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In this paper, atmospheric optical turbulence strength is estimated for realistic airborne environments using a
modified phase-variance approach, as well as a modified slope-discrepancy approach. Realistic airborne environ-
ments are generated using wave-optics simulations of a plane wave propagating through increasing strengths of
homogeneous atmospheric optical turbulence, both with and without aero-optical contamination (from in-flight
wavefront sensor data) and additive-measurement noise. In comparison to the modified phase-variance approach,
the results show that the modified slope-discrepancy approach more accurately estimates atmospheric optical
turbulence strength over a wide range of conditions. Such results are encouraging for realistic airborne environ-
ments because they can be scaled to different freestream conditions as long as the boundary layer is considered
canonical. ©2022Optica PublishingGroup

https://doi.org/10.1364/AO.459461

1. INTRODUCTION

The index of refraction structure constant, C 2
n , as well as the

Fried coherence diameter, r0, are measures of atmospheric
optical turbulence strength and have been used in earnest since
the mid-20th century [1–4]. For ground-based measurements,
atmospheric optical turbulence strength depends on many
factors such as weather, ground terrain, and diurnal cycle,
making the estimation of C 2

n and r0 challenging. At higher alti-
tudes, it becomes increasingly difficult for researchers to make
measurements due to the complexity of the optical setups in
realistic airborne environments. As an example, for applications
that involve airborne-mounted laser systems [5], it is desir-
able not only to quantify the strength of atmospheric optical
turbulence but also to understand how the presence of other
types of aberrations, such as aero-optical contamination and
additive-measurement noise, affect the estimation of C 2

n and r0.
The work presented here makes use of wave-optics simu-

lations to demonstrate the effectiveness of two approaches at
estimating atmospheric optical turbulence strength in realistic
airborne environments. The two approaches are (1) a modified
phase-variance approach and (2) a modified slope-discrepancy
approach. To create a baseline comparison, these approaches
are first used on the continuous phase function reconstructed
from a Shack–Hartmann wavefront sensor (SHWFS) model.
This model is applied to the simulated pupil-plane data gener-
ated from wave-optics simulations of a plane wave propagating
through increasing strengths of homogeneous atmospheric

optical turbulence (but without the presence of other types of
aberrations). For this baseline comparison, the atmospheric
optical turbulence strength is known as inputs to the wave-
optics simulations; therefore, the estimated C 2

n and r0 can be
directly compared to these inputs, and both approaches show
excellent agreement over a wide range of conditions. This out-
come, for all intents and purposes, validates the accuracy of the
wave-optics simulations.

To simulate the presence of aero-optical contamination,
in-flight SHWFS data are used from the Airborne Aero-Optics
Laboratory (AAOL). Note that the AAOL consists of high-
speed aircraft that enable wavefront measurements in realistic
airborne environments [5–19]. In turn, the continuous phase
function reconstructed from the in-flight SHWFS data is added
to the overall phase function. This addition represents the effects
from the receiver-aircraft boundary layer (BL). Also note that
throughout this paper, the BL is considered canonical, such that
it can be scaled to different freestream conditions.

To simulate the presence of additive-measurement noise,
increasing strengths of Gaussian-phase noise is also added to
the overall phase function in the estimated pupil plane. This
addition represents the effects from multiple random processes
via the central-limit theorem. These random processes include,
but are not limited to, aero-mechanical and base-motion
disturbances, as well as sensor noise.

Once again, since the atmospheric optical turbulence
strength is known as inputs to the wave-optics simulations,
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the estimated C 2
n and r0 can be directly compared to these

inputs, even in the presence of aero-optical contamination and
additive-measurement noise. In turn, the results ultimately
show that compared to the modified phase-variance approach,
the modified slope-discrepancy approach more accurately esti-
mates the atmospheric optical turbulence strength over a wide
range of conditions. This outcome, at large, validates the use of
the modified slope-discrepancy approach for realistic airborne
environments.

In what follows, Section 2 describes the wave-optics simula-
tions, which model a plane wave propagating through increasing
strengths of homogeneous atmospheric optical turbulence and
least-squares phase reconstruction from a SHWFS model.
Section 3 formulates the phase-variance and slope-discrepancy
approaches used in this paper for estimating atmospheric optical
turbulence strength. Both approaches are modified to account
for realistic airborne environments via the scaling of aero-optical
distortions from the aircraft BL. The results for this paper are
presented in Section 4 with a conclusion in Section 5.

2. WAVE-OPTICS SIMULATIONS

The wave-optics simulations performed in this paper were
developed in MATLAB, as outlined in this section. These wave-
optics simulations made use of the split-step beam propagation
method (BPM) to propagate a plane wave through increasing
strengths of homogeneous atmospheric optical turbulence.
They also made use of a SHWFS model to reconstruct the phase
function from the simulated pupil-plane data.

A. Split-Step Beam Propagation Method

In accordance with the split-step BPM [20–25], the simu-
lated atmosphere was broken up into statistically independent
volumes. It was assumed that each volume imposed pseudo-
random phase variations via randomly generated phase screens.
Given plane wave propagation from one phase screen to the
next, these pseudo-random phase variations led to irradiance
fluctuations known as scintillation.

Using an approach analogous to Ref. [25], the afore-
mentioned phase screens, φ(x , y ), were generated by
filtering Gaussian white noise. In particular, the well-known
Kolmogorov power spectrum,

8n(κ)= 0.033C 2
nκ
−11/3, (1)

was used. In Eq. (1), C 2
n is again the index of refraction structure

constant, and 1/L0� κ� 1/`0, where κ = 2π/` is an angular
wavenumber, ` is a scale size within the inertial subrange, `0 is
the inner scale of the atmospheric optical turbulence, and L0 is
the outer scale. Recall that with a Kolmogorov power spectrum,
`0 = 0 and L0 =∞ [25].

Angular-spectrum propagation was used to propagate a unit-
amplitude plane wave from one phase screen to the next. The
steps were as follows [22,23]. First, let ψ(x , y , z1−) represent
the plane wave incident on the first phase screen and

ψ(x , y , z1)=ψ(x , y , z1−) exp(iφ(x , y )) (2)

represent the plane wave leaving the first phase screen.

To simulate propagation, a 2D Fourier transform was used to
convert ψ(x , y , z1) to 9(κx , κy , z1). In the spectral domain,
9(κx , κy , z1)was multiplied by the free-space transfer function
to propagate from the first phase screen to the second phase
screen. Next, a 2D inverse Fourier transform was used to convert
9(κx , κy , z2−) toψ(x , y , z2−). This procedure was repeated
for a total of three phase screens. After propagation to the final
phase screen, an aperture transmittance function of diameter D
was applied to create the simulated pupil-plane data.

In accordance with the split-step BPM, it was assumed that
the scintillation was negligible from one phase screen to the
next. This assumption was valid since the normalized irradiance
variance, σ 2

I =
〈
I 2
〉
/〈I 〉2 − 1, was less than 0.1 between the

simulated phase screens [22]. Here, 〈◦〉 denotes a spatial-average
operator, and I is the irradiance. To ensure that aliasing did not
affect the results, super Gaussian absorbing boundaries were also
incorporated into the wave-optics simulations [25].

B. Shack–Hartmann Wavefront Sensor Model

The simulated pupil-plane data were applied to a SHWFS
model. This model divided the associated complex optical
fields into subapertures of width d . A thin-lens transmittance
function with focal length, f , was then applied to each sub-
aperture, and angular spectrum propagation was used to obtain
an irradiance pattern at focus. The centroid was calculated for
each irradiance pattern, which provided the x and y slopes for
each subaperture. Using least-squares phase reconstruction [5],
specifically in a Southwell geometry [26], the measured slopes
were reconstructed into a continuous phase function, as shown
in Fig. 1.

3. ESTIMATION APPROACHES

In this section, two approaches are formulated to estimate
atmospheric optical turbulence strength. Both approaches
(i.e., the phase-variance approach and slope-discrepancy
approach) are modified to account for the presence of other
types of aberrations. These modifications are motivated by the
fact that in realistic airborne environments, the continuous
phase function reconstructed from wavefront sensor data con-
tains aero-optical contamination. Here, it is assumed that the
aero-optical contamination is from the receiver-aircraft BL. It is
also assumed that such pupil-plane aberrations are in addition
to the distributed-volume aberrations caused by atmospheric
optical turbulence.

A. Modified Phase-Variance Approach

The phase variance, in general, scales as r−5/3
0 [27]. As such,

the tilt-removed phase variance, σ 2
φHO

, can be used to estimate
atmospheric optical turbulence strength [28], since

σ 2
φHO
= 0.134

(
D
r0

)5/3

. (3)

Here, subscript HO is used to indicate higher-order aberrations.
Assuming conditions with homogeneous atmospheric optical
turbulence (i.e., constant C 2

n ),
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Fig. 1. Examples of simulated pupil-plane phase data from split-step BPM (left), irradiance patterns at focus from the SHWFS model (middle),
and continuous phase function reconstructed from the Southwell geometry (right).

r0 = 1.68(C 2
n Zk2)−3/5 (4)

for a plane wave. In Eq. (4), Z is the propagation distance,
k = 2π/λ is an angular wavenumber, and λ is the wavelength.
Rearranging Eqs. (3) and (4) results in the following expressions:

r0 = 0.299
D(

σ 2
φHO

)5/3 , (5)

and

C 2
n =

2.37

Zk2r 5/3
0

, (6)

which enable the estimation of r0 and C 2
n fromσ 2

φHO
.

In realistic airborne environments, the estimation of r0 and
C 2

n from σ 2
φHO

is affected by the presence of other types of aber-
rations. If these aberrations are independent of each other, then
σ 2
φHO

can be estimated using the following approximation:

σ 2
φHO
≈ σ 2

φAE − σ
2
φBL

. (7)

Here, subscript AE is used to indicate all of the airborne-
environment aberrations, whereas subscript BL is used to
indicate BL aberrations (due to aero-optical contamination).

Recall that the relationship between measured phase
variance and root-mean-square optical path difference is
σ 2
φ = (k ·OPDRMS)

2. Also recall that OPDRMS scales with BL
aberrations. This last point is discussed in more detail later on
in this section, as well as in Ref. [29]. With that said, once σ 2

φAO

is known, σ 2
φHO

can be approximated using Eq. (7), and once
σ 2
φHO

is approximately known, r0 and C 2
n can be estimated using

Eqs. (5) and (6), respectively.

B. Modified Slope-Discrepancy Approach

First discovered in the 1980s [30], slope discrepancy is a conse-
quence of using least-squares phase reconstruction to convert
measured slopes into a continuous phase function. Tyler showed
that the gradient field comprises two components: the gradient
of the scalar potential and the curl of the vector potential [31]. It
is known that the scalar potential is the component of the con-
tinuous phase function reconstructed using least-squares phase

reconstruction. Therefore, there is a component of the phase
function not accounted for when using least-squares phase
reconstruction. This other component of the reconstructed
phase function, mathematically referred to as the curl of the
vector potential [31], is referred to as slope discrepancy, δ.

Following the analysis of Brennan [32], let θL be the mea-
sured slopes, otherwise referred to as deflection angles or local
jitter. A least-squares reconstructor, H, is then used to convert
the measured slopes, θL , into a continuous phase function,ϕ. In
practice, ϕ is related to the gradient of the reconstructed phase,
g , through a linear mapping,0, such that

g = 0ϕ = 0HθL . (8)

The difference between the measured slopes and the gradient of
the reconstructed phase can then be written as

δ = θL − 0HθL . (9)

For greater detail on this derivation, see Ref. [27].
It is important to account for the physical phenomena that

contribute to slope discrepancy, δ. It is known that δ results from
subaperture fitting error, η, measurement noise, µ, and discon-
tinuities such as branch points or shock waves. For the purpose
of the work presented here, assume that branch points and shock
waves are nonexistent. This assumption is valid since in most
cases, the Rytov number is sufficiently small (below 0.25), and
there is nothing protruding into the freestream flow in front
of the receiver aperture. Since branch points and shock waves
are assumed to be absent, slope discrepancy can be described as
δ = η+µ.

To estimate atmospheric optical turbulence strength [27], the
slope-discrepancy structure function, DSD, is used, where

DSD(τ )=
〈
|δ(t + τ)− δ(t)|2

〉
. (10)

Here, 〈◦〉 denotes an ensemble-average operator. Substituting
δ = η+µ into Eq. (10), and expanding and simplifying
negligible components leads to the following result:

DSD(τ )= Dη(τ )+ 2σ 2
µ. (11)

In other words, DSD is equal to the fitting error structure
function, Dη(τ ), plus two times the noise variance, σ 2

µ. The
assumptions made in arriving at this result are discussed in Ref.
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Fig. 2. Example slope-discrepancy structure function. Since the
noise variance is removed, the black dashed line represents twice the
fitting error variance.

[27] but are also reemphasized later in this section. An example
slope-discrepancy structure function with noise removed is
presented in Fig. 2.

A relationship between the slope-discrepancy structure func-
tion and the fitting error variance is given by

σ 2
η =

1

2
(DSD(T )− DSD(0)). (12)

Here, DSD(0) represents twice the noise variance, and DSD(T )
represents the fitting error variance at long time delays, T . In
Fig. 2, twice the fitting error variance is represented with the
black dashed line (since the noise variance is removed from
the slope-discrepancy structure function). This fitting error
variance is then related to r0, viz.,

σ 2
η = α

(
d
r0

)5/3

, (13)

where α is a constant specific to the least-squares phase recon-
struction geometry used, and d is again the subaperture width of
the SHWFS lenslets. The α constant can be found analytically
[33]; however, finding alpha numerically yields a better esti-
mate. This outcome is because the analytical solution does not
account for spurious errors such as reconstructed noise. Details
on finding α are discussed below after modification to account
for the effects of realistic airborne environments.

1. SlopeDiscrepancywithAero-optical Contamination
Added

It is beneficial to modify the slope-discrepancy approach for-
mulated above to be able to estimate the atmospheric optical
turbulence strength in the presence of other types of aberrations,
such as aero-optical contamination. In arriving at Eq. (11) from
Eq. (10), it was assumed that the slope discrepancy, δ, comprises
three components: (1) fitting error, η, (2) measurement noise,
µ, and (3) discontinuities such as branch points or shock waves.
In realistic airborne environments, the fitting error compo-
nent contains the distributed-volume aberrations caused by

atmospheric optical turbulence in addition to the pupil-plane
aberrations caused by the BL.

Assuming that η is the fitting error component that accounts
for atmospheric optical turbulence, γ is the fitting error com-
ponent that accounts for aero-optical contamination, µ is still
the measurement-noise component, and branch points and
shock waves are absent, the slope discrepancy can be described as
δ = η+ γ +µ.

Substituting δ = η+ γ +µ into Eq. (10), the slope-
discrepancy structure function, DSD, takes the following
form:

DSD(τ )= 〈|(η(t + τ)+ γ (t + τ)+µ(t + τ))

− (η(t)+ γ (t)+µ(t))|2〉. (14)

Upon expansion, the following assumptions are made:

1.
〈
µiµ

T
j

〉
= δijσ

2
µ I ,

2.
〈
µiη

T
j

〉
= 0I ,

3.
〈
ηiη

T
i

〉
= σ 2

η I ,

4.
〈
γiγ

T
i

〉
= σ 2

γ I ,

5.
〈
µiγ

T
j

〉
= 0I ,

6.
〈
ηiγ

T
j

〉
= 0I .

Here, δij is the Kronecker delta, and T represents the transpose
operation. Additionally, the subscripts are indexing frame
numbers. Assumptions 1 through 3 are defined in Ref. [27]
and are used to arrive at Eq. (11). Assumption 1 states that
measurement noise is uncorrelated. Assumption 2 states that
measurement noise and atmospheric fitting error are uncorre-
lated. Assumption 3 states that the atmospheric fitting error
times itself at the same instant in time reduces to the atmos-
pheric fitting error variance. Assumptions 4 through 6 are novel
to this work and have to do with the inclusion of aero-optical
contamination. Assumption 4 states that the aero-optical fit-
ting error times itself at the same instant in time reduces to the
aero-optical fitting error variance. Assumption 5 states that mea-
surement noise and aero-optical fitting error are uncorrelated.
Last, assumption 6 states that the atmospheric and aero-optical
fitting errors are independent of each other.

By implementing the aforementioned assumptions, Eq. (14)
simplifies, such that

DSD(τ )=

〈
|η(t + τ)2 − 2η(t + τ)η(t)+ η(t)2 + γ (t + τ)2

−2γ (t + τ)γ (t)+ γ (t)2 + 2σ 2
µ|

〉
.

(15)
Notice that the first line of Eq. (15) is just the atmospheric
fitting error structure function, Dη(τ ), the second line is the
aero-optical fitting error structure function, Dγ (τ ), and the last
line is simply two times the measurement noise variance, σ 2

µ. In
turn,

DSD(τ )= Dη(τ )+ Dγ (τ )+ 2σ 2
µ, (16)
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which is an important result. This result indicates that if Dγ (τ )

is known, then an estimate of Dη(τ ) can be made.
Using Eq. (12), Fig. 2 demonstrates that σ 2

η can be estimated
from DSD(T ). Consequently, rearranging Eq. (12) results in the
following relationship:

DSD(T )= 2σ 2
η + 2σ 2

µ. (17)

This relationship assumes that slope discrepancy results entirely
from atmospheric-induced fitting error and measurement noise.
However, as shown in Eq. (16), when aero-optical contami-
nation is also present, an additional fitting error variance term
arises. This fitting error contributes to the overall measured
slope discrepancy.

At long time delays, Eq. (16) can then be written as

DSD(T )= 2σ 2
η + Dγ (T )+ 2σ 2

µ. (18)

As a result, r0 can be solved for using Eqs. (13) and (18), such
that

r0 = d

(
1

α

[
DSD(T )− Dγ (T )− 2σ 2

µ

2

])−3/5

. (19)

Thereafter, C 2
n can be estimated using Eq. (6).

2. Finding theAlphaParameter

Equation (13) describes a relationship between the fitting error
variance and r0. In this equation, d is the lenslet subaperture
width, and α is a parameter that depends on the geometry of the
SHWFS. Reference [33] describes how to analytically derive
α; however, as mentioned above, computationally finding α
yields better results. As expected, smaller subapertures has less
fitting error than larger subapertures. Theα parameter accounts
for this change in fitting error with varying subaperture size.
To find this parameter, wave-optics simulations of known r0

and constant d were conducted in a Monte Carlo fashion. For
each realization, a slope-discrepancy matrix was computed and
the variance was calculated. The variance terms were scaled by
(d/r0)

5/3. The results of this calculation for one simulation
realization are presented in Fig. 3.

The mean of these normalized variance terms is the computed
α for one simulation iteration. The mean for this simulation
iteration is plotted in Fig. 3 as a dashed black line. All resultant
α parameters from each simulation iteration were averaged to
account for the randomness of the phase screen generation.

C. Scaling the Boundary Layer

To use phase variance or slope discrepancy to estimate the
atmospheric optical turbulence strength, it is important to
understand how aero-optical contamination (in the form of
pupil-plane aberrations from the BL) affects these estimates.
As such, the following sections describe how to use the scaling
laws for a canonical BL to predict phase variance and slope
discrepancy under different freestream conditions. Recall that
throughout this paper, the BL is considered canonical, such that
it can be scaled to different freestream conditions.

Fig. 3. Normalized variance terms of the slope-discrepancy matrix.

1. Scaling theBoundary Layer toPhaseVariance

In recent years, aero-optical BLs have been heavily researched.
Many of the major findings are summarized in Ref. [29].
Important scaling laws have been developed that allow the
optical distortions associated with canonical BLs to be scaled to
different freestream conditions. For subsonic, turbulent BLs,
OPDRMS scales as

OPDRMS ≈ 0.19KGDρ∞M2δBL
√

c f . (20)

Here, KGD is the Gladstone–Dale constant, ρ∞ is the
freestream density, M is the cruise Mach number, δBL is
the BL thickness, and c f is the skin friction coefficient [29].
The skin friction coefficient, c f , for incompressible flows can be
approximated using the von Kármán–Schoenherr correlation as

c f ≈
1

17.08(log Reθ )2 + 25.11 log Reθ + 6.012
, (21)

where Reθ is the Reynolds number based on momentum thick-
ness [34]. For a canonical turbulent BL over a flat plate, the BL
thickness, δBL, is approximated as

δBL = 0.37
X

Re−1/5 , (22)

where X is the streamwise location, and Re is the Reynolds
number [35]. For greater detail on the development, assump-
tions, and limitations of Eq. (20), see Ref. [29]. The scaled
OPDRMS obtained using Eq. (20) can then be used to estimate
σ 2
φAO

in Eq. (7) for wavefront measurements collected at varying
altitudes.

2. ScalingBoundary Layer toSlopeDiscrepancy

As described in Eq. (9), slope discrepancy is the difference
between the measured slopes and the gradient of the recon-
structed phase. Here, we assume that the measured slopes and
the gradient of the reconstructed phase have the same canonical
scaling. Since the measured slopes represent the derivative of
phase, θLRMS is proportional to OPDRMS [given in Eq. (20)]
divided by a characteristic length scale [36,37]. For the case of a
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turbulent BL, the only relevant length scale is the BL thickness,
δBL. For subsonic flow, the scaling of the measured slopes, θL ,
then becomes

θLRMS ∼ KGDρ∞M2√c f . (23)

Equation (23) can then be used to scale the gradient of the
reconstructed phase time series to different freestream condi-
tions. The scaled time series can then be used to calculate a slope
discrepancy structure function associated with the aero-optical
BL.

4. RESULTS AND DISCUSSION

The purpose of this section is to assess the accuracy of the two
approaches formulated in Section 3 at estimating atmospheric
optical turbulence strength over a wide range of conditions.
For this purpose, baseline results are first presented, followed
by results with both aero-optical contamination and additive-
measurement noise added. All of these results make use of the
wave-optics simulations outlined in Section 2. Recall that these
simulations model a plane wave propagating through increasing
strengths of homogeneous atmospheric optical turbulence
and least-squares phase reconstruction from a SHWFS model.
Also recall that the atmospheric optical turbulence strength is
known as inputs to the wave-optics simulations; therefore, the
estimated C 2

n and r0 can be directly compared to these inputs.
With this last point in mind, the results ultimately show that
compared to the modified phase-variance approach, the modi-
fied slope-discrepancy approach more accurately estimates the
atmospheric optical turbulence strength over a wide range of
conditions.

A. Baseline Results

To create the baseline results, the aforementioned wave-optics
simulations made use of the split-step BPM with z= 1 [km]
of propagation distance in between three equally spaced phase
screens, for a total propagation distance of 3 [km]. An aperture

diameter of 0.2 [m] and laser wavelength of 532 [nm] were also
used. Assuming Taylor’s frozen flow, a stream-wise convective
velocity of 165 [m/s] was added to each phase screen and sam-
pled at 12.5 [kHz]. Different optical turbulence strengths were
simulated ranging from C 2

n values of 5× 10−17 to 5× 10−15

[m−2/3]. Ten simulation iterations were performed for each
turbulence strength. For these simulations, a grid resolution,
N, of 1064 and a grid side length, S, of 0.75 [m] were used. The
split-step BPM ultimately generated simulated pupil-plane data
of a plane wave propagating through increasing strengths of
homogeneous atmospheric optical turbulence, and these data
were fed into a SHWFS model. For the SHWFS model, a lenslet
subaperture width, d , of 1.2 [cm] and a lenslet focal length, f ,
of 25 [m] were used. The Southwell geometry was also used to
perform least-squares phase reconstruction (cf. Fig. 1). Two
approaches were then used on the continuous phase function
reconstructed from the SHWFS model to estimate atmospheric
turbulence strength.

The left plot of Fig. 4 presents the baseline results (average
from 10 simulation iterations) for estimating r0 values using the
tilt-removed, phase-variance approach [cf. Eq. (5)]. The x axis
represents the input or known r0 values, and the y axis represents
the estimated or measured r0 values. The linear black line in the
plot represents where the measured r0 values equal the known
r0 values. In the absence of aero-optical contamination and
additive-measurement noise, the tilt-removed, phase-variance
approach is effective at estimating r0.

The right plot of Fig. 4 presents the baseline results (average
from 10 simulation iterations) for estimating C 2

n values using
the tilt-removed, phase-variance approach [cf. Eq. (6)]. The
deviation of the measured C 2

n values from the known values at
stronger atmospheric optical turbulence strengths is associated
with appreciable scintillation, which begins to appear in the
wave-optics simulation for C 2

n > 2× 10−15 [m−2/3].
The results of estimating r0 using the slope-discrepancy

method [cf. Eq. (19)] are presented in the left plot of Fig. 5.
The slope discrepancy approach also yields a good estimate

Fig. 4. Baseline results using the phase-variance approach for estimated r0 values (left) and estimated C 2
n values (right). The black line denotes

where the estimated or measured values equal the input or known values.
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Fig. 5. Baseline results using the slope-discrepancy approach for estimated r0 values (left) and estimated C 2
n values (right). The black line denotes

where the estimated or measured values equal the input or known values.

Fig. 6. Comparison of a simulated frame from wave-optics simulations (left), experimental frame from the BL campaign (middle), and overall
frame after addition (right).

of r0. Again, the right plot of Fig. 5 presents the C 2
n val-

ues corresponding to the known and measured r0 values [cf.
Eq. (6)].

For all intents and purposes, the overall agreement found
in Figs. 4 and 5 validates the accuracy of the wave-optics sim-
ulations. This outcome enables the addition of aero-optical
contamination, as well as additive-measurement noise. Results
for both additions are discussed in what follows.

B. Results with Aero-optical Contamination Added

When collecting in-flight SHWFS data, the aero-optical con-
tamination associated with the BL of the aircraft introduces
additional pupil-plane aberrations. To test the effectiveness
of the phase-variance and slope-discrepancy approaches at
estimating atmospheric optical turbulence strength in realistic
airborne environments, the continuous phase function recon-
structed from experimental flight campaigns was added to the
overall phase function. For these flight campaigns, two Falcon
10 aircraft flew in close formation and at high altitudes. As such,
the atmosphere induced negligible effects onto the measured
wavefronts. The in-flight SHWFS data were collected from
a laser beam (projected from the transmitter aircraft), which

was subjected to distortions primarily from the aero-optical
BL in proximity of the receiver aircraft. For convenience, these
previous studies are referred to here as the “BL campaign.” The
continuous phase function reconstructed from the wave-optics
simulations and BL campaign had different spatial resolutions.
Therefore, the output frames from the wave-optics simulations
were interpolated to match the spatial resolution of the BL
campaign. Additionally, the BL campaign had a sample rate of
25 [kHz], which was much faster than that of the wave-optics
simulations. To match the lower sampling rate, the output
frames from the BL campaign data were downsampled tem-
porally. Thereafter, an overall phase function was created by
adding the simulated and experimental frames together. An
example is shown in Fig. 6, where the left frame is the con-
tinuous phase function reconstructed from the wave-optics
simulation, the middle frame is the continuous phase function
reconstructed from the BL campaign, and the right most frame
is the combination of the two.

As shown in Fig. 6, the receiver aircraft made use of a
Cassegrain style telescope; therefore, the obscuration associ-
ated with the secondary mirror is noticeable in the overall frame.
Additionally, a post used to turn a portion of the incoming beam
towards a tracking camera introduced an additional obscuration
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Fig. 7. Results with aero-optical contamination added using the phase-variance approach for estimated r0 values (left) and estimated C 2
n values

(right). The black line denotes where the estimated or measured values equal the input or known values.

Fig. 8. Results with aero-optical contamination added using the slope-discrepancy approach for estimated r0 values (left) and estimated C 2
n values

(right). The black line denotes where the estimated or measured values equal the input or known values.

in the bottom of the experimental frames. Since the in-flight
SHWFS data were corrupted with mechanical contamination,
all tip/tilt was removed before adding experimental frames with
the simulated frames.

The left plot of Fig. 7 presents the results of using the
phase-variance approach to estimate r0 when aero-optical
contamination is present. Here, the blue squares represent the r0

estimate when the phase variance of the overall phase function is
used. Since the aero-optical disturbances added to the simulated
wavefronts introduce additional wavefront error, the overall
phase variance is higher and consequently, the estimate of r0 is
poor.

Recall that if the wavefront error associated with the BL is
known, it can be removed from the overall phase variance using
Eq. (7). The red circles in the left plot of Fig. 7 represent the
results when this approach of accounting for the BL is used.

Although the estimate is better, r0 is slightly larger than it
should be. Consequently, the resultant C 2

n values presented in
the right plot of Fig. 7 are slightly lower than the known C 2

n
values.

The left plot of Fig. 8 presents the results of using the
slope-discrepancy approach to estimate r0 when aero-optical
contamination is present. Here, the blue squares represent the r0

estimate when the slope discrepancy of the overall phase func-
tion is used. As expected, r0 was predicted to be a much lower
value than the known or input r0 values. The error was larger
at lower atmospheric turbulence strengths since the signal to
noise ratio between the atmospheric disturbances and the added
aero-optical disturbances was smaller.

Section 3.B.1 derived a procedure for decoupling aero-optical
and atmospheric related distortions to estimate r0 using slope
discrepancy. Using Eq. (19), r0 is estimated, and the results
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Fig. 9. Results with aero-optical contamination and moderate, additive-measurement noise added using the phase-variance approach for esti-
mated r0 values (left) and estimated C 2

n values (right). The black line denotes where the estimated or measured values equal the input or known
values.

Fig. 10. Results with aero-optical contamination and moderate, additive-measurement noise added using the slope-discrepancy approach for esti-
mated r0 values (left) and estimated C 2

n values (right). The black line denotes where the estimated or measured values equal the input or known values.

are presented in the left plot of Fig. 8 as red circles. These r0

estimates strongly agree with the known r0 values. The resultant
estimates of C 2

n are presented in the right plot of Fig. 8. Even
when aero-optical contamination is present, the modified slope
discrepancy approach is effective at estimating atmospheric
optical turbulence strength.

C. Simulations with Additive-Measurement Noise
Added

This section discusses the effectiveness of the phase-variance
and slope-discrepancy approaches for estimating atmospheric
optical turbulence strength when additive-measurement noise
is present. This noise is in addition to the aero-optical contami-
nation explored in the previous section. Thus, in addition to

adding aero-optical contamination from the BL campaign,
white-Gaussian noise is also added to the overall phase function.

In what follows, the results present two cases. The first case
is simply referred to as the moderate-noise case, and the second
case is simply referred to as the severe-noise case. For both cases,
the standard deviation of the additive noise is set to be 10% and
50% of the standard deviation of the overall phase function,
respectively.

The left plot of Fig. 9 presents the moderate-noise results
from using the phase-variance approach to estimate r0. Again,
the blue squares represent the overall phase variance, and the
red circles represent the r0 estimate corresponding to when
the BL phase variance is removed. The inclusion of moderate,
additive-measurement noise did not appreciably change the
results compared to when just aero-optical contamination is
included in the overall phase function.
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Fig. 11. Results with aero-optical contamination and severe, additive-measurement noise added using the phase-variance approach for estimated
r0 values (left) and estimated C 2

n values (right). The black line denotes where the estimated or measured values equal the input or known values.

Fig. 12. Results with aero-optical contamination and severe, additive-measurement noise added using the slope-discrepancy approach for esti-
mated r0 values (left) and estimated C 2

n values (right). The black line denotes where the estimated or measured values equal the input or known values.

The moderate-noise results using the slope-discrepancy
approach are presented in Fig. 10. Similar to the phase-variance
approach, the inclusion of moderate, additive-measurement
noise did not appreciably affect the r0 and C 2

n estimates.
The severe-noise results using the phase-variance approach

are presented in Fig. 11. Here, it can be seen that even with the
aero-optical contamination removed, the inclusion of severe,
additive-measurement noise causes the phase-variance approach
to overestimate the atmospheric optical turbulence strength. In
other words, the r0 values are lower than expected, and the C 2

n
values are higher than expected.

The severe-noise results using the slope-discrepancy approach
are presented in Fig. 12. As described in Section 3.B, this
method is more noise resistant. As can be seen, even with the
inclusion of severe, additive-measurement noise, the slope-
discrepancy approach still yields reasonable estimates of r0

compared to the known value. The resultant C 2
n values are

shown in the right plot of Fig. 12.
These results are extremely encouraging. For realistic airborne

environments, slope discrepancy, coupled with the approach
derived in Section 3.B.1, provides a high-fidelity approach for
estimating the atmospheric optical turbulence strength even
when aero-optical contamination and additive-measurement
noise are present in the measured wavefronts. As long as the BL
is considered canonical, the measured slopes and the gradients
of reconstructed phase can be scaled to different freestream
conditions using the methods described in Section 3.C.

D. Summary of Results

The error associated with estimating r0 is summarized in
Table 1. Here, the error is calculated as
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Table 1. Error Summary

Simulation Type PV
PV w/o
Aero SD

SD w/o
Aero

Atm. only 20.62% N/A 18.10% N/A
Atm. w/aero 36.48% 34.80% 38.88% 18.92%
Atm. w/aero+ 10%
additive noise

36.42% 31.80% 38.77% 19.12%

Atm. w/aero+ 50%
additive noise

38.07% 24.03% 38.80% 30.32%

ERROR=

〈
|r0MEASURED − r0ACTUAL |

r0ACTUAL

× 100

〉
, (24)

where the brackets indicate ensemble averaging.
In Table 1, it can be seen that when only atmospheric optical

turbulence is present, both the phase-variance and slope-
discrepancy approaches yield reasonable estimates of r0 with
errors of 20.6% and 18.1%, respectively.

When aero-optical contamination is added, it can be seen
that both approaches yield poor estimates. Recall that the modi-
fied phase-variance (PV w/o aero in Table 1) approach and the
modified slope-discrepancy (SD w/o aero in Table 1) approach
were employed as a result. While the modified phase-variance
approach only marginally decreases the error, the modified
slope-discrepancy approach drastically reduces the error from
38.9% to 18.9%. Since realistic measurement noise is already
embedded (cf. Fig. 6), the modified slope-discrepancy approach
is extremely effective at estimating atmospheric optical turbu-
lence strength in realistic airborne environments. This claim is
substantiated by both the error given in Table 1 and the results
presented in Fig. 8.

Table 1 also presents the error for two cases with additive-
measurement noise added. For the moderate-noise case (10%
additive noise), the modified phase-variance approach still
yields poor estimates of r0, while the modified slope-discrepancy
approach remains effective with an error of only 19.1%. As
the measurement noise is raised unrealistically high, as for the
severe-noise case (50% additive noise), it can be seen that both
the modified phase-variance and slope-discrepancy approaches
return poor estimates of r0. However, it should be noted that
although the error using the modified slope-discrepancy
approach increases, the estimate trends remain reasonable,
which is reflected in Fig. 12, the same of which cannot be said for
the modified phase-variance approach in Fig. 11.

5. CONCLUSION

In this paper, atmospheric optical turbulence strength was
estimated for realistic airborne environments using modified
phase-variance and slope-discrepancy approaches. The realistic
airborne environments were generated using wave-optics simu-
lations of a plane wave propagating through increasing strengths
of homogeneous atmospheric optical turbulence, both with and
without aero-optical contamination (from in-flight wavefront
sensor data), as well as additive-measurement noise. In turn, the
results showed that compared to the modified phase-variance
approach, the modified slope-discrepancy approach more accu-
rately estimated the atmospheric optical turbulence strength
over a wide range of conditions. These results are encouraging

for realistic airborne environments because they can be scaled to
different freestream conditions as long as the BL is considered
canonical.
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