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Aerooptical aberrations along the spanwise direction of a canonical subsonic turbulent boundary layer were

measured and studied nonintrusively using a Shack–Hartmann wave front sensor. It was demonstrated that in this

case some important fluidic statistics in the wall-normal direction, like the mean velocity profiles, the local skin

friction, and the spanwise integral scales, can be directly extracted from aerooptical aberrations. To avoid various

spectral contamination in optical data at low frequencies, a model function for the deflection angle autospectral

density at low frequencies was proposed. The spectral cross-correlationmethod and the dispersionmethodwere used

to extract the local convective velocities, and the dispersion analysis was demonstrated to be most accurate in

computing the velocities. It was shown that it is possible to reconstruct the spectra above the Nyquist frequencies

through the newly proposed stackingmethod. Convective velocities in the log region of the turbulent boundary layer

were found to agreewell with the directmeasurements using a single hotwire. From the convective velocities, the local

wall shear stresswasnonintrusively extracted, using theClausermethod.Using correcteddeflectionangle spectra and

the convective velocity, the local values of aerooptical aberrations were reconstructed. Finally, using the strong

Reynold’s analogy, a wall-normal profile of the spanwise density correlation length was estimated and shown to be in

good qualitative agreement with velocity-based spanwise length scales observed in the literature.

Nomenclature

A = proportionality constant
B = log/law constant
Cf = skin friction
cov = covariance matrix
E = two-point correlation
f = frequency, Hz
F = lens focal length, mm
fsamp = sampling frequency, Hz
KGD = Gladstone–Dale constant, m3∕kg
k = wave number, 1∕m
L = propagation length, m
M = Mach number
Mag = optical magnification rate
n = index of refraction
OPD = optical path difference, m
OPL = optical path length, m
P = pressure, Pa
R = two-point correlation
Re = Reynolds number
r = recovery constant
S = power spectral density
Stδ = Strouhal number, equal to fδ∕U∞
s = generic propagation direction, m
T = Fourier transform block time, s
t = time, s
U = mean velocity, m∕s
u = velocity, m∕s
W = wave front, m
x = streamwise direction, m
y = wall-normal direction, m
z = spanwise direction, m
α = linking equation constant

β = Clauser pressure gradient
Γ = dispersion parameter
γ = ratio of specific heats
Δ = finite change in variable
δ = boundary-layer thickness, mm
∂ = partial derivative
θ = deflection angle, rad
κ = log/law constant
Λ = integral correlation length, m
ν = kinematic viscosity, m2∕s
ρ = density, kg∕m3

τ = wall shear stress, Pa

Subscripts

C = convective
rms = root mean square
S = stationary
w = wall quantity
ρ = density
ρ, z = density, in spanwise direction
τ = friction quantity
∞ = freestream quantity

Superscripts

� = friction quantity
��⋅� = mean quantity
0 = fluctuating quantityb = Fourier transform

� = complex conjugate

I. Introduction

T HE field of optical measurement science has advanced dramati-
cally since the dawn of the computer age. Our rapid advances in

computer technology have helped to develop high-speed cameras
with sampling frequencies on the order of megahertz. This has
opened the door to some unique optical systems that are capable of
keeping pacewith the frontier of aerospace research at supersonic and
hypersonic speeds. One such system is the Shack–Hartmann wave
front sensor,which has been frequently used in the field of aerooptics,
where the use of laser-based systems on airborne platforms is studied.
Wave front sensors, in general, seek to measure some aspect of how
light is optically distorted or aberrated. Light will travel in a straight
line until it encounters an optically distorting region and bends.
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Measuring the degree towhich the light is bent can tell us about these
optical distortions and also gives us clues how to mitigate them [1,2].
Time series of the spatially resolved optical aberrations, when
sampled with sufficient speed, allowed measuring the convective
speeds of these aberrations. The convective speeds provide very use-
ful information about the underlying flow structures, responsible for
optical distortions, over a wide range of flow speeds [3–6].
Nonintrusive laser-based optical sensors, with a few exceptions,

have traditionally been used in practical applications to understand
the challenges associated with using laser-based communications
and energy deposition systems on an airborne platform. These
sensors have largely remained isolated from use as general optical
measurement systems due to the specific usefulness in the field of
aerooptics, unlike particle image velocimetry (PIV), for example.
This is partly a result of the problem that all optical-based sensors
face, namely, how to relate optical measurements to parameters
that are more relevant to thewider aerospace scientific community,
like local velocity or density. Therefore, if a wave front sensor is to
be used as tool by the aerodynamic community, it is critical to
establish this link between optical aberrations and more traditional
fluid mechanics parameters.
An added difficulty ofwave front sensors, with respect to usefulness

as a general measurement tool, is their integral property. In other
words, all of the small optical aberrations that a laser beam experiences
as it travels through a fluid result in a cumulative or spatially integrated
effect that is interpreted by the sensor as a bulk amount of optical
distortion imposed on the traversed laser beam. As a result, any
information about where the sources of optical distortion are located
along the laser beam is typically lost. One exception is digital holog-
raphy wave front sensors, where it is possible to recover some depth
information [7]. Recently, several optical techniques were proposed to
attempt measuring local fluidic properties nonintrusively. One tech-
nique, known as focused laser differential interferometry (FLDI) [8,9],
uses a pair of convergent/divergent beams, polarized in orthogonal
directions, tomeasure the density gradient near the focus location. The
difference in optical path length between two beams will create
interference when the beams are recombined on the photodetector,
with the variation in intensity proportional to the density gradient. To
perform simultaneousmeasurements of velocity and density gradients,
two-point FLDIwas developed,which involves using four convergent/
divergent beams total, with a small separation near the focal point
between the two pairs of beams in order to obtain a cross-correlation
[10]. In addition to requiring a complex setup with several beams to
measure convective velocity, another drawback of FLDI is that it may
be affected by variations in ambient light intensity on the sensor.
Another recently proposed technique, called a focused Malley probe
[11], also uses two convergent/divergent laser beams,with focal points
separated by a known distance in the streamwise direction. Global
beam jitters of both beams are simultaneously measured using a high-
speed camera, and the spectral cross-correlation analysis is imple-
mented to extract the jitter spectra and the convective speed of the
aerooptical structures near the focal points. It was demonstrated that
the focused Malley probe is capable of correctly measuring the local
jitter spectra and the related convective speed of the aerooptical
structures near the focal points while suppressing aerooptical signal
everywhere else via the aperture averaging effect [11].
Instead of attempting to develop another focused optical tech-

nique, the work described here presents a novel application of the
traditional Shack–Hartmann wave front sensor to flows that are
statistically uniform along the spanwise direction, which coincides
with the path of the laser beam.Uniformity at all pointsmeans that the
bulk value measured by the sensor is actually a statistically equal
contribution from every point along the beam. In this case, it will be
shown in the following section that aerooptical parameters are
directly linked to local fluid mechanics parameters.

A. Relating Aerooptical Aberrations to Local Turbulence Quantities

The main aerooptical quantity of interest is the optical path length
(OPL), which is defined as

OPL�x; y; t� �
Z

L

0

n�x; y; z; t� dz (1)

where n�x; y; z; t� is the index of refraction and the z axis is chosen to
coincide with the direction of beam propagation. For the case of dry
gases, the index of refraction is proportional to the local density via the
Gladstone–Dale constant KGD [2,12,13], n�x; t� � 1� KGDρ�x; t�.
For air, KGD is approximately 2.27 ⋅ 10−4 m3∕kg for visible wave-
lengths of light.
In practice, a spatial mean is removed from OPL to compute

the optical path difference (OPD), OPD�x; y; t� � OPL�x; y; t�−
hOPL�x; y; t�i�x;y�. Here and everywhere in the following, the
angled brackets denote the spatial averaging. OPD is directly
related to the intensity distribution at a far field [14].
As discussed before, the integral relationship in Eq. (1) presents a

difficulty in determining local values of ρ�x; y; z; t�. In an attempt to
relate these quantities, Sutton [15] derived a theoretical formulation
of an equation linking statistical properties of ρ and OPD, called the
linking equation. Startingwith themost general casewhere nothing is
assumed about the flowfield, the linking equation takes the form

OPD2
rms � K2

GD

Z
L

0

Z
L

0

covρ�s; s 0� ds 0 ds (2)

whereOPD2
rms � OPD2�t� is the local temporal variance of OPD at a

fixed point on a plane, normal to the beam propagation; s and s 0 are
positions along the direction of beam propagation; and L is the
propagation length through the flowfield. The overbar here and later
in this paper denotes time averaging. The linking equation in this
form reveals that the variance in optical distortions of the wave
front is related to the covariance of density fluctuations in the
direction of propagation. The covariance function itself takes the
form covρ�s; s 0� � ρ 0�s; t�ρ 0�s 0; t�, where ρ 0�s� is the fluctuating
density at location s. The most common assumption is that the
flowfield is composed of homogeneous turbulence, and the covari-
ance can be described by either exponential or Gaussian analytical
forms [16] with a single parameter Λρ, which represents a character-
istic length of the density fluctuations. For these covariance func-
tions, the linking equation becomes

OPD2
rms � αK2

GD

Z
L

0

ρ2rms�s�Λρ�s� ds (3)

with and α factor of 2 or
���
π

p
for the exponential and Gaussian distri-

butions, respectively. This equation establishes the integral link between
the statistics of the aberrated wave front, OPDrms, and the local flow-
related statistics, as ρrms and Λρ. Equation (3) has been extensively
validated both experimentally [3,4] and numerically [17,18] for laser
beams traversing in the wall-normal direction and is widely used to
estimate optical distortions from density statistics in spite of several
assumptions, like homogeneous turbulence, that are not strictly valid.
In general, one needs to prescribe the spatial profiles of ρrms�y� and

Λρ�y� along the laser beam to compute the overall level of aerooptical
distortions OPDrms. However, there are a number of flows that can be
treated as spanwise uniform: boundary layers on a flat plate, two-
dimensional shear layers, and cavity flows, to name some. If the laser
beam is sent in the spanwise direction, denoted as the z direction, the
linking equation can be significantly simplified. The essential change in
assuming spanwise uniform flow is that the covariance function along
the beam is no longer a function of absolute position z but only a relative
position, Δz � z − z 0. Therefore, returning to Eq. (2) and using the
assumption of homogeneous turbulence along the spanwise direction
reduces the linking equation from a covariance function to a two-point
correlation function, resulting in the following equation for OPDrms,

OPD2
rms � K2

GD

Z
L

0

Z
L−z

−z
hρ 0�z0; t�ρ 0�z0 � Δz; t�i dΔz dz

If we define the normalized two-point density correlation along the
optical path Rρρ as
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Rρρ�Δz� �
hρ 0�z; t�ρ 0�z� Δz; t�i

ρ2rms

and the spanwise density correlation length as

Λρ;z �
1

2

Z
L−z

−z
Rρρ�Δz� dΔz (4)

then the linking equation becomes

OPD2
rms � 2K2

GD

Z
L

0

ρ2rmsΛρ;z dz (5)

The factor of 2 in Eq. (5) should not be confused with the multipli-
cative factor that results from assuming an exponential form of the
covariance function in Eq. (3) but rather comes from the 1∕2multiplier
in the definition of Λρ;z, Eq. (4). Because both the rms of density
fluctuations and the density correlation length in the spanwise direction
are constant along the integration path, Eq. (5) becomes

OPD2
rms�x; y� � 2K2

GDρ
2
rms�x; y�Λρ;z�x; y�L (6)

Here, we explicitly recognized that all quantities can vary in the stream-
wise or x direction and the wall-normal, y direction. This equation
provides a direct link between the local fluidic properties and overall
optical distortions in the spanwise direction. Note that, unlike Sutton’s
linking Eq. (3), where the flow is assumed to be homogeneous, the only
assumption used to derive Eq. (6) is that the flow is uniform in the
spanwise direction.
The paper is organized as follows. Section II presents the exper-

imental setup of the canonical boundary layer, used to validate the
spanwise uniform version of the linking equation. Section III dis-
cusses a variety of techniques used to reduce data, focused on
removing various contamination present in the aerooptical data and
extracting correct convective velocity profiles. Section IV will
present results derived from canonical turbulent boundary-layer
experiments and compare them with the direct measurements using
a hot wire. Finally, conclusions to this work will be given in Sec. V.

II. Experimental Setup

A. Facility

Detailed description of the experimental setup and procedure is
provided in [19], so only essential information is presented here.
Experimentalmeasurementswere conducted at theWhite Field facility
at the University of Notre Dame. The facility is a Mach 0.6 closed-
circuit wind tunnel powered by a 1750 hp variable rpm ac motor. The
tunnel test section is 2.74 m in length with a 0.91 × 0.91 m square
cross-section. Each of the four sides has three windows that are
0.6 × 0.6 m and are designed to give flexible optical access to the
tunnel.

To create a canonical turbulent boundary layer, a boundary-layer
development plate was designed to fit the facility. To avoid flow
distortions in the inlet and exit regions, the plate was specified to be
2.13m in length with 0.3 m of separation up- and downstream from the
edge of the testing region. The plate itself is 2.54 cm thick, 0.89 m in
width, and made entirely of aluminum. Figure 1a shows a CADmodel
of the plate and the supports. The plate is sectional and consists of an
elliptical leadingedgewith a152mmmajor axis anda25mmminor axis
and eight hollowed-out sections that together form the 1.8 × 0.89 m
main body. Themain body is coveredwith four aluminum plates, 6mm
thick, that form the smooth surface for developing the boundary layer
and hide the internal cavity which houses instrumentation. Small gaps
10 mm wide between the plate and the test section help mitigate the
formation of corner vortices at the junction of the plate and the test
section. To secure the main plate to the tunnel, a series of support legs is
attached to the underside and elevates the plate into the freestream. The
support legs have a NACA 0012 airfoil cross-section and are 0.3 m tall.
Figure 1b shows the fully assembled plate mounted on its support legs.
Boundary layers, present on the side walls, also contribute to the

overall aerooptical distortions in the spanwise direction. It follows
from Eq. (3) that, because the spanwise correlation length is propor-
tional to the boundary-layer thickness, Λρ;z ∼ δ, the aerooptical
signal in the spanwise direction is proportional to the square root of
the propagation length in the spanwise direction,OPDrms ∼

������
δL

p
. At

the same time, the aerooptical effects from the side-wall boundary
layers depend only on the boundary-layer thickness, OPDrms;side ∼ δ

[3]. The ratio between them becomes OPDrms;side∕OPDrms ∼
���������
δ∕L

p
.

If the boundary-layer development plate is much wider than the
boundary-layer thickness, the aerooptical contribution from the
side-wall boundary layers to the overall signal can be neglected. In
this experiment,

���������
δ∕L

p
≈ 0.15, so the contaminating effects should

be small. More discussion of the effects of the side-wall boundary
layers on the presented results will be given later in this paper.
To compensate for the imbalance of blockage above and below the

plate and achieve a zero streamwise pressure gradient on top of the
plate, a pivoting trailing edge flap a 25 mm thick and 150 mm long
was installed at the end of the plate. The flap hangs loosely on the
back of the main plate and is connected to a hinged push rod that
extends down through the bottom of the test section. The flap has a
range of motion of�25 deg. A number of pressure taps were placed
in the first and fourth plate covers to monitor the pressure gradient
over the plate. At the beginning of each test, the flap was calibrated
using these pressure ports to ensure that there was in fact a zero
pressure gradient. With the tunnel running, an absolute pressure
transducer (Omega, DPG1000AD-15A) was sequentially attached
to the Tygon tubing running from each pressure tap and its pressure
recorded. The pressure differential between the most upstream and
the most downstream pressure location was found to be less than
350 Pa at the highest runMach number of 0.35. Two nondimensional
pressure gradient factors that are commonly used [20] are the Clauser
pressure gradient, β � �δ�∕τw��dP∕dx�, and the viscous scaled
pressure gradient, p�

x � �ν∕ρU3
τ ��dP∕dx�. Using a maximum

Fig. 1 a)CADmodel of theWhitefieldMach 0.6wind-tunnel boundary development plate andb) assembledboundary-layer plate showing open cavities.
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differential of 350 Pa across 1.5 m streamwise spacing between the
pressure sensors yields β � 0.037 and p�

x � 3.09 ⋅ 10−5, indicating
a negligible pressure gradient on top of the boundary-layer plate.

B. Optical Setup

The schematicof theopticalmeasurements in the spanwisedirection
is shown in Fig. 2. A monochromatic light from a continuous a
Neodymium-doped Yttrium aluminium Garnet (Nd:YaG) laser beam
withwavelength of 532 nmwas expanded to a collimated beam25mm
in diameter. The collimated beam then passed through a pair of lenses
that expanded or contracted the beam to the desired diameter, aswill be
discussed later. The expanded collimated beamwas forwarded through
the test section in the spanwise direction. Careful alignment was
performed to ensure that the beam was parallel to the boundary-layer
plate; see [19] for details. After passing through the flow of interest, the
beam is reflected back along the same path it came from, using a return
mirror on the opposite side of the test section. This so-called double-
pass setup doubles the signal amplitude. The returning beam is split
aside using a cube 50/50 beam splitter and, after proper reimaging,
using a pair of reimaging lenses, is forwarded to a Shack–Hartmann
wave front sensor. It consists of a Phantom v1610 high-speed camera
with a lenslet array, attached in front of the imaging sensor. The lenslet
array used in this study is a rectangular grid (70 × 60) of square lenses
0.3 × 0.3 mm, each with a focal length of 38.2 mm. All these compo-
nentswere assembled on anoptical bench that sits on a series of slightly
underinflated rubber bicycle tires to dampen most mechanical vibra-
tions from the tunnel.
To investigate various spatial regions of the boundary layer, differ-

ent lenses are used to change the ratio between the beam size tra-
versing through the boundary layer and the beam size on the wave
front sensor. This ratio is called magnification ratio Mag. The mag-
nification ratios for a series of lens pairs can be computed asMag �
�F1∕F2� ⋅ �F3∕F4�. The various magnification ratios used in the
boundary-layer experiments and their corresponding lens configura-
tions are given in Table 1. Figure 3 illustrates how adjusting this
magnification ratio maps the same spatial region seen by the camera
to different parts of the boundary layer. The distance between the
adjacent lenslet dots, when reimaged to the test section, represent the
spatial resolution of the optical measurements. This spatial resolution
is proportional to the magnification. For instance, with a magnifica-
tion of 1, this distance is the same as the lenslet size, 0.3 mm, but with
a magnification of 4, it becomes 1.2 mm. The summary of all test
cases, including the runMach number, sampling frequencies, and the
spatial resolutions in the outer and inner units, are provided inTable 2.

C. Hot-Wire Anemometry

AConstant-Temperature Anemometry (CTA) hot wirewas used to
measure velocity statistics of the boundary layer created by the
boundary-layer development plate at the location of the beam. The
overheat ratio used was 1.8 with a sampling frequency of 30 kHz and
a low-pass filter at 14 kHz. The wire length was 1.25 mm. The hot
wire was calibrated in the range of Mach numbers 0.1–0.4, and the

fourth-order polynomial fitwas used for calibration.To calibrate thehot
wire, the tunnel was run at known speeds, measured by a pitot probe
placed in the freestream close to the hot wire, and voltage data from the
anemometer were collected. A best fit of the datawhen plotting voltage
versus the known velocity yields the calibration constants. Both pre-
and postcalibrations were used to account for temperature drift in the
tunnel, and a linear interpolation between the calibrations was used to
compensate for the drift. To collect the velocity statistics inside the
boundary layer, the hot wire was placed on a computer-controlled
traverse system, capable of moving a hot wire in the wall-normal
direction. Time series of the streamwise velocity were measured at
51 wall-normal locations with the sampling frequency of 30 kHz for
30 s. The first 11 wall-normal locations had an evenly spaced step size
of 0.25mm, the next 15 had a step size of 0.5 mm, and the last 25 had a
step size of 1 mm. From the velocity data, both mean and fluctuating
velocity profiles were extracted.

III. Data Reduction

A. Calculation of OPDrms

Beforewe begin, let us recall that for collimated beamsOPD can be
approximated as a conjugate of the wave front, OPD � −W [1], so
the statistics of the wave fronts and OPDs, such as the spectra and
root-mean values, are identical. For this reason, the wave fronts and
OPD will be used as synonyms in this paper.
For each test case, time series of the dot pattern were recorded

using the high-speed camera, and the instantaneous dot positions
were extracted in postprocessing using the centroiding algorithm
[21]. Knowing the lenslet focal length and the magnification rate,
the instantaneous dot positions were converted into the time series of
deflection angles in the streamwise and the spanwise directions at
various spatial points. Only the streamwise deflections angles,
denoted θ�x; y; t�, were used to analyze the aerooptical distortions.
The spanwise-uniform form of the linking equation, Eq. (5),

relates OPDrms�y� to the spatial statistics of the density field at a
given wall-normal location. Thus, we need to correctly compute the
time average of spatial root mean square of the wave fronts,

OPDrms�y� �
���������������������������������
hOPD2�x; y; t�ix

q
, where the overbar denotes the

time averaging and angular brackets indicate the spatial averaging
along the streamwise direction. Keep inmind that Eq. (5) is only valid
for very large apertures, while the collected wave fronts were mea-
sured over a finite aperture of approximately one boundary-layer
thickness. Finite aperture effects have been extensively studied by
other researchers [3,22,23], and it was demonstrated that a finite

Fig. 2 Schematic of the optical setup using Shack–Hartmann wave front sensor.

Table 1 Reimaging lenses used in boundary-layer studies

Magnification
ratio, Mag F1∕F2, mm F3∕F4, mm

Test section
beam size, mm

Camera
beam size, mm

Mag � 1 500∕ − 250 400∕800 50 50
Mag � 1.6 500∕ − 250 400∕300 50 31.3
Mag � 4 500∕ − 250 800∕400 50 12.5
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aperture acts as a high-pass filter and results in underpredicting the
true large-aperture OPDrms. This is a consequence of removing
the instantaneous piston and tip/tilt components from the wave front.
The tip/tilt components are typically corrupted by mechanical vibra-
tion and other experimental noise sources and often removed from the
measured wave fronts.
An alternative approach to computeOPDrms is to recognize that the

aerooptical distortions convect in the streamwise direction. Let us
recall that the streamwise deflection angle is the derivative of the
wave front, θ � ∂OPD∕∂x. In the convective case, the spatial deriva-
tive can be replacedwith the temporal derivative, becoming related to
the wave front as [24]

OPD�x � Uct� � −UC

Z
t

0

θ�τ� dτ (7)

Equation (7) means that a time series of deflection angles can be
integrated in time to reconstruct OPD at that point in space, if the
convective velocity UC is known. It is more convenient to rewrite
Eq. (7) in the spectral form, resulting in a relation between the wave
front and the deflection angle autospectral densities,

SW�f� � U2
C

Sθ�f�
�2πf�2 (8)

Finally, OPDrms can be computed from the deflection angle auto-
spectral density as

OPD2
rms �

Z
∞

−∞
SW�f� df � U2

C

Z
∞

−∞

Sθ�f�
�2πf�2 df

� 2U2
C

Z
∞

0

Sθ�f�
�2πf�2 df (9)

The immediate item of note in this equation is the factor of f2 in
the denominator. It means that any contamination of the deflection

angle spectrum at low frequencies will be divided by the small
�2πf�2-factor and, as a consequence, will be greatly amplified,
resulting in inaccurate estimates of both the wave front spectra
SW and the corresponding OPDrms values. If we make a physically
reasonable assumption that in the limit as frequency approaches
zero SW approaches some finite constant (which was verified in
numerical simulations of optical distortions in turbulent boundary
layers [17]), then the deflection angle spectrum at low frequencies
should behave as Sθ ∼ f2. This requirement can be used to estimate
the spectrum behavior of low frequencies. On the other hand, the
wave front spectrum is much less affected by any potential con-
tamination at high frequencies, as the corresponding portion of the
Sθ spectrum, which is already small, is further divided by a large
�2πf�2 factor.
Thus, various sources of contamination, predominantly at the

low frequencies, should be properly removed from the deflection
angle spectra in order to correctly compute OPDrms. A method
developed in [25] was originally introduced to mitigate this cor-
ruption. The method uses several spatial correlations of deflection
angles at varying separations to split the measured spectrum into a
convective component and a stationary component. In other
words, by having additional redundant data sets all collected at
the same instant in time, it becomes possible to sort out compo-
nents of the signal that only depend on space (stationary) from
those that vary with space and time (convective). The only
assumption involved in this method is that the spectrum has only
two components, the stationary and the purely convective ones.
Equations (10) and (11) show the decomposition of the Fourier
transform of deflection angles θ̂�x; f� and the resulting cross
spectral correlation S�Δx; f�,

θ̂�x; f� � θ̂S�f� � θ̂C�f� exp
�
2πif

�
t −

x

UC

��
(10)

Table 2 Test cases and corresponding optical resolution parameters

Test case
Mach
number

Wall-normal extent and spatial
resolution in outer units δ

Wall-normal extent and spatial
resolution in inner units�

Sampling
frequency, kHz

Mag � 1.0 0.35 0.12δ (Δ � 0.012δ) 680� (Δ� � 68) 311
Mag � 1.6 0.3 0.19δ (Δ � 0.019δ) 1090� (Δ� � 109) 311

Mag � 4.0 0.3 0.48δ (Δ � 0.048δ) 2740� (Δ� � 274) 311
Mag � 4.0 0.3 1.06δ (Δ � 0.048δ) 6042� (Δ� � 274) 130
Hot wire 0.3 1.2δ (Δ � 0.01δ) 6840� (Δ� � 57) 30

Fig. 3 Adjusting optical magnification to focus on different parts of the boundary layer.
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Sθ�Δx; f� �
hθ̂�x; f�θ̂��x� Δx; f�i

T

� SS�f� � SC�f� exp
�
2πifΔx
UC

�
(11)

where T is the Fourier transform block time, SS is the stationary
power spectrum, SC is the convective power spectrum, and the
asterisk denotes the complex conjugate. With multiple spatial
separations, Eq. (11) is overdetermined, and a least-squares sol-
ution can be obtained at each frequency for SS and SC. A repre-
sentative example of this decomposition is shown in Fig. 4. It can
be seen that the low-end buildup due to mechanical vibration was
significantly removed from the convecting portion of the spectrum
and the theoretical slope of f2 was recovered to some degree. In a
few cases, the multipoint decomposition was not able to totally
remove the low-end corruption, but in general, it worked effec-
tively, and because of this, the convective portion will be used in
instead of the original deflection angle spectrum for all further
analysis.
Figure 4 also shows that there still remains a significant drop off in

spectral content at the high end of the spectrum compared to the
expected theoretical f−4∕3 slope [2,26]. The most likely cause of this
high-frequency damping is signal attenuation due to a finite sub-
aperture size. A theoretical estimation of how averaging over the span
of a subaperture affects the deflection angle spectrum is given in [26].
It is important to note that the multipoint decomposition is unable to
recover the high-end theoretical slope, but, as mentioned before, it
should not significantly affect the extracted OPDrms values.
In an attempt tominimize the corrupting effects at both the low and

the high frequencies in order to correctly estimate OPDrms values
from the experimentally measured deflection angle spectra, a simple
semi-empirical model was used in [27] to approximate the shape
of Sθ using the theoretical considerations of the low- and high-
frequency tails. The functional form of the model was adapted in
the current work to further clean up the low-end corruption of the
convective component of the deflection angle spectra. The model
uses the peak amplitude Sθ;peak and the peak frequency fpeak, both of
which are generally isolated from areas of the spectrum that are
corrupted. The model is as follows:

Sθ�f; y� � Sθ;peak�y�
6.00

f2peak�y�
�

f

1� �1.25f∕fpeak�y�	5∕3
�
2

(12)

The model was used to clean up only the low-end of the spectrum by
replacing the part of experimentally measured spectrum below the
peak frequency with the model fit. The spectrum above the peak
frequency was kept unchanged. The benefit of this approach is that it

removes remaining corrupting influences at the low end of the
spectrum, using peak quantities in the middle of the spectrum, where
the corruptions are minimal. Figure 5 demonstrates the model fit of
Eq. (12) for selected wall-normal locations using the peak values of
the convective spectra from themultipoint decomposition.By design,
the model removes any residual contaminations at the low frequen-
cies, while remaining faithful to the central and high-end portions of
the spectrum. This can be clearly seen in the spectrum at y∕δ � 0.1,
where the convective component (a solid red line) still has significant
buildup at the low frequencies, which would result in an unrealisti-
cally large value of OPDrms. The model fit (a dashed red line)
guarantees that the resulting wave front spectrum stays finite at low
frequencies.
The presented model fit was implemented to all extracted con-

vective components of the deflection angle spectra, and the corre-
sponding OPDrms�y� profiles were computed using Eq. (9). These
profiles were used to estimate the density correlation lengths Λρ;z�y�
via Eq. (6). In addition, θrms�y� profiles were calculated by integrat-
ing the modeled deflection angle spectra.

B. Convective Velocity

One of the major motivations behind this study is developing a
technique that is capable of measuring convective velocity nonintru-
sively. Also, to correctly compute OPDrms�y� profiles, using Eq. (9),
the values of the local convective speed are needed. Two methods of
extracting the convective speeds will be presented in the following:
the spectral cross-correlation method and the dispersion method.

Fig. 4 Breakdown of the total deflection angle spectrum into convective SC and stationary SS components.

Fig. 5 The convective components and the low-end models of Sθ from
Eq. (12) using the Mag 1.6 data set as an example.
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The spectral method was introduced in [28] and uses the deflec-
tion angles in two spatial points, separated by the distance Δx.
From Eq. (11), it follows that the argument (phase) of the spectral
cross-correlation spectrum is a linear function of the frequency,
and the phase slope is related to the convective speed. The con-
vective speed can be calculated from the phase slope because
dArg�S�f�	∕df � 2πΔx∕UC. This approach was demonstrated to
provide good results if the deflection angles are sampled suffi-
ciently fast and the separation between beam is small enough [28].
With the use of a Shack–Hartmann sensor, multiple streamwise

correlations can be made at differentΔx. Figure 6 shows the scaled
phase Arg�S�f�	∕Δx for five different Δx values. Figure 6 shows
collapse for all Δx up to almost 50 kHz. However, the phase slope
does not agree with the expected slope, based on the direct mea-
surements of the velocity using a hot wire, shown as a straight
black line in Fig. 6. This discrepancy was traced to insufficient
spatial resolution, which will be further clarified later in this paper.
As a result, the spectral cross-correlation was corrupted by spatial
aliasing effects and resulted in biased estimates of the phase
slopes.
The spectralmethod uses frequency analysis and spatial averaging.

In contrast, the dispersion method uses both frequency and spatial
information in the form of a two-dimensional (2-D), frequency/wave
number spectrum. Given a row of deflection angle data at constant
height θ�x; t� a 2-D Fourier transform yields Sθ�kx; f�. In general,
2-D spectral analysis of a convecting quantity yields a spectrum with
a linear ridge, the slope of that ridge corresponds to the convective
velocity, UC � 2πf∕kx. If other optical structures, moving at a
different speed, are present along the beam, it will result in the
appearance of another branch with a different slope. The ability of
the dispersion method to identify different convective speeds can be

used to isolate and study the corresponding optical structures. This
approach was successfully implemented to isolate and study aero-
acoustical contamination from jet engines present in the aerooptical
data in flight [29].
With proper sampling frequency and spatial resolution, this spec-

trumwould be properly resolved andwould look similar to Fig. 7a. A
linear fit to the ridge of the 2-D spectrum is themost commonmethod
of computing convective velocity. Traditionally, the peak spectral
value is used in determining the ridge; however, del Álamo and
Jiménez [30] proposed using the spectrum’s center of gravity to
define the ridge to more accurately account for the contributions
from all scales. This second approach was implemented in these
studies.
An idealized spectrum for a continuous 2-D Fourier transform

(an infinite sampling frequency and wave number) is shown sche-
matically in Fig. 7a as a single branch with a constant slope,
determined by the convective speed. For simplicity, consider alias-
ing in space only. If the signal is sampled at a finite wave number,
kmax � 2π∕Δx, the Nyquist–Shannon sampling theorem states that
the resulting discrete spectrum will be a superposition of infinite
number of continuous spectra, periodically shifted by n ⋅ kmax,
where n is an integer number, as illustrated in Fig. 7b. If the original
spectrum has spatial content above the Nyquist wave number,
kmax∕2, it will result in shifted branches entering the range of spatial
wave numbers �−kmax∕2;�kmax∕2	, as shown inside the rectangular
box in Fig. 7b. This is a classic example of aliasing in discrete 2-D
Fourier transforms.
Understanding the origin of the aliasing provides a practical way to

remove it. The algorithm is demonstrated in Fig. 8. Consider a
discrete 2-D spectrum, aliased in space, as shown in Fig. 8a. This
can be shifted by�kmax;�2kmax, and so on, and stacked left and right
of the discrete spectrum, as demonstrated in Fig. 8b. This leads to the
main branch recovering its original shape, and the slope of the main
branch can be studied. By applying a band filter, the main branch can
be isolated and analyzed. This stacking approach, but performed in
the frequency direction, was implemented to recover the spectra of
the deflection angles of hypersonic boundary layers beyond the
Nyquist frequency [31].
To illustrate this algorithm, a set of experimentally obtained data

for Mag � 4 is used as an example. Using a streamwise row at
y∕δ � 0.1, the 2-D spectrum Sθ was computed. The particular data
set, shown in Fig. 9, has ten streamwise points and a sampling
frequency of 311 kHz. The log of the computed dispersion plot is
given in Fig. 9a. The main convective branch impacts the wave
number limit at about 25 kHz and is aliased to the left edge of the
plot. Figure 9b shows the same data reconstructed using the stacking
method. The main convective branch is clearly resolved out to triple
the spatial Nyquist limit. Independently measured mean velocity,
using a hot wire, can be used to calculate an expected slope to
compare to the ridge slope in this dispersion plot. This was demon-
strated in Fig. 9b, in which themain convective branch remains linear
and follows the mean velocity slope out to 75 kHz, which encom-
passes the entirety of the spectrum.

Fig. 6 Phases of the spectral cross-correlation functions for differentΔx
at y∕δ � 0.1. Expected phase slope based on the velocity measured using
hot wire is also presented.

Fig. 7 Schematic illustrating temporal aliasing of convective 2-D spectra with insufficient sampling wave number.
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It is straightforward to see that this method fails when the Ny-
quist angular frequency divided by the maximum resolved wave
number is approximately equal to the local convective velocity,
UC ≈ 2πfN∕�kmax∕2� � fsampΔx; in other words, when the main
branch goes directly into the corner of the sampling window. If this
is the case, the positive and negative branches might overlap at the
tails and become inseparable, as illustrated in Fig. 10. In fact, this
can limit the usable portion of the spectrum to even below the spatial
and temporal Nyquist frequencies. To avoid this issue, a constant Γ
is introduced, which relates the sampling frequency and the sepa-
ration between points in space Γ � fsampΔx∕UC. For the casewhen
the ridge hits the corner of the dispersion plot, Γ ≈ 1. To avoid this
tail overlap, Γ should be larger than 2 or less than 0.5. This large
margin helps to account for the fact thatUC is an unknown and often
only a ballpark estimate can be made.
Recalling the nonlinearity observed in phase of the spectral

method, Fig. 6, the aliasing in the kx direction is expected as the root
cause and ultimately the flaw of a simple spectral cross-correlation
analysis. To examine this further, the two-point spectral cross-
correlation phase, shown in Fig. 6, is shown again in Fig. 11a. Note

that the axes in this plot have been flipped from the typical way in
which phase is plotted so that the frequency axis is the same as in the
dispersion plots. Examining Fig. 11a, we see that the slope of the
phase data begins to deviate from that associated with the mean
velocity, measured by a hot wire, around 20 kHz. The same data
set was used to perform the dispersion analysis and presented in
Fig. 11b. It is clear that no such deviation exists. Because of this, it is
expected here that the spatial aliasing is directly responsible for the
phase deviating from a linear slope in the spectral cross-correlation
method.

C. Clauser Method to Compute Local Skin Friction

The Clauser method of computing the local skin friction from the
mean velocity profile is based on the assumption that a similarity
exists linking the inner near wall region with the outer velocity defect
region [32]. Based on dimensional analysis, Clauser showed that the
near-wall inner layer

U� � U

uτ
� y� � yuτ

ν

and the outer layer

Fig. 8 Schematic illustrating a proposed dealiasing stacking algorithm

to recover the 2-D spectrum.

Fig. 9 a) unaltered 2-D dispersion plot of theMag � 4, 311 kHz data set and b) reconstructed (stacked) 2-D spectrum. The center-of-gravity method is
shown along with the corresponding slope of the hot-wire mean velocity. The wall-normal location is y∕δ � 0.1.

Fig. 10 Schematic illustrating the situation when UC ≈ 2πfsamp∕kmax,
corresponding to Γ � f sampΔx∕UC ≈ 1, which results in an inseparable

overlap in the discrete 2-D spectrum.
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U −U∞

uτ
� f�y∕δ�

must have a region of overlap between them that is a function of
the freestream velocity, boundary-layer thickness, and viscosity, the
three variables that are in only one of those two equations. Townsend
[33] built upon Clauser’s observation and proposed a similarity
hypothesis that states that surface conditions set the wall shear stress
and boundary-layer thickness and then the outer layer turbulence
simply adjusts accordingly. This adjustment behaves in a universal
and self-similarmanner. This resulted in the form of the so-called log/
law as it is commonly reported,

U� � U

uτ
� 1

κ
ln �y�� � B � 1

κ
ln
�
yuτ
ν

�
� B (13)

where κ and B are experimentally determined constants. Nagib and
Chauhan [34] provide an excellent overview of the reported values in
the literature. In this study, values of κ � 0.385 and B � 4.1 were
chosen, consistent with the zero pressure gradient turbulent boun-
dary-layer studies [35,36].
To compute uτ and Cf from Eq. (13), it must first be rearranged.

Multiplying both sides of the equation by uτ∕U∞ yields

U�y�
U∞

�
�
1

κ

uτ
U∞

�
ln
�
yU∞

ν

�
�

�
1

κ

uτ
U∞

ln
�
uτ
U∞

�
� B

uτ
U∞

�
(14)

Equation (14) is now in a form where measured U�y� can be plotted
versus ywith knownU∞ and ν. The slope of the linear portion of this
plot uniquely defines uτ. Knowing the skin friction velocity, the local
skin frictionCf can be computed by recalling that for incompressible
flows Cf � 2�uτ∕U∞�2.
The assumptions embedded in this analysis are that the flow is in

equilibrium, meaning a constant stress profile; κ and B are in fact
accurate to the particular Reynold’s number and flow geometry; and
the Reynold’s number is large enough that a linear log region exists
over a range of y� values so that a slope can be defined. As Reynold’s
number increases, scale separation between the near-wall dissipative
eddies and the outer region turbulence generation eddies grows. Wei
et al. [37] examined a number of low Reynold’s number experiments
and concluded that an error in uτ of up to 5%was possible for Reθ �
500 but that this error diminished beyond Reθ � 1340.

IV. Results

A. Deflection Angle Spectra

The convective deflection angle spectrawere extracted fromall test
cases at different wall-normal coordinates. Figure 12 plots the con-
vective portion of the spectrum from Eq. (11) along with the peak

value at eachwall-normal location for all threemagnifications.When
combining the cases, preference was given to the lowest magnifica-
tion at each height in the boundary layer. In general, the peak values
for all magnification rates agree with each other within the scatter of
the data. Using the spectra, we can associate a length scale to the
frequencies containing the most energy. For example, above
y∕δ � 0.3, the peak value of Sθ remains relatively constant at a
Strouhal number of 1. This indicates that the length scale that is most
strongly energetic toward Sθ at those wall-normal locations is
roughly the boundary-layer thickness. However, very close to the
wall, the peak is at a higher Strouhal number, about 10, indicating
smaller structures.
Besides the peak Strouhal number being a function of the wall-

normal location, Fig. 12 provides additional insight by looking at the
amplitude of the main peak of Sθ. Very near the wall, the peak
amplitude is rather low,whichmeans that while the smaller structures
are contributing most to the energy in the spectrum each individual
scale is contributing less relative to the larger outer structures. Mov-
ing away from thewall, the amplitude of themean peak increases, and
the mean peak location shifts to lower frequencies, indicating larger
and more energetic optical structures. At a point near the edge of the
boundary layer, roughly y∕δ � 0.7, the magnitude of the mean peak
begins to decline, while the peak location remains constant. This
decline in the mean peak amplitude also leads to the reduction of the
overall total energy θrms�y� presented in Fig. 13. The overall decline
is most likely due to intermittency effects, which will be discussed
later in this paper.

Fig. 11 a) phase of the spectral cross-correlation from Fig. 6 with switched axes for better comparison to dispersion plots and b) a first quadrant of the
reconstructed 2-D dispersion plot of the same data set. The wall-normal location is y∕δ � 0.1.

Fig. 12 Evolution of deflection angle autospectral density combined for
all magnification cases. The spectral peak values at each wall-normal
location for all three magnifications are also indicated by symbols.
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B. Convective Velocity

1. Hot-Wire Measurements

The wall-normal profiles of the mean and the fluctuating compo-
nent of the streamwise velocity, measured using a hot wire, are
presented in Fig. 14. The mean velocity profile shows a presence of
a canonical boundary layer with a log-linear region with constants
C � 3.1 and κ � 0.385. Note that the viscous subregion and a
portion of the buffer region of the boundary layer are not resolved
due physical constrains to place the hot wire very close to the wall.
Using the mean velocity profile, several parameters for the boundary
layer were calculated and are given in Table 3. The hot-wire length
used in the experiments was 1.25mm. This length, expressed in inner
units, results in a hot wire l� for this experiment of nearly 300, far
higher than the recommended value of l� < 20 [38]. The result of
the large hot-wire length is a dampening in the perceived turbulent
fluctuations due to spatial averaging along the wire. In addition
to spatial averaging, the relatively low low-pass filtering at
fcut � 14 kHz corresponds to the normalized sampling time of
Δt� � u2τ∕�fcutν� ∼ 50, which is not sufficiently small to temporally
resolve all turbulent structures [38], further reducing the measured
turbulent fluctuations. To illustrate the impact, properly spatially and
temporally resolved (l� < 20, Δt� < 1) turbulence intensity profiles
presented in [38] were interpolated for the current Reτ and plotted in
Fig. 14. The severity of the spatial attenuation is clear, considering

that deviation from the fully resolved curve extends all the way to
y� � 3000, well beyond the log region. At y� � 1000, the attenu-
ated turbulence intensity is 75% of the resolved data. The strong
Reynold’s analogy, which will be used to relate density and the
velocity statistics later in this paper, relies on the correct fluctuating
and mean velocity profiles to predict the fluctuating density profiles.
Using the present attenuated fluctuating velocity profile would result
in significant errors, and therefore it was decided that all calculations
involving the fluctuating velocity will use the fully resolved data
presented in [38]. Note that the spatial averaging affects only the
fluctuating velocity profile, as the mean profile agrees with each of
the ones available in the open literature.

2. Convective Velocities Using Spectral Cross-Correlation and

Dispersion Methods

Strictly speaking, the convective velocity is not equal to the local
mean velocity [30,39,40]. Del Álamo and Jiménez [30,41], in their
computational work on channel flows, found that the convective
velocity near the wall appears to asymptote to a nonzero constant.
In addition, decomposing the convective velocity into large and small
wavelengths revealed that the largest wavelengths convect at a nearly
constant velocity independent of wall-normal location and the small
wavelengths generally follow the mean velocity everywhere except
near the wall. In a similar study using PIV, LeHew et al. [42] found
agreement with the results of del Álamo and Jiménez. Geng et al. [39]
and Liu and Gayme [40] built upon this work and have shown that
the average convective velocity asymptotes to approximately 10uτ at
the wall beginning at y� < 20. Liu and Gayme particularly looked
at the influence of streamwise and spanwise wave number and found
evidence of large-scale interactions with the small scales in the
viscous sublayer consistent with Hutchins and Marusic [43]. The
largest contributors to convective velocity in the viscous sublayer
were structures on the order of the buffer layer height, yet even larger
structures had nonnegligible contributions.
All the aforementioned studies point out that the deviation of the

convective speed from the mean velocity and its dependence of the
spatial wave numberwas observed only near thewall, y� < 20–30. In
the present studies, however, the nearest resolved point in the wall-
normal direction was y� ∼60; see Table 2. Based on the discussion
in the previous paragraph, away from the wall, the convective veloc-
ity should be equal to the mean velocity. Therefore, the convective
velocity, obtained via optical methods, should agree with the mean
velocity, measured by the hot wire. The results from multiple optical
data sets were analyzed using both the spectral cross-correlation
method and the dispersion method to extract the local convective
speeds, and the results are presented in Fig. 15. The spectral cross-
correlation method in Fig. 15 uses frequency limits of 10–25 kHz to
define the slope fitting region. The convective velocities are scaled
using uτ computed from the hot-wire mean velocity profile and
Clauser method. It is immediately clear that the spectral cross-
correlationmethod overpredicts themeanvelocity profile throughout
the entire boundary-layer region for all cases. The dispersion analy-
sis, presented in the previous chapter, revealed that spatial aliasing led
to the nonlinearity in the observed phase plots. The overshoot of the
spectral cross-correlation method in Fig. 15 suggests that this spatial
aliasing biases the profiles toward the larger, faster-moving struc-
tures. On the other hand, the dispersion method does a good job of
following the mean profile over a wide range of y� between 200
and 3000. The discrepancy above y� � 3000 is most likely due to
intermittency effects, which will be addressed in the next paragraph.
Very near the wall, y� < 200, the dispersion-based convective veloc-
ities approach a constant. This is most likely due to spatial averaging

Fig. 13 Normalized θrms�y� profiles for all test cases. The fluctuating
velocity profile urms is also plotted for comparison.

Fig. 14 Hot-wire mean and rms profiles plotted in inner units. RMS
profile taken from Hutchins et al. [38] shows the near-wall attenuation.

Table 3 Turbulent boundary-layer parameters

Mach number Boundary-layer thickness δ Freestream velocity U∞ Friction velocity uτ

0.3 25 mm 100.8 m∕s 3.35 m∕s
Reδ Reθ Reτ H-factor

1.71 ⋅ 105 19,975 5,775 1.33
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over subapertures. The small scales in the boundary layer are smaller
than the subaperture size at this location, and as such, the apparent
convective velocity is biased toward the larger, faster-moving struc-
tures. Based on the suggestions in [25], the subaperture sizeΔx should
be less than �δ∕Stδ;peak��Uc∕U∞�, to accurately resolve the convective
velocity of the scales of interest. For the current data near the wall, the
peak Strouhal number is approximately 4, and the expected convective
velocity is roughly 0.5 of the freestream velocity based on the hot-wire
velocity profile at the nearest wall-normal location measured. This
gives a maximum subaperture size of Δx � 0.15 mm, which is half
the size of the smallest subaperture used in this work. As the main
portion of interest at the outset of this work was the log region of the
boundary layer, these larger subapertures were acceptable; however,
for anyone who is interested in regions of the boundary layer closer to
thewall, the subaperture sizemust be chosen small enough for accurate
measurement of convective velocity in this region.
From Fig. 15, it is clear the dispersion analysis consistently under-

estimates the convective velocity in the wake region of the boundary
layer above y� > 2000. To understand it, let us recall that from an
optical point of view the only parts of the flow contributing to the
optical signal are those which contain density fluctuations. Intermit-
tency in a boundary layer helps to describe the interface between the
turbulent flow and the laminar freestream. This interface fluctuates as
turbulent bursts reach out into the freestream. The intermittency
function describes the fractional percentage of time that a particular
wall-normal location is turbulent. Because the laminar freestream has
no density fluctuations, only those portions of time that are turbulent
contain density fluctuations. As intermittency begins to set in at
roughly y∕δ � 0.5, turbulent bursts into the freestream becomemore
and more infrequent. To illustrate this, Fig. 16 replots the velocity
profiles extracted using the dispersion method in Fig. 15 in outer
units. The intermittency function computed from the corresponding
hot-wire data is overlaid on the same plot. The point at which the
convective velocity profiles begin to diverge from the hot-wire mean
profile coincides with the onset of intermittency. Thus, the deviation
of the optically extracted convective velocities from the true veloc-
ities can be attributed to intermittency effects, where the optical
sensor does not see the laminar parts of the boundary layer. Because
these laminar regionsmove faster than the turbulent regions, it results
in underpredicting the values of the convective velocity. This result
also suggests that the turbulent regions appear to move at a relatively
constant convective velocity beyond y∕δ � 0.6. Also, it should be
pointed out that outside the boundary layer the density fluctuations in
the freestream are negligible, and the dominant optical source
becomes the side-wall boundary layers. As a consequence, the con-
vective speed outside the boundary layer decreases to approximately
0.8U∞, which corresponds to the convective speed of the aerooptical

distortions in the subsonic boundary layers, collected in the wall-
normal direction [3]. With this in mind, care should be taken in
equating optical convective velocity with the mean velocity in this
region, dominated by intermittency effects. This a clear limitation of
the presented optical technique to extract the convective speed in
regions where intermittency (a mixture of laminar and turbulent
flows) is dominant. The capability of nonintrusively measuring the
mean velocity is a powerful tool, but it is limited to the flow regions
with sufficient and predominantly turbulent fluctuations. Having said
that, numerous applications are still unaffected by this constraint, and
potentially the most powerful is the use of Clauser method.

3. Optical Measurements of Local Skin Friction Coefficient

After obtaining convective velocity profiles for all test cases, the
Clauser method can be used to calculate the friction velocity uτ using
Eq. (14). By plotting ln �yU∞∕ν� versus U∕U∞, a linear regression
analysis was used on the linear portion of the profile in a least-squares
sense to obtain the slope and the related uncertainty. The slope is
only a function of κ, uτ, and U∞, where the only unknown is uτ.
Table 4 shows the results of using Clauser’s method as well as a 90%
confidence interval for uτ and Cf. Overall, most of the test cases
give good estimates of uτ and Cf, though test caseMag � 4 slightly
underpredicts both. As can be seen from the percent errors, test case
Mag � 1 andMag � 4, fsamp � 130 kHz have relatively high error
bars. In test caseMag � 1, the large error was due to the dispersion
ridge tails interacting with each other, with Γ constant being approx-
imately 1, in which the dispersion method is less effective.
This presented optical approach demonstrates an opportunity to

perform nonintrusive measurements of the velocity profiles in sit-
uations, where direct velocity measurements might be difficult or
intrusive, for instance, at supersonic or hypersonic speeds. Also, it is
straightforward to extend this technique to estimate the skin friction
for rough-wall boundary layers.

C. Wall-Normal Distributions θrms and OPDrms

Before presenting results for θrms and OPDrms, the corresponding
scaling laws are required. For the levels of aerooptical distortions in
subsonic turbulent boundary layers in the wall-normal direction, a
scaling law was introduced in [24], OPDrms � βρ∞KGDM

2δ
������
Cf

p
,

where β is an experimental constant. In the case of spanwise projec-
tion, the same scaling may not be appropriate, as OPDrms also
depends on the spanwise length of the boundary layer, as shown in
Eq. (6). Looking at this equation, it is reasonable to assume that the
spanwise correlation lengthΛρ;z is proportional to the boundary-layer
thickness δ. Fromhere, it follows thatOPDrms ∼

������
δL

p
. By comparing

this scaling with the wall-normal scaling [24], it results in the
following proposed scaling law for the OPDrms in the spanwise
direction:

Fig. 15 Comparison of spectral and dispersionmethods computation of
convective velocity in inner units. Closed symbols are the spectral
method, and open symbols are the dispersion method. The mean velocity
profile from hot wire is also presented for comparison.

Fig. 16 Dispersion method convective velocity profiles from Fig. 15 in
outer units. Intermittency function computed from hot-wire data over-
laid to correlate with divergence from mean hot-wire profile.
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OPDrms ∼ ρ∞KGDM
2

������
δL

p ������
Cf

p
(15)

It should be understood that care needs to be taken comparing
spanwise and wall-normal values of normalized OPDrms. If this
general scaling is used in the wall-normal direction, L � δ, and the
scaling of δ used in [24] is recovered.
Recall that the deflection angle is a gradient of thewave front. If the

wave front has a characteristic streamwise length scale Λ, then the
level of streamwise deflection angle, characterized by temporal root-
mean-square value θrms, is related to the amplitude of the wave front,
characterized byOPDrms, as θrms ∼ OPDrms∕Λ. Because we can also
assume that Λ ∼ δ, the resulting scaling law for the deflection angle
becomes

θrms ∼ ρ∞KGDM
2

���������
L∕δ

p ������
Cf

p
(16)

Using experimental data for different spatial resolution cases,wall-
normal profiles for the normalized θrms were computed and are
plotted in Fig. 13. At a glance, the profile looks qualitatively similar
to a profile of turbulence intensity, also plotted in Fig. 13 for com-
parison. Similar to the fluctuating velocity profile, θrms is at a maxi-
mum very near the wall and decreases moving away. This is only an
observation motivated by the long chain of indirect relationships
between deflection angles and fluctuating velocity, and more work
should be done to obtain a direct or analytical relationship between
the two. The scatter in the data in the first 20% of the profile is
essentially the error associated with using the model spectrum
of Eq. (12).
The θrms profiles, extracted from the Mag � 4 (green circles and

blue diamonds), are consistently below the results from other data
sets in the range of y∕δ < 0.3. A detailed analysis, performed in [19],
revealed that the reason for this discrepancy is the spectral attenuation
at the high frequencies due to subaperture effects. These effects lead
to lower values of θrms, compared toMag � 1.6 andMag � 1 cases,
where the subaperture sizes and the resulting high-end attenuation are
smaller.
Figure 17 plots the values ofOPDrms from the same four data sets.

While the larger values of the θrms profile are located closer to the
wall, the largest values of OPDrms resides between y∕δ � 0.4–0.8.
This means that smaller, near-wall structures contribute most to θrms,
while larger outer structures contribute most to OPDrms. This is
consistent with previous findings [3,12]. The factor of f2 in the
denominator of Eq. (9) results in mostly the low end of the spectrum
contributing toOPDrms. This means that the same shift in the spectral
peak location that was just examined in light of θrms has the exact
opposite effect on OPDrms. Near the wall, theMag � 4 cases have a
larger value of OPDrms relative to the other magnifications, in some
cases by a factor of 1.5.
Assuming that the side-wall boundary layers (BL) have the same

thickness as the boundary layer over the development plate, the
aerooptical distortions from two side-wall boundary layers can be
estimated [3]. The normalized aerooptical distortion from the side-
wall boundary layers is also plotted in Fig. 17 as a dashed line. The
aerooptical distortions in the spanwise direction are several times
larger than the contaminating optical aberrations from side-will
boundary layers, justifying the assumption that the contaminating
effects can be neglected. The only locations where the contamination
might be significant is near the wall, y∕δ ≲ 0.1, and in the freestream
outside the boundary layer, y > δ. In these locations, the optical

distortions in the spanwise direction should approach zero, as the
density fluctuations should be zero at the wall and in the freestream.
Instead, the measured results in these regions approach the optical
distortions from side-wall boundary layers, labeled by a horizontal
dashed line in Fig. 17, indicating a level of contamination from side-
wall boundary layers. Assuming that the spanwise and the side-wall
optical aberrations are independent, it is possible to remove the side-

wall contamination, OPDCorrected
rms �

�������������������������������������������
OPD2

rms−OPD2
rms;side

q
[4]. The

corrected results are also plotted in Fig. 17 for selected cases as open
symbols, further demonstrating that the corrupting effects from the
side-wall boundary layers are mostly negligible.

D. Spanwise Density Correlation Length

So far, all the presented results, the convective speeds and aero-
optical statistics, were computed directly from the wave front data
without any assumptions. The spanwise linking equation, Eq. (6),
shows that OPDrms is proportional to the product of the density
fluctuations ρrms and the spanwise correlation scaleΛρ;z. So, if some
estimates of the correlation length are given, one can compute the
profile of the fluctuating density. This approach was used, for
example, to estimate fluctuating density profiles in the nonadiabatic
boundary layers [19]. Alternatively, if the fluctuating density profile
is known, either through other measurements or numerical simu-
lations, one can compute the spanwise correlation length. In some
cases, like for the studied canonical turbulent boundary layer, the
strong Reynold’s analogy (SRA) can be used to estimate the fluc-
tuating density profile ρrms�y� from the velocity statistics �U�y� and
urms�y� as [3]

ρrms�y� � ρ∞�γ − 1�rM2
∞

�
�U�y�
U∞

��
urms�y�

uτ

�
(17)

where γ is the ratio of specific heats and r is the recovery constant,
taken to be 0.89. Using the OPDrms�y� profiles presented earlier in
this chapter and the mean and rms velocity profiles from hot-wire
measurements, Λρ;z�y� can be estimated, using Eq. (6). Figure 18
shows the resulting correlation lengths normalized by the boun-
dary-layer thickness δ. There appears to be a linear trend in thewall-
normal direction, indicating that the boundary-layer large-scale

Table 4 Estimates of the skin friction coefficients from optical data using Clauser’s method

Test case Mach number uτ, m∕s Error in uτ , % Cfx10
3 Error in Cfx10

3, %

Mag � 1.0 0.35 3.72 1.12 (30) 2.00 1.20 (60)
Mag � 1.6 0.3 3.35 0.30 (9.0) 2.21 0.39 (18)
Mag � 4.0 0.3 3.00 0.19 (6.3) 1.77 0.22 (13)

Mag � 4.0 fsamp � 130 kHz 0.3 3.43 0.52 (15) 2.32 0.70 (30)
Hot wire 0.3 3.36 (7.9) 2.20 (15.8)

Fig. 17 Normalized OPDrms�y� profiles for all test cases.
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structure is proportional to the wall-normal distance, which is
consistent with Townsend’s attached-eddy hypothesis [33].
The computed correlation length is the characteristic scale of the

density fields, and direct measurements of the characteristic scales
are very difficult. As an alternative, the SRA can be used to estimate
the characteristic scales of the density field from the velocity fields.
The basic assumption behind the SRA is that velocity fluctuations
and temperature fluctuations are linked. If both the pressure and the
total temperature fluctuations are zero, the velocity and temperature
fluctuations should be perfectly anticorrelated [44]. In real boundary
layers, however, it is not exactly the case, with the normalized cross-
correlation function Ru 0T 0 ≈ −0.7 [45]. Nevertheless, the correlation
coefficient is still large enough, and temperature and, as a conse-
quence, density fluctuations can be assumed to be approximately
proportional to the velocity fluctuations, u 0 ≈ Aρ 0. In this case, it is
straightforward to show that the velocity structure characterized by
two-point normalized correlations can be used as an approximation
of the density structure,

Ruu�Δx� �
Efu 0�x; y; z; t�u 0�x� Δx; y; z; t�g

u2rms

≈
EfA2ρ 0�x; y; z; t�ρ 0�x� Δx; y; z; t�g

A2ρ2rms

� Efρ 0�x; y; z; t�ρ 0�x� Δx; y; z; t�g
ρ2rms

� Rρρ�Δx�

Thus, the SRA suggests that the velocity and density correlation-
based lengths are similar. This result will be used in this work to
qualitatively compare the results obtained from the spanwise version
of the linking Eq. (6) with what is more commonly reported in the
literature through two-point velocity correlations.
One difficulty arises from the fact that the integrated correlation

velocity length is rarely computed by other researchers. The vast
majority use a simple first crossing definitionwhereRuu crosses 0.05.
The closest comparison achievable is through extracting spanwise
Ruu data from the literature and integrating it ourselves. Three Ruu

plots fromHutchins andMarusic [46]were integrated and included in
Fig. 18. This comparison is more of a sanity check than a quantitative
comparison because we lack the full data set and Ruu was only given
for a fixed spanwise extent of −δ to δ. Also, as discussed previously,
the density characteristic length is not necessarily equal to the veloc-
ity characteristic length. Considering those issues, the agreement is
quite encouraging.

V. Conclusions

The work described in this paper is most fundamentally a novel
application of an industry standard measurement tool, a Shack–
Hartmann wave front sensor. This tool, which had classically been
used to measure wall-normal aerooptical distortion in turbulent
flows, was applied along the spanwise direction. It was demon-
strated that in this case some important fluidic statistics, like the
local convective velocities and the spanwise integral scales, can be
directly extracted from aerooptical distortions, measured by the
wave front sensor. Because of various contaminating effects, spe-
cific to the wave front measurements, like subaperture and aperture
attenuation effects, several data analysis techniques were revisited
in order to correctly compute uncontaminated levels of aerooptical
distortions OPDrms at different wall-normal locations. The empiri-
cal model was used to provide an estimate of the true deflection
angle spectra in the presence of contamination at the low end of the
spectra. The cleaned-up spectra were used to calculate OPDrms as a
function of the wall-normal direction. To properly extract the con-
vective speed of the aerooptical structures, two techniques, the
spectral cross-correlation method and the dispersion method, were
used. It was demonstrated that in cases where the spatial resolution
was not sufficiently high the spectral cross-correlation was cor-
rupted by spatial aliasing effects and resulted in biased estimates of
the convective speeds. A dispersion analysis, based on the 2-D
Fourier transform of optical signal in multiple spatial points, was
shown to avoid the aliasing issue. Using the redundancy in tempo-
ral/spatial information in multiple spatial points and the nature of
discrete 2-D Fourier transform, a new technique, called the stacking
method, was proposed. This technique was shown to correctly
reconstruct the 2-D spectrum and accurately compute the convec-
tive velocity.
A canonical subsonic turbulent boundary layer was used to

demonstrate the ability of the optical technique to extract important
fluidic parameters, like the velocity profile and the spanwise corre-
lation lengths. Note that the proposed technique can also be imple-
mented to study other spanwise-uniform turbulent flows, like planar
shear layers or two-dimensional wakes. Hot-wire measurements
were performed to provide the mean velocity statistics in the boun-
dary layer for comparison purposes. In the log region, the optically
measured convective velocity was shown to be in good agreement
with the mean velocity obtained using a single hot wire. Coupled
with the Clauser method, the analysis of the convective velocity in
the log-linear region provided an estimate of the skin friction
coefficient, which was found to be within 10% of the skin friction
coefficient computed from the hot-wire data. The largest short-
coming of optically measured convective velocity was found to
be the presence of intermittency effects in the outer region of the
boundary layer.
Using the extracted levels of aerooptical distortions and the

strong Reynold’s analogy, a wall-normal distribution of the spanwise
density correlation length was estimated. An approximately linear
behavior for the spanwise correlation length with respect to the
distance to the wall was observed, consistent with Townsend’s
attached eddy hypothesis. The values of density correlation length
were quantitatively consistent with the velocity correlation lengths,
extracted from velocity correlation functions. The extracted density
correlation lengths, along with traditional velocity-based correlation
lengths, can be used to study the large-scale structure in turbulent
boundary layers.
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Eq. (17). Estimates of OPDrms�y� are from Fig. 17. The insert shows
zoomed-in results.
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