were found as rolls ( the most energetic mode ) or shearing
motions. First 10 modes captured 50% of the turbulent
energy. Dynamical behavior of structures was discussed.
Rolls provide the mechanism for the transport in channel
ows like turbulent 'bursts', while shearing modes were
suggested to relate to the instabilities in the ow. Gavri-
dakis [61] used results of numerical simulation through a
square duct with Re = 4800 to get the correlation matrix.
Two di�erent structures were found after applying POD.

Sirovich & Park [25] performed numerical simulations
of Rayleigh-Benard convection in a �nite box for 17 x
17 x 17 grid points. POD technique, snapshot method
and group symmetry considerations were applied to in-
vestigate CS. 10 classes of eigenfunction were discovered,
�rst eigenmode being captured 60% of the energy (Howes

et al [26]). Numerically simulated ow in a square duct
(Re = 4800, grid 767 x 127 x 127) was analyzed by POD
in [61]. Two di�erent structures were found near 'wall
domain' and 'corner domain'. Near wall it was a pair
of high and low-speed streaks with the �rst POD mode
seizing 28% of energy. In the corner domain a vortex pair
with common ow toward the corner with 43% of the to-
tal energy was discovered. It was found that the energy
in this region goes from the turbulence back to the mean
ow. The ow in duct was found to have a greater degree
of organization.

Turbulent jets and shear ows

Payne & Lumley [12] used experimentally obtained 2-
point diagonal correlation tensor to extract CS in the
turbulent wake behind a circular cylinder. O�-diagonal
elements were found from a mixing layer assumptions.
Glauser et al. [31] investigated a large-scale vortex ring-
like structure in the mixing layer in axisymmetric jet (
Re � 110; 000) at x=D = 3 by POD and shot-noise de-
composition. First 3 mode were found to contain almost
all energy of the ow. Kirby et al. [32] used a snap-
shot method for 2-dimensional large-eddy simulation of
axisymmetric compressible jet ow on 240 x 80 point
grid for Re � O(104). They found �rst 10 modes, which
hold 94% energy. A similar approach was used by Kirby
et al. [33] to investigate a simulated supersonic shear
ow. Sirovich et al. [24] applied POD to the analysis
of digitally imaged 2-dimensional gas concentration �elds
from the transitional region of axisymmetric jet. Here
POD was proposed basically as a methodology for analyz-
ing and treating large experimental and numerical data.
Ishikawa et al [59] applied POD and wavelet technique
to investigate coherent structures in a turbulent mixing
layer. POD procedure revealed the �rst mode to be the
most energetic one, while wavelet transform found low-
frequency modulation of vorticity in this mode. Hilberg
et al [63] investigated large-scale structures existed in a
mixing layer in a narrow channel using a rake of probes.
They applied both classical and snapshot POD techniques
and were able to identify the largest 2-dimensional mode.
Snapshot POD for a conditionally averaged velocity �eld
showed that �rst two modes contain the largest portion
of coherent vorticity. Delville [64] also considered plane
shear layer to apply POD. Two rakes of hot-wire probes
were used to extract correlation matrix from the ow.
Vectorial version of POD was found to give a better pre-
sentation of structures in the ow. Di�erent aspects and
problems applying POD procedure were also discussed.
An axisymmetric jet was investigated in [53]. PODmodes
for near-�eld pressure in inhomogeneous streamwise di-
rection were obtained for a �rst time and observed as
growing, saturating and decaying waves. Phase velocity
for a �rst few modes near saturation point were found
to be the same Up = 0:58Uj. Characteristic structure
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was reconstructed using the shot-e�ect decomposition. It
was observed that vortex pairings do not happen peri-
odically and vortex tripling occur quite often. Citriniti
[66] applied POD to a mixing layer in fully turbulent
(Re = 80; 000) axisymmetric jet. 138 hot wires were
used to obtain the correlation data. POD modes were
projected into instantaneous velocity �eld and a tempo-
ral dynamics of the temporal coe�cients and their corre-
sponding large-scale structures were investigated. Kopp
et al [60] investigated large-scale structure in far �eld of
a wake behind a cylinder (x=d = 420, Re = 1200). They
used a rake of 8 x-wire probes to get instantaneous ve-
locity �eld in cross-stream and spanwise directions. They
applied POD technique to extract �rst modes and used
�rst two of them as a template for Pattern Recognition
(PR) technique. The structures found via PR and POD
were similar and represented negative u-uctuations with
outward v-uctuation in cross-stream direction. In span-
wise direction a double roller structure was discovered. A
ow �eld in lober mixer (enhancing mixing device) was
considered by Ukeiley et al [52]. A rake of the probes
in streamwise direction collected data on the correlation
matrix. First POD modes were projected back to instan-
taneous ow �led to get information about multifractal
nature of the ow.

POD also was in use in order to analyze turbulent-like
mathematical equations. Chambers et al. [27] used the
results of numerical Monte-Carlo simulation of a forced
Burger's equation for di�erent Re numbers. A number
of modes were extracted from the numerical solution.
The large-scale structures were found to be independent
from Re number and exhibit viscous boundary layers near
the walls. Sirovich & Rodriguez [28] examined Ginzburg-
Landau equation in chaotic regime. Complete set of un-
correlated functions was extracted and used as a basis for
the dynamical description of CS in the attractor set. First
3-mode representation was found to simulate the system's
behavior quite good. (Rodriguez & Sirovich [29])

Taylor-Couette ow: Tangborn et al. [30]

POD-based modeling

Minimal number of POD modes make it useful to build
low-order dynamical models for di�erent applications.
Using a truncated number of the POD modes as a ba-
sis and projecting them to Navier-Stokes equations allow
someone to reduce PDE down to a low-order system of
ODE's. The rest of modes are modelled by a dissipative
term. Analysis of the obtained system can shed a light
into a dynamics of the system. Aubry et al. [19] were
able to model a turbulent boundary layer by expanding
the instantaneous �led in experimentally founded as a
streamwise rolls eigenfunctions. The model captured ma-
jor aspects of the ejection and bursting events associated
with streamwise vortex pairs. Aling et al [53] proposed
POD-based technique to construct low-order dynamical

models for rapid thermal systems. Gunes et al [57] ap-
plied POD technique to reconstruct a �rst six modes for
numerical time-dependent transitional free convection in
a vertical channel. A low-order system of ODE's based
on the knowledge of the most energetic modes in the ow,
was able to predict stable oscillations with correct ampli-
tudes and frequencies. Same approach [58] was done to
investigate a dynamics of transitional ow and heat trans-
fer in periodically grooved channel. Ukeiley [67] applied
POD technique in attempt to build a dynamical model of
a turbulent mixing layer. This mode was based on exper-
imental data from two 12-probe rakes placed in the ow.
Two-dimensional spanwise structures along with stream-
wise vortical structures were extract form the ow. The
model predicted correctly statistical distribution of en-
ergy in cross-stream direction.
It was pointed out by Lumley [23], that POD mode or

'characteristic eddy' represents coherent structure only if
it contains a dominant percentage of energy. In other
cases, POD modes do not actually extract shape of CS,
but rather give an optimum basis to decompose the ow.
Poje & Lumley [62] proposed another technique to ob-

tain information about structures in ow. They decom-
posed ow into mean, coherent modes and incoherent
small-scale turbulence and applied energy method anal-
ysis [9] to �nd the most energy containing large-scale
modes. The results compared well the with conventional
POD technique.
Both POD and wavelets were considered as new tools

in analyzing large-scale structures for wind engineering in
[54]. Bienkiewicz et al [55] applied POD decomposition to
analyze pressure forces acting on a roof. For this purpose
494 taps were used to obtain a spatial pressure correlation
matrix.
Karhunen-Lo�eve expansion is in use in pattern recogni-

tion (Ash & Gardner [40], Fukunaga [41]), stochastic pro-
cesses ( Ahmed & Goldstein [42]), meteorology; because
of the optimality of the expansion K-L decomposition is
used in data compaction and reduction.
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3 Linear Stochastic Estimation

3.1 Theory

Conditional sampling techniques are widely used to iden-
tify and describe coherent motions or structures in tur-
bulent ows. They �nd the average value of some ow
characteristics like velocity, pressure,temperature, when
the prescribed event happens at one or several points.
Below the ow characteristics will be noted as u(x; t),
the event data vector ( the given vector of variables with
the associated event occurrence ) - as E, and the condi-
tional average as hu j Ei. A simple example of the event
is a realization in a point (x

0

;t0), in which a ow char-
acteristic lies close to a given vector c with a relatively
small window dc,

E = u(x
0

;t0) when c � u(x
0

;t0) < c+ dc (9)

For this case, the conditional average selects from the en-
semble of all ow realizations the subset in which u(x0; t0)
is close to the prescribed vector c, and extracts a typical
structure of the ow �eld within this subset. Mathemat-
ically it is just a simple condition that assumes nothing
about the underlying structure. During the experiment,
the window should be big enough to produce samples
with reasonable frequency and small enough to resolve
properly the conditional average. In general, the event
can include the conditions on u and any functionals of u
(like the derivatives @ui

@xj
) at one or more locations. Di-

rect experimental conditional average measurements are
limited to a rather simple one-dimensional ows and a
small amount of 'conditions' and becomes extremely time-
consuming and di�cult for full three-dimensional ows
and/or a large number of applied conditions. One of the
common used technique to avoid this experimental prob-
lem and to �nd the conditional average hu j Ei is the
Stochastic Estimation (SE). This method extracts struc-
ture by approximating an average �eld in terms of the
event data at some given locations. In other words, SE
reconstructs a ow �eld, corresponded to the structure by
using a knowledge of the ow at some selected points in
space and/or time. The approximation of u by stochastic
estimation will be denoted by û:

When the elements of u and E are joint normally dis-
tributed, hu j Ei is a linear function of E (Papoulis, [19]),
but in general, hu j Ei is a non-linear function of E. Un-
fortunately, the turbulent events are strongly non-linear
processes, which lead to a non-normal probability distri-
butions. Therefore, hu j Ei is a non-linear function of E
for most ows. Adrian in 1977 [1] introduced a technique
to estimate conditional averages for any arbitrary condi-
tions. He proposed to expand hu j Ei in a Taylor series
about E = 0 as

ûi=hui j Ei =LijEj +NijkEjEk + ::: (10)

(repeated subscripts are summed) and truncate this
series at some degree (Adrian, [1], [2]). The unknown co-
e�cient tensors L;N ... can be determined if someone
requires the mean-square error between the approxima-
tion and the conditional average to be minimal,

h[hui j Ei�LijEj �NijkEjEk � :::]2i ! min

The minimization leads to the orthogonality principle,
which states that the error must be statistically uncor-
related with each of the data (details)

h[hui j Ei�LijEj �NijkEjEk � :::]Eki = 0

The case where the series contains only the �rst or-
der term, simple algebra leads to a set of linear algebraic
equations for the estimation coe�cients Lij

hEjEkiLij = huiEki; (11)

This Stochastic Estimation then is called the Linear
Stochastic Estimation (LSE),

ûi=; linear; estimate; ofhui j Ei = LijEj ; (12)

where Lij = Lij(x;x
0) and x0 is the location of the

event data. Cross correlation tensor hEjEki between each
of the event data and between the data and the quantity
to be estimated huiEki must be obtained by indepen-
dent means (Adrian, [1]). If u = u(x;t) is the velocity
�eld and the event data consists of velocity vectors E =
u0 = u(x0; t0) at the location x0, then hEjEki = hujuki
is the Reynolds stress tensor and huiEki = huiu0ki =
Rik(x;x

0; t; t0) is the two-point, second-order, space-time
velocity correlation. Thus, knowledge of Rik gives the
ability to approximate any conditional averaged quanti-
ties. Note, that Rik is the unconditionally sampled tensor.
Thus, LSE o�ers a powerful tool of reconstructing condi-
tional averaged estimates based on the information from
the unconditionally sampled two-point correlation tensor.
In general, conditional sampling involves di�erent

types of events like single-point vectors, two-point vec-
tors, local deformation tensors, multi-point vectors,
space-time vectors, space-wavenumber events and so on.
In this case the correlation tensor must include all possi-
ble cross-correlated values.
Several Advantages of the LSE technique are:
1. It requires only unconditional correlation functions,

which is much easier to measure experimentally.
2. Once the estimation coe�cients have been com-

puted, they are independent of the conditional event data.
Estimates for a number of di�erent events could be easily
evaluated.

10



3. The tensor information contained in the correlation
functions is presented in the form of simple scalar or vec-
tor �elds, which are more appropriate for an analysis.
4.It can be proved that the estimated �elds satisfy the

continuity equation, and they possess the correct length
and/or time scales.
5. The procedure is applicable to all turbulent ows
Thus, the linear stochastic estimation exploits a

second-order correlation functions between the given
event data and the ow �eld at some selected points. This
procedure establishes a simple link between conditional
averages, the coherent structure that they may represent,
and correlation functions.
One of the shortcomings of LSE is that the structure

of the estimated ow pattern is independent of the mag-
nitude of u(x0; t0) (see (11)). It might be argued from
the physical grounds that the ow structures obtained
through LSE are associated with weak uctuations only
and for the case of strong uctuations they may be dif-
ferent.
LSE, as well as POD, uses the cross-correlation ten-

sor R to extract structures from the ow. The connec-
tion between LSE and POD is straightforward to �nd
([5]). Recall, that POD decomposes the ow into an in-
�nite number of orthogonal modes �n(x; t), for them to
be found from the integral equationZ Z

R(x0;x;t0; t)�n(x
0

; t0)dx
0

dt0 = �n�n(x; t)

The eigenmodes are used to decompose the ow �eld
as

u(x; t) =
X

an�n(x; t); (13)

The cross-correlation tensor itself can be presented in
terms of the orthogonal functions as

R(x0;x;t0; t) =
X

�n�n(x
0

; t0)�n(x; t); (14)

Using(11), (13) and (14), the equation (12) can be
rewritten as

u(x0; t0) = u(x; t)
X

�n(x; t)f (x
0; t) (15)

where f(x0; t) = �n�n(x
0; t)=

P
�n�

2
n(x

0

; t0) can be
viewed as relative contribution or weight of each mode,
�n(x; t), to the conditional average. Therefore, LSE can
be treated as a weighted sum of an in�nite number of
POD modes. From here another potential weakness of
LSE comes. LSE gives the representation of the coher-
ent structures, associated with conditional estimates in
terms of one single ow pattern only. It could lead to
physically wrong conclusions when two or more distinc-
tive structures exist in the ow. On the contrary, POD
considered all the orthogonal modes.

The ow �elds obtained from the type of conditional
averages were referred by Adrian [2] to as 'conditional
ow patterns', or, more briey, 'conditional eddies' in
an e�ort to distinguish them clearly from physical coher-
ent structures and characteristic modes �n(x; t) obtained
from POD technique.

3.2 Application of LSE and SE in turbu-
lent ows

The validity and accuracy of the approximation of con-
ditional averages of turbulent ows by LSE method have
been investigated by numerous studies. First in 1979,
Adrian [2] investigated the existence of structures in
isotropic turbulence. The accuracy of LSE was evalu-
ated by adding the quadratic term into (10). The results
of LSE and second-order SE were found almost identical.
The estimate predicted conditional eddies in the shape of
large-scale vortex rings. Physical interpretation of these
rings was discussed.

In [3] the validity and accuracy of LSE was investigated
in details by comparing stochastic estimates to direct ex-
perimental conditional averages (9) measured in four dif-
ferent turbulent ows:

a) Axisymmetric shear layer with ReD = 390; 000. The
conditional average hu1(x; t+ �) j u1(x; t)i was measured
on the centerline of the shear layer at x=D = 2 and 3.
According to LSE, the coe�cient L11(�) = R11(�)=�

2
1

(�21 should be independent of the value of the conditional
event. This LSE prediction was veri�ed for several di�er-
ent values of u1(x; t). Systematic di�erences was discov-
ered for small values of � , which questioned the accuracy
of the linear estimates for small scales.

b) Plane shear layer (Re�! = �U1�!=� = 45; 000).
The linear estimate of hu1(x; t+ �) j u1(x; t); u2(x; t)i for
the case of two conditional components of velocity at x
became

û(x+ r; t) = Li1u1(x; t) + Li2(x; t)u2(x; t); i = 1; 2

Measurements of the conditional averages of u1 and
u2 were compared to their linear estimates for the case
u1 = 1:0�1 and u2 = �1:0�2 (�1;2 are RMS's of u1;2
respectively). The linear estimate represented the large
scale structure of the conditional averages with accuracy
within the limits of measurement uncertainty.

c) Turbulent pipe ow (Re = 50; 000). The quantity
hui(x; t + �) j u(x; t)i was measured experimentally and
calculated by SE. Two velocity components were mea-
sured by X-�lm probes. The accuracy of LSE was eval-
uated by including the nonlinear terms in the stochastic
estimation

ûi(x; t+ �)=Lij(x; �)uj(x; t) +Nijk(x; �)uj(x; t)uk(x; t)
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Also the conditional average hui(x+ r; t) j u(x; t)i was
measured using the two X probes. Again, the nonlin-
ear estimate including a second-order term was found. In
both cases, LSE estimates matched the experimental con-
ditional averages really well. Second-order SE indicated
relatively little improvement in accuracy versus the LSE,.

d) Grid turbulence with Reynolds number of 57,000
based on the free-stream velocity and the mesh spac-
ing. The conditional average with time delay hu1(x; t +
�) j u1(x; t)i and the autocorrelation function R11(�)
were measured using a single hot-wire probe. The linear
estimate and the experimental conditional average com-
pared well for values of the event velocity �1:5�1, �1:0�1,
1:0�1and 1:5�1, where �1 is RMS of u1.

The authors concluded that, although all considered
turbulent ows were non-normal joint random processes,
LSE worked well in these ows.

In [5] the optimal choice of a model of stochastic es-
timation was discussed. It was shown that the choice
is strongly dependent on the event upon which the av-
erage is conditioned. The series of tests based on one-
point velocity measurements in a turbulent boundary
layer (Re� = 3; 100) demonstrated how the stochastic es-
timation may be re�ned to give more accurate descrip-
tions of particular coherent motions. Selection of the or-
der of the stochastic estimate was also discussed and it
was shown that merely increasing the order of a poly-
nomial model of the event vector would not necessarily
increase the accuracy of the stochastic estimation.

Conditional eddies in isotropic turbulence were the fo-
cus of [9]. The velocity measurements for isotropic grid
turbulence were used to approximate the stochastic esti-
mate in a higher-order (up to a fourth-order) expansion.
It was concluded the LSE is a acceptable method for in-
vestigating the qualitative large scale structures.

Fully turbulent boundary layer (Re� = 4900) was
under investigation in [14]. Measurements consisted of
four simultaneously sampled hot-wire signals on a 13
x 11 x 8 three-dimensional grid. The results of linear
and nonlinear estimates for two di�erent events (fourth
(u > 0; v < 0) and second (u < 0; v > 0) quadrant events)
were compared to the corresponding experimental condi-
tional averages and the agreement was found to be ex-
cellent. Extensions of the technique to space-time esti-
mates of one- and two-point conditional averages were
presented. It was pointed out that multipoint condi-
tional averages focus on a particular scale based on the
separation between the points at which conditions were
imposed. Again, the stochastic estimation was found to
allow one to implement averaging technique easily for a
variety of conditions.

Multipoint conditional averages and spatio-temporal
evolution of the three-dimensional structures of the tur-
bulent wake of a cylinder was investigated in [17] (at

x=D = 100 for Re = 5000). The measurements of the
full 3-D correlation tensor for all components across the
width of the wake were used to identify events contribut-
ing most to the Reynolds stress. The most likely ensemble
averaged structure corresponding to these events were re-
constructed using the stochastic estimation procedure. A
new technique, the pseudo-dynamic reconstruction was
developed to estimate the evolution of 3-D velocity �elds
from the experimental data.

In [6] multi-point conditional analysis obtained from
LSE was applied to investigate dominant structures in a
jet mixing layer. Since a single-point estimates did not
give an adequate presentation of the dynamics of underly-
ing structures, pseudo-dynamical evolution of the struc-
tures based on two-point velocity measurements was com-
pared with the instantaneous velocity �eld. The agree-
ment was found qualitatively good. It was noticed that
in inhomogeneous ows a conditional sampling is pretty
much a function of the location of the probes.

In [13] the results of various investigations based on
stochastic estimation of the structures in turbulent shear
ow were discussed. They supported a picture in which
vortex rings and/or hairpin vortices dominate in the outer
layer of the shear ow, whereas structures elongated in
the streamwise direction with vorticity in the streamwise
direction dominate inside the wall layer.

In [20] two-point space-time pressure-velocity correla-
tions have been measured in the near �eld of a round
jet ow with a stationary velocity probe and a moving
pressure transducer. The correlations revealed the down-
stream translation of the vortices, and the physical mech-
anisms responsible for this behavior of the correlations
were identi�ed. Conditional averages of pressure uctua-
tions given the state of the velocity uctuation was also
obtained. A linear estimation mode agreed very well with
the measured data.

[21] The properties of conditional averages have been
studied for isotropic turbulence and for anisotropic tur-
bulence in a plane high Reynolds number shear layer with
2:1 velocity ratio. It was shown that in isotropic turbu-
lence a linear estimate was the dominant term. It gave
a good approximation for estimated values of the veloc-
ity uctuations, and it predicted a vortex ring structure
in the ow. In the shear layer, conditional averages of
the velocity component u(x + r; t) and v(x + r; t) and
the Reynolds stresses uv(x+ r; t), u2(x+ r; t), v2(x+ r; t)
have been calculated by measuring the values of u(x; t)
and v(x; t) using two X-wire probes. Comparison of the
conditional velocity �eld with its linear estimate showed
a good agreement.

Adrian and Moin in [8] applied LSE to homoheneous
turbulent shear ow data generated by a direct numer-
ical simulation. Events contributing to the most of the
Reynolds shear stress were thoroughly investigated. The
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conditional event under consideration was the value of
the velocity u and the deformation tensor dij(x; t) =

@ui
@xj

.

The including of d was shown to have a signi�cant inu-
ence on the conditional eddy �eld. A rational method of
selecting events was proposed. It was based on determin-
ing the values of (u, d) at which the greatest contribution
to some mean quantities occurred. It was found that one
conditional-eddy structure was a hairpin vortex. Over-
all, LSE gave a good approximation of the conditional
average on large scale.
In [4] LSE technique was applied to turbulent plasma to

investigate the formation, propagation and decay of neg-
ative potential wells, which corresponded to ion phase-
space vortices. Additional conditions as a sign of the
derivatives of the velocity were imposed on the signal to
improve the representation of extracted coherent struc-
tures in the turbulence. The results of LSE were found
to be useful as a guideline to analyze the physics of tur-
bulence.
Adrian in 1994 [24] made a detailed review of imple-

mentation of the stochastic estimation in a search of con-
ditional structures. The mathematical method of SE was
presented and the selected results obtained from di�erent
experiments in isotropic turbulence, turbulent boundary
layer and channel ow were discussed and summarized.

3.3 Comparison of LSE (SE) with other
techniques

Number of papers compared LSE (and/or SE) with the
other existing techniques, as Proper Orthogonal Decom-
position (POD), which as also based on the analysis of
unconditional correlation tensor.
Sullivan and Pollard in [25] discussed methods for the

eduction of coherent structures using multipoint measure-
ments. They considered a three-dimensional wall jet us-
ing four di�erent techniques: POD, LSE, Gram-Charlier
Estimation (GCE) and Wavelet Decomposition (WD).
The analysis of the obtained data revealed that the �rst
POD mode clearly captured the local peaks in the veloc-
ity �eld. The comparison of both POD and LSE results
revealed very good agreement, because LSE is actually a
weighted sum of a in�nite number of POD eigenmodes
[5]. It was noticed that, unless the �rst mode contains a
signi�cant amount of the total energy of the data, a ow
structure may not be identi�ed. The GCE was used to
develop a spatially dense mapping of the instantaneous
velocity �eld. Combination of GCE and LSE helped to
reconstruct evolution and interaction between structures
downstream in the ow. These structures were shown to
be associated with the exiting structure from the nozzle.
Finally, wavelet decomposition was used to identify scales
important within the ow. WD was found to provide a
more general method for investigating a ow �eld.

In [16] both POD and LSE were used to identify struc-
ture in the axisymmetric jet shear layer (Re = 110; 000)
and in the 2-D mixing layer. The new complementary
technique was introduced. This technique took projec-
tions of the estimated velocity �eld obtained from LSE
onto the POD eigenmodes to obtain random coe�cients
an in (13). These estimated random coe�cients were then
used together with the POD eigenmodes to reconstruct
the estimated velocity �eld. It was shown this comple-
mentary technique allows one to obtain time dependent
information about the velocity �eld while greatly reduc-
ing the amount of instantaneous data. This approach can
be useful to build and verify low dimensional dynamical
systems models based on POD coe�cients.
In [26] POD, and conditional sampling techniques were

applied to a simple test functions and the results were
compared to determine the strength and weaknesses of
each approach. POD was found to be useful only for
the signals where the energy consisted in a few modes.
The physical interpretation of POD results was also dis-
cussed. Conditional sampling was found to be sensitive
to the conditions chosen. None of the above methods
was found of capable of analyzing or identifying the lo-
cal small-scale structure of the ow. New methods for
investigating complex structures based on fractural and
wavelet analysis were presented. The application of the
wavelet transform was shown to provide a simple func-
tional description in terms of local length scales and the
distribution of velocity and vorticity within turbulence
structures.
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4 Wavelet Analysis

4.1 Theory

The wavelet transformation of the continuous signal
f(t) 2 L2(R) is de�ned the following way:

Fg(�; a) =
1p
a

Z +1

�1

f(t)g�
�
t� �

a

�
dt (16)

where parameter a is called dilatation parameter, � is
called shift parameter, asteric denotes a complex conju-
gate and the complex valued function g(x) is called a
wavelet mother function and satis�es the following condi-
tions: Z

g(x)g�(x)dx <1 (17)

C(g) = 2�

Z +1

�1

jbg(!)j2
!

d! <1 (18)

Here and below the hat sign over a function denotes a
Fourier transformation of the function,

bg(!) = 1p
2�

Z +1

�1

g(x)e�i!xdx

The condition (18) is called the admissibility condi-
tion and in case of integrable function g(x) implies thatR +1
�1

g(x)dx = 0. The admissibility condition guarantees
the existence of the inverse wavelet transformation,

f(t) =
1

C(g)

Z +1

0

Z +1

�1

Fg(�; a)p
a

g

�
t� �

a

�
da d�

a2

Because of the local support in physical domain (17),
the integration in (16) is evaluated over a �nite domain,
proportional to a and centered near � . This property
of the wavelet transformation allows someone to analyze
local characteristics of the signal at time � and scale a.
The wavelet transformation (16) can be rewritten in

the Fourier space as follows

Fg(�; a) =
p
a

Z +1

�1

bf(!)bg�(a!)ei�!d!
and gives another highly useful interpretation of the

wavelet transformation as a multiple band-bass �ltering
acting on the signal f(t).
Parseval theorem - the energy of the signal can be de-

composed in terms of the wavelet coe�cients Fg(�; a) asZ +1

�1

f(t)f�(t)dt =
1

C(g)

Z +1

0

Z +1

�1

Fg(�; a)F
�

g (�; a)
da d�

a2

Energy at the scale a is de�ned as

E(a) =
1

C(g)

1

a2

Z +1

�1

Fg(�; a)F
�

g (�; a)d�

4.2 Properties of wavelet transformation

1. Linear operator:

Fg(f1 + f2)(�; a) = Fg(f1)(�; a) + Fg(f2)(�; a)

2. Commutative with di�erentiation:

dn

dtn
fFg(f)(�; a)g = Fg

�
dnf

dtn

�
(�; a)

3. For any function f(t) of homogeneous degree � at
t = t0, t.e. f(�t) = ��f(t) near t = t0:

Fg(f)(t0; a) = a�+1=2Fg(f)

�
t0
a
; 1

�
or Fg(f)(t0; a) � a�+1=2 as a �! 0

This property could be really useful when analyzing
a local regularity of the function f(t). For instance,
if the function is discontinuous at t0, � = �1.

4. The information provided by the complete set of the
coe�cients is redundant, t.e. there is a strong corre-
lation between the wavelet coe�cients,

Fg(�0; a0) =

Z Z
p

�
�0 � �

a
;
a0
a

�
Fg(�; a)

da d�

a2
;

where

p(�; a) =
1

C(g)

1p
a

Z
g�
�
t� �

a

�
g(t) d�

Last property is not desirable when working with tur-
bulence modelling, because the number of coe�cients to
be is very big. One can construct the orthonormal basis
of the functions f ij(x)g, complete in L2(R) and orthog-
onal to themselves when translated by a discrete step and
dilatated by a power of 2:

 ij(x) = 2j=2 (2jx� i)Z
 ij(x) 

�

kl(x)dx = �ik�jl

The discrete version of the wavelet decomposition

f(x) =
X
i

X
j

Fij ij(x) ; where

Fij =

Z
f(x) (x � 2�ji)dx

removes the redundancy and thus minimizes the num-
ber of the wavelet coe�cients Fij in L

2-norm to describe
a given function f(x). This transformation is attractive
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from computational point of view as an alternative candi-
date for the Fourier transformation of Navier-Stokes equa-
tions. Complete theory of discrete wavelet transform can
be found in [5], [6]

From a variety of wavelet mother functions constructed
by now, a few important wavelets are worth of mention-
ing:

Continuous wavelet transform

1. Morlet wavelet - good for an analysis of local period-
icity of the signal:

g(x) = exp(ibx) exp(�x2=2); b � 5

2. 'Mexican Hat' wavelet (Maar wavelet) - good for a
search of localized structures:

g(x) =
d2

dx2
exp(�x2=2)

3. First derivative of a Gaussian: investigation of local
gradients:

g(x) =
d

dx
exp(�x2=2)

Discrete wavelet transform

4. Lemarie-Meyer-Battle (LMB) wavelet - explicit def-
inition [7]

5. Daubechies compactly supported wavelet - recurrent
de�nition [5]

Generalization of the wavelet transformation to a
multi-dimensional case is pretty straightforward ([30], for
instance) and will be not discussed here.

Historically the idea of generating the basis which pos-
sesses a locality property in both physical and Fourier
spaces goes to quantum mechanics [2] and signal process-
ing [1]. In aerodynamics the similar constructions can
be found in work by Siggia (1977) [32] and Zimin (1981)
[18]. In attempt to build a model capable of predict-
ing intermittent properties of small-scale turbulence, they
proposed an algorithm of constructing a basis of wave
packets which is local in Fourier and physical space. In-
dependently Morlet applied a wavelet decomposition as
a modi�cation of Gabor elementary wavelets [1] in seis-
mology [8], [37]. The �rst rigorous theory of wavelet de-
composition was done by Morlet and Grossmann in 1984
[4]. Discrete version of the wavelet transform was devel-
oped by Daubechies [5], [6]. An excellent presentation of
wavelet theory as well as it's application in turbulence
research was done by Farge in [30]. Another good source
is IEEE issue on wavelets [42].

4.3 Applications to turbulent ows

It is well-known that turbulence has both energy spec-
trum cascade, which is well-described in Fourier space
and spacial intermittent events, localized in space and
time ([38], e.g.). The wavelet property to be local in
both physical and Fourier spaces looks really attractive
to apply it in turbulence research. Original Kolmogorov's
theory of turbulence [39] was modi�ed to incorporate ex-
perimentally discovered properties of real turbulence as
intermittency e�ects and energy backscatter (transfer of
energy from small scales to large scales). A number of so
called hierarchical models of 2-D and 3-D isotropic tur-
bulence, based on the wavelet decomposition was built.
One of he �rst attempt for 2-D turbulence was made in
1977 [32]. It utilized a wave-packet decomposition, which
is essentially a wavelet transform. It was pointed out
that the convection term in N-S equations is essentially
local in physical space and the pressure term is local in
wavenumber space and guarantees the incompressibility.
Thus, the Fourier space was divided in number of shells
bn < jkj < bn+1; n = 1:: lnb �K : Here b � 2, k is a
wavenumber in Fourier space and �K is Kolmogorov dis-
sipation scale. A wave-packets were introduced as a func-
tions 'n(r) with their Fourier transform �n(k) to have
a non-zero value only within a corresponding shell. The
functions 'n are local in both Fourier and physical space.
The Fourier decomposition in physical space within a shell
was used to describe the functions. After projecting N-S
equations into this basis the system of non-linear ODE's
was obtained. After several simplifying assumptions, the
interaction between adjacent shells was examined numer-
ically for 4 shells x 26 Fourier mode decomposition within
a shell. The energy cascade and temporal intermittency
was investigated.

Independently in 1984 [18] essentially the same ap-
proach was taken to build a model of 3-D turbulence. A
basis functions with a non-zero value within a shell were
introduced. After the inverse transformation the physi-
cal representation was obtained. These eddies were dis-
tributed in physical space randomly and were allowed to
move. After projecting N-S equations into this basis a sys-
tem of non-linear ODE's was investigated. The model was
found to have a qualitative agreement with experimental
data. Later this model was modi�ed using eddy represen-
tation in wavelet form in [19]. This model does not involve
any empirical assumptions and possesses some important
features of the turbulence, including k�5=3 Kolmogorov
spectrum. non-local interactions between the scales and
back-scatter of energy from small scales to large scales.
It can be used as a subgrid non-equilibrium turbulence
modelling.

In [20] a hierarchical-tree model of 2-D turbulence was
presented. The cascade of vortices was arranged in a tree-
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like structure, with smaller 'children' vortices connected
to a bigger 'parent' vortex from the previous level. The
main di�erence from shell-based models was that the dis-
tances between 'parent' and 'children' physical vortices
were kept �xed. Thus a new variables for this Hamilto-
nian model were the amplitudes of vortices and the rela-
tive angles between adjacent vortices. Almost orthogonal
basis of discrete wavelets was used. The model exhibits
the spatial intermittency and fractal properties of it were
obtained. The model showed good agreement with theo-
retically predicted energy cascade for 2-D turbulence.

One of the �rst application of the wavelets in turbu-
lence was done by Farge et al [22], where an optimally con-
structed wavelet decomposition was proposed to reduce a
number of basis functions (modes) to describe turbulence
evolution. Investigating an evolution of a truncated sub-
set of important modes, they have shown better perfor-
mance of the wavelet decomposition against the standard
Fourier decomposition. Another classical paper in this
area is [30], where a brief theory and the basic proper-
ties of the wavelets and their application in turbulence is
well-presented.

In [11] the wavelet transformation was applied for
analysis of turbulent ows. It was pointed out that
the wavelets closely resemble the 'eddy' structures intro-
duced by Lumley [3] as a building blocks for turbulence.
The brief theory and basic properties of the continuous
wavelet transformation was presented. In an example of
shock wave/free turbulence it has been clearly showed
the advantage of wavelet transform to detect discontinu-
ities of a signal (front of a shock-wave). Thus, intermit-
tent events can be easily localized using 'Mexican hat'
wavelets. Another example concerning the wall turbu-
lence was considered. The wavelet technique was com-
pared with VITA technique [29] for a detection of sweep
and ejection events taking places in the boundary layer.
It was found that VITA technique could give false or no
detections of these burst-like events and requires some
knowledge about the characteristic scales of the events.
It comes from the fact that VITA technique is a single
scale �ltered technique. Because of variable scaled �ltered
property of the wavelet transformation it detects all the
events well and does not require any a priory information
of the events to be detected. Also a discretized version
of the wavelet transformation was proposed as a compet-
itive technique for CFD versus Fourier based technique
for ows with large local gradients or discontinuities.

In [12] coherent structures (ejections and sweeps) in a
heated turbulent boundary layer (Re = 5124 based on
the momentum thickness � = 6:1 mm) were investigated.
Regions near the viscous sublayer y+ = 7 and a fully
turbulent central region y+ = 180 were considered and
both velocity and thermal measurements were taken in
these regions using cold and hot wires. Several techniques

like VITA, WAG (Window Averaged Gradients)[28] and
wavelet analysis based on Morlet mother function were
used to analyze the intermittent events. Conditional
spectra for cooling (ejection) and heating (sweeps) events
were obtained. The ejections were found to be relatively
slow more localized events with comparison to more rapid
sweep events.

In [15], [16] a discretized version of the three-
dimensional wavelet transformation using LMB wavelet
was applied for turbulent ows, both experimental (wake
behind a cylinder) and numerically simulated ones.
Spatially dependent quantities like total kinetic energy
E(k; x), net transfer to the wavenumber k; T (k; x) and
total ux through the wavenumber k to all smaller scales,
�(k; x) were derived using wavelet analysis. Analysis of
these quantities from experimental data have shown a sig-
ni�cant level of spatial intermittency with large variations
from the mean values, essentially at a smaller scales. Spa-
tial pdf's for energy distribution and dissipation were ob-
tained and revealed an existence of long exponential tails.
Several versions of the wavelet mother function were used
to verify a robustness of the results. The wavelet results
has revealed a multifractal nature of the turbulence at
small scales and some fractal statistics (the generalized di-
mensions) of the multifractal turbulence were calculated.
An additive mixed multifractal cascade model was built
and was shown to duplicate all the essential results of the
experiments. Also a multifractal behavior of turbulence
was explored in [38].

Similar approach of analyzing generalized dimensions
of turbulence has been taken in [33]. Again, turbulence
was treated as a multifractal process and the continuous
wavelet transformation was applied to the equations of
motion. The author was able to come up with the system
of dynamical equations for an evolution of the generalized
dimensions based on the dynamics of Navier-Stokes equa-
tions. Thus, the model which possesses both multifractal
thermodynamical properties and the dynamics inherent
to N-S equations was proposed.

An application of the discrete wavelet transform to
explore the intermittency in turbulent ows was a pur-
pose of the work [34]. Authors have been established
a �rm connection between the intermittent events and
underlying coherent structures. Using the experimental
data for isotropic turbulence behind a grid, they found
that the ow reveals a big degree of intermittency for
Re� � 10. Also applying a velocity phase averaged
technique based on the wavelet transform, they have
been able to reconstruct the 'signature' of the coher-
ent structures corresponding to the intermittency events.
For an isotropic turbulence a typical size of the small-
scale �lamentary-like structures have been found as of
(4� 5) Kolmogorov scales , with these structures captur-
ing about 1% of the ow energy. For a jet-generated tur-
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bulence (Re� = 250� 800) large-scale structures (vortex
rings) from a longitudinal component of velocity as well
as small-scale structures (�lamentary structures) from a
transverse component were found. A strong phase corre-
lation between the large and small scale structures was
observed. The universality of a scaling exponents �(p) in
Kolmogorov's scaling law jU(x+ r)� U(x)jp � r �(p) for
p = 2::6 was veri�ed for a grid and jet turbulent ows for
moderate Re�.

A transition to turbulence in a shear layer was inves-
tigated using the continuous wavelet transform in [24].
A pairing process was found to be intermittent in the
region where the subharmonic dominates over the funda-
mental mode, with the intermittency being stronger for
large scales of motion.

In [17] ow behind a sphere in a strati�ed uid was
analyzed for a range of Re and Fr numbers. The DPIV
technique was used to get the velocity �eld. The two-
dimensional version of Morlet wavelet was applied to ob-
tain spatially local length scales, as well as local Re and
Fr numbers. Spatial distributions of Re and Fr were
found to be similar. Vortex core centers were marked by
very low Re and Fr numbers.

The wavelet decomposition turns out to be an opti-
mum tool to analyze this object. In [14] 2-D turbulence
from an axisymmetric jet with ReD = 4; 000 was in-
vestigated. A two-dimensional version of 'Mexican Hat'
wavelet was used to decompose dye concentration pic-
tures. Two di�erent structures, large-scale beads and
small-scale strings were observed. Strings were found to
be a strongly anisotropic structures with essential lack of
self-similarly across the scales.

In [24] a continuous wavelet analysis was applied to
investigate transition in turbulent mixing layer. It re-
vealed that the paring process is intermittent. In [26] in-
termittent events on di�erent scales in atmospheric wind
were reported by applying the wavelet technique. In [40],
[41] several techniques like wavelet transform, VITA and
WAG were applied to wind velocity data . Intermittent
coherent large and small structures were discovered and
investigated. Dynamics of sweep-ejection process was dis-
cussed and the obtained results were found in agreement
with previous results. In [43] a shear layer in a region
of strong interaction between a fundamental and subhar-
monic modes was investigated by a continuous Morlet
wavelet transform. An intermittent �-shifts in subhar-
monic phase were discovered. Motivated by the exper-
imental data, a dynamical Hamiltonian model based on
structural interactions of vortices was proposed and it was
shown that the model have a very good agreement with
the experiment.

A multiple acoustic modes in an underexpended su-
personic rectangular jet were investigated by the wavelet
transform. in [44]. They found to exist simultaneously

and don't exhibit a mode switching. Rather detailed
wavelet-based analysis of acoustic mode behavior in su-
personic jets can be found in [45]
In [27] new methods for investigating complex struc-

tures based on fractural and wavelet analysis were pre-
sented. The application of the wavelet transform was
shown to provide a simple functional description in terms
of local length scales and the distribution of velocity and
vorticity within turbulence structures. In [25] several
techniques for analysis of turbulent ows were discussed.
The wavelet transform was found useful to detect inter-
mittent events and turbulent structures in ows.
Wavelet transform was successfully used to diagnostics

in seismology [37], cardiology [21], in diagnostics of engine
cylinders [23]. In optics Optical version of Wavelet Trans-
form (OWT) was introduced in [10]. Also the wavelet
transform is actively used in multifractal analysis [35],
[36] and information theory [7].

4.4 Comparison with other techniques

4.4.1 Windowed Fourier transformation

The main problem with Fourier transform is that the ba-
sis functions exp(i!t) do not belong to L2(R). In other
words, they have an in�nite span in physical space and
provide no information about spacial localization of the
signal. This problem could be overcome, if the signal is
windowed or multiplied by a function with local physical
support w(t). This idea was introduced by Gabor in 1946
[1]. The windowed transformation is as follows

L(�; !) =

Z
f(t)w(t� �)e�i!(t��)dt (19)

In practice, two kinds of w(t) are widely used, co-
sine window cos(�=2 t); t 2 [�1; 1] and Gabor packet
exp(�t2=2�2). Transform (19) resembles (16), but pro-
vides a �xed time window for any !. This time win-
dow can be varied by an appropriate dilatation of w(t),
though.

4.4.2 VITA (Variable Integral Time Averaging)

VITA technique was introduced in 1976 [29]. The idea is
to look for a short-time averaging version of RMS of the
signal,

var(t; T ) =
1

T

Z t+T=2

t�T=2

f(t)2dt�
 
1

T

Z t+T=2

t�T=2

f(t)dt

!2

�f = lim
T!1

var(t; T ) � RMS of the signal

The event is said to be detected if var(t; T ) > K � �f
The technique introduce two constants to play with,

T and K. This technique is valid only for second-order
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stationary signals. It uses a �xed time window, which
means low-pass single scale �ltering.
Problems with VITA

1. Choice of T and K is intricate

2. Does NOT detect events separated by time less than
T

3. Possible false detections

4. Smoothing of some events

4.4.3 WAG (Window Averaged Gradients)

Another technique to detect sudden changes in velocity
signal was proposed in [28] and it is based on the analysis
of the average gradients.

WAG(t; T ) =
1

�f

1

T

"Z t

t�T=2

f(t)dt�
Z t+T=2

t

f(t)dt

#

The event is detected when WAG(t; T ) > � � u0RMS .
Similar problems as with VITA technique: single scale
�ltering, stationary signals only.
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