
Optical Characterization of a Simulated Weakly Compressible
Shear Layer: Unforced and Forced

Alice M. Nightingale,∗ Stanislav Gordeyev,† and Eric J. Jumper‡

University of Notre Dame, Notre Dame, Indiana, 46556

DOI: 10.2514/1.34244

This paper uses a discrete-vortex code to examine a shear layer’s response to forcing at its origin and to develop a

relationship between a shear layer’s optical characteristics and the commonly used characteristic growth length,

vorticity thickness. The code and its thermodynamic overlay have been used in previous studies to predict the

optically aberrating characteristics of relatively high-Mach-number, subsonic shear layers that can be classified as

weakly compressible. A weighted-average natural frequency is introduced and used to characterize the unforced

shear layer in terms of an optical characteristic length referred to as optical coherence length. It is shown that optical

coherence length is related to vorticity thickness by a factor of approximately 3.18. The study also shows that the use

of single-frequency forcing produces a regularized shear layer for distances preceding the point at which the

unforced shear layer’s natural frequency matches the forcing frequency. In the case of the forced shear layer, a

greater thickness is produced closer to its point of origin until collapsing onto the unforced shear-layer thickness past

the point of regularization. The aberration periodicity is shown to have lower robustness toward the furthest

downstream extent of regularization due to uncontrolled pairing.

Nomenclature

A = aperture of laser beam, amplitude of forcing
C� = vorticity thickness growth rate constant
C� = optical coherence length growth rate constant
ff = forcing frequency
fn = natural optical frequency
KGD = Gladstone–Dale constant
n = index of refraction
R = velocity ratio
s = density ratio
Uc = convective velocity, �uU � uL�=2
uL = lower freestream velocity in the x direction
uU = upper freestream velocity in the y direction
x = streamwise or flow direction
y = normal direction to the plane of the shear layer,

perpendicular to the main flow
�vis = shear-layer thickness
�! = vorticity thickness
� = momentum thickness
�j = jitter angle
�n = optical coherence length
� = dimensionless velocity ratio
�L = lower stream density
�U = upper stream density
� = phase shift of forcing function

Introduction

W HEN an otherwise planar optical wave front is made to
propagate through a relatively high-Mach-number, subsonic

shear layer, the wave front becomes aberrated (see Fig. 1), adversely
affecting its far-field intensity pattern. This degraded far-field inten-
sity pattern is undesirable for use in optical systems. Although the
optical characteristics of free shear layers have been investigated
since the 1970s [1–3], it was only in the late 1990s that the cause of
optical aberrations in shear layers was found to be the large-scale
structures that naturally “roll up” [4]. More specifically, it was found
that the radial pressure gradients, and associated density deficit
required to support the curvature of the structure, were the cause of a
large part of the optical aberrations [4]. For a Mach 0.8/0.1 shear
layer, like the one experimentally investigated in [5,6], the aber-
rations approximately 0.5 m downstream from its point of origin are
sufficient to reduce its far-field intensity by more than 80% of its
otherwise unaberrated, diffraction-limited far-field intensity. These
measurements were taken using a 1 �m laser beam given an aperture
of at least a 20 cm [1].

It has long been known that placing a conjugate waveform on the
optical wave front of a laser beam before its transmission through the
aberrating medium results in the emergence of a planar-wave front
beam as it leaves the medium (see Fig. 1). Systems that sense the
aberration and construct and apply the proper conjugate waveform at
regular time intervals are termed adaptive-optic (AO) systems [7].

A traditionalAOsystemoperates in consecutive steps, thefirst step
being to sense the aberration for which a conjugate must be
constructed. For projecting systems, the aberration of an incoming
optical signal (or the remaining residual aberration after a correction
has been made) at any given instant is measured using a wave front
sensor (WFS). A conjugate constructor (CC), sometimes referred to
as a reconstructor, then determines the distorted pattern necessary to
make corrections.Although the rate atwhich theCC is able to convert
wave front measurements into command signals is important, in
general the CC is typically much faster than theWFS and, at present,
does not form the bandwidth-limiting step. This conjugate (or some
portion of it; see Fig. 1b) is then sent to a deformablemirror (DM), for
which the electromechanical character, including its source of
excitation (i.e., amplifiers), limits the rate at which it can respond to
signals adjusting its figure. The conjugatewave front is placed on the
laser before its propagation through the aberrating turbulence by first
reflecting it off the DM (see Fig. 1b).

In the traditional approach, the control system is a feedback system
that forms another bandwidth-limiting step/component in the AO
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system. This last step has been extensively studied by Tyson [7] and
others. Typically only�1=10th of the residual error can be removed
for each DM update (usually the clock time of the WFS) to keep
feedback approaches stable. This update rate is often referred to as
the system gain, 0.1 in this case. On the other side of the equation is
the bandwidth requirement set by the aberrating flowfield itself. As
described in Tyson [7] and reexamined and affirmed specifically for
aero-optic disturbances by Cicchiello and Jumper [2], an aberration
must be removed approximately 10 times per its aberration-
coherence-length clearing time to restore 80% of its diffraction-
limiting performance. This means that assuming a system gain of 0.1
and that the system-limiting component is the wave front sensor for
an aberrating flow that initially reduces the Strehl ratio to less than
0.1, for a traditional AO approach, in which an aberration has a
clearing frequency through the aperture of 1 kHz, the wave front
sensor must frame at 100 kHz in real time to restore an 80% Strehl
ratio. The fastest real-timewave front sensors that exist today operate
at an order of magnitude lower than this. Even if a real-time wave
front sensor of this speedwere available, other components in theAO
system would form a barrier to correcting a 1 kHz aberration, yet the
aberrations posed by a high-Mach subsonic shear layer are at least
1 kHz [8–12].

Realizing that such bandwidth requirements make traditional
approaches unrealistic, this paper explores the beginning stages of an
alternative approach to performing adaptive-optic corrections of a
laser propagating through a high-speed subsonic shear layer. The end
goal will be to use flow control to “regularize” the shear layer’s aber-
rating character, effectively reducing the bandwidth requirements
necessary to perform adaptive-optic corrections. Two separate
experiments performed at Notre Dame, with a forced heated jet and a
forced shear layer, have been conducted showing successful
adaptive-optic corrections of the emerging laser using an open-loop
phasing technique [9]. In a less contrived manner, a control system
will be required to perform this optimization in real time without
resorting to open-loop,manual amplitude, and phase adjustments. To
develop the required control system, it will be necessary to develop
models of each component in the system, including the shear layer
itself and its optical response to forcing.

The results shown in this paper were obtained using a discrete-
vortex-based code referred to as the “weakly compressible model”
(WCM). Developed by Jumper and Hugo [11] and Hugo [13] and

improved by Fitzgerald and Jumper [4] and Fitzgerald [14], this
code was first used to develop wave front sensors and later to dis-
cover the physics of the aberrating mechanism in a matched-total-
temperature shear layer [4]. The weakly compressible model has
been shown to closely match the optical response of an unforced
shear layer [12,15]. This paper describes the first steps in perform-
ing system identification of a shear layer’s response to forcing using
the weakly compressible model. The paper will give a brief descrip-
tion of the code and a review of comparisons between the code’s
unforced characteristics and those of the experimental shear layers.
Subsequently, a measure of the shear layer’s optical characteristics
will be defined. In particular, a relationship between a shear layer’s
optical response and more-traditional measures of a shear layer’s
fluid-mechanic structure found in the literature will be established.
Finally, the shear layer’s response to forcingwill by analyzed in terms
of its optical character.

Weakly Compressible Model

A detailed description of theweakly compressible model discrete-
vortex-based code can be found elsewhere [4]; however, a brief
description of its underlying components will be given here. The
code uses a two-dimensional discrete-vortex method to compute the
velocity field for a free shear layer that originates at a splitter plate; it
has been used to simulate shear layers with high-speed sides up to
Mach 1.0 [15]. In even the highest-speed cases, the convectiveMach
numbers were less than 0.45 and, as discussed in Fitzgerald and
Jumper [4], such shear layers are referred to as weakly compressible,
making incompressible approaches to predicting the velocity field
only slightly in error when neglecting the dilitation terms [4,16]. The
unsteady velocity field resulting from the discrete-vortex method
forms the basis for computing the thermodynamic properties. The
thermodynamic properties are found by overlaying the momentum
and energy equations (along with an isentropic estimate of total
temperature variation) onto the velocity field by first back solving for
an initial estimate of the pressure field. Iterative corrections for the
temperature and density fields are then performed until a self-
consistent field of thermodynamic properties is converged upon.
Once the converged density field is known at each time step, the
density is converted to an index of refraction using the Gladstone–
Dale constant.

As described in [4], the largest contributor to the optical aber-
rations in the shear layer is the formation of coherent structures in
the shear layer under the influence of the Kelvin–Helmholtz inst-
ability. In the convecting frame, these coherent structures form
vortices with diameters that roughly match the vorticity thickness of
the shear layer and contain high flow curvature. This curvature gives
rise to concomitant pressure gradients that in turn give rise to
relatively deep low-pressure cells or “wells” within the vortices
accompanied by drops in the local density. Local regions of higher
pressure and density that form in the local stagnation regions or
saddle points along the braids between vortices (in the convecting
frame) also contribute to the aberrating character of the shear layer.
The most controversial part of this explanation for the physics of the
shear layer’s aberrating character was the notion that relatively deep
pressure wells could form in a shear layer, because the prevailing
thought at the time was that static-pressure fluctuations in a shear
layer were negligible, based on the so-called strong Reynolds
analogy [4]. However, experiments performed to investigate
fluctuating pressure showed that the actual pressure wells measured
in these vortices closely matched the predictions of the weakly
compressible model [12]. The optical character was also shown to
closely match the predictions of the weakly compressible model
[12]. Figure 2 gives selected results from these comparisons.
Extensive comparisons of the discrete-vortex code with experiments
have been reported elsewhere as well. Among these is the
comparison of the amplification of disturbances input at the splitter
plate to the theoretical linear-stability amplification factors. These
latter comparisons showed good agreement with theory, which
itself has been shown to be in good agreement with experiments
[4,13,14].

Fig. 1 Shown are the following: a) planar-wave front propagated

through a turbulent shear-layer flow and emerging aberrated, and b) the

effect of placing a conjugate correction on the beam before propagation.

NIGHTINGALE, GORDEYEV, AND JUMPER 2299

D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

N
ot

re
 D

am
e 

on
 A

pr
il 

10
, 2

01
3 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.3
42

44
 



This paper uses results obtained from the weakly compressible
model to investigate the relationship between a shear layer’s vorticity
thickness and its optical characteristics. An analysis of the shear
layer’s response to forcing is also presented.

Characteristics of Unforced Shear Layers

In general, most experimental studies characterize a shear layer in
terms of its thickness measure, the most common of which is
either the shear layer’s vorticity thickness, �!, or the shear layer’s
momentum thickness, �, given, respectively, by

�! �
uU � uL
�@u
@y
�max

(1)

and

��
Z �1
�1

u�y� � uL
uU � uL

�
1 � u�y� � uL

uU � uL

�
dy (2)

where u�y� represents the streamwise velocity component as a
function of vertical location, y, for a given downstream location.
These two measures are approximations of the on-average structure
size in the vertical or normal direction to the plane of the shear layer.
Although highly turbulent, on average a shear layer experiences a
linear growth rate in terms of its vorticity thickness and momentum
thickness due to the pairing/amalgamation process undergone by the
large-scale vortical structures convecting downstream. Extensive
experimental studies of shear layers with convective Mach numbers
of less than �0:45 were performed by Brown and Roshko [3], who
were among the first to predict a shear layer’s growth rate by

�!
x
� C�

�1 � R��1� s12�
�1� Rs12�

(3)

whereR� uL=uU, s� �L=�U, andC� � 0:085. Several simulations
with varying convective velocities and velocity ratios were
performed comparing the weakly compressible model results to the
corresponding predicted growth rate based upon Eq. (3) (see Table 1)
given an assumed density ratio, s, of 1.0. Figure 3 shows the vorticity
thickness versus downstream distance for a free shear layer with an
upper freestream velocity of 261:04 m=s, and a lower freestream
velocity of 34:7 m=s simulates the flowfield experimentally studied
in [5,6]. The numerically computed vorticity thickness (shownby the
triangles in Fig. 3) has an approximate growth rate of 0.131, closely
resembling the predicted growth rate from Eq. (3) of 0.130, where
R� 0:13 and s� 1:0 (shown by a solid line in Fig. 3). It should be
noted that the DVM often overpredicts shear-layer growth rates for
actual gas flows at the speeds simulated [5]; however, it still provides
considerable insight into the flowfield characteristics assuming a
density ratio of 1.0.

The thermodynamic properties, including time-dependent density
fields, were then computed from the series of velocity fields and used
to determine the effect of a laser propagating through the shear layer.
In each of the computations referred to in this paper, a series of
approximately 8000 time steps was run, with approximately 33 �s
between time steps. Simulations were performed using an initial
vortex core size of 0.01725m and a rectangular velocity grid spacing
in both the x and y directions of 0.005 m. A simulated beam with an
aperture of 0.25 m was swept along the x direction (propagated
perpendicularly through the flowfield) to the obtain optical path
length and optical path difference measures [see Eqs. (4) and (6) for
their definitions]. The following section derives another thickness

Fig. 2 Comparison: a, b) predictions of the weakly compressible model [4], and c, d) experiment [11,12].
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measure in terms of the shear layer’s optical characteristics. The goal
of this analysis is to provide a means of characterizing a shear layer’s
optical properties and link those back to the commonly used vorticity
thickness measure defined earlier.

Optical Response of the Shear Layer

As described in [4], the index-of-refraction fields are sufficiently
weak that a simple integration through the field in the y direction can
be used to compute the optical path length (OPL) as a function of
position and time:

OPL �x; t� �
Z
y2

y1

n�x; y; t� dy (4)

where the index of refraction is related to the density by

n�x; y; t� � 1� KGD��x; y; t� (5)

The optical path difference, OPD�x; t�, may then be computed by
removing the spatially averagedOPL over the aperture from the local
OPL according to

OPD A�x; t� � OPD�x; t� � OPDA�x; t� (6)

producing awave front that is advanced or retarded as a function of x
from the mean phase over the aperture. The optical wave front is
defined as the locus of points along which the beam’s phase is
constant. It can be shown [13] that the displacement of thewave front
from the mean at an instant in time, t, has the conjugate value of the

OPD�x; t�. Because of this, it is common for the wave front to be
described as the OPD.

According to Huygens’s principle, a wave front will propagate in
a direction normal to itself. Concomitantly, a small-aperture laser
beam initially normal to an incoming laser’s wave front, directed
through an aberrating flowfield in the y direction, will emerge
normal to the outgoing aberrated wave front [10] at an angle,
�j�x; t�, defined as

�j�x; t� � arctan

�
� dOPD�x; t�

dx

�
(7)

When a small-aperture beam is projected through an experimental
turbulent flowfield, its emerging angle, �j�x; t�, can be recorded at
high rates exceeding 100 kHz. This time series of angles is referred
to as the beam’s “jitter.” The results in Figs. 4 and 5 were obtained
by numerically propagating small-aperture laser beams through the
flowfield at several locations downstream from the splitter plate.
Time-varying jitter signals were obtained from the weakly
compressible model by calculating a time series of the OPD from
the density field using Eqs. (4–6) and computing jitter angles using
Eq. (7).

The frequency content of the jitter signal is clearly related to the
coherent structures in the shear layer [4] and, as such, contains
information about the coherence lengths of the aberrating structures
convecting through the beam. Figure 4 shows the power spectral
density (PSD) of the jitter signals at selected downstream locations
from the splitter plate. A mean or “natural optical frequency” at each
x location was computed from the PSDs according to

fn�x� �
R
PSD�f; x� f dfR
PSD�f; x� df (8)

where the n subscript on f indicates the “natural,” unforced optical
frequency in the shear layer at the particular x location. Figure 5
shows a plot of the natural optical frequency versus the distance from
the splitter plate. It should be noted that Eq. (8) provides a means of
calculating the average frequency versus the downstream distance
based upon numerical data. Therefore, when applying this method to
experimental data, great care must be taken in filtering out any

Fig. 4 Average PSD for numerically flow-induced jitter angles at

various locations downstream from the splitter plate, where uU �
261:04 m=s and uL � 34:7 m=s.

Fig. 3 Vorticity thickness versus downstream distance for an unforced

shear layer, where uU � 261:04 m=s and uL � 34:7 m=s.

Table 1 Numerical and analytical characteristics

with corresponding convective velocities and

velocity ratios (s� 1:0)

Uc, m=s R ��n=�x ��!=�x

106 0.06 0.42 0.15
147.9 0.08 0.43 0.15
147.9 0.13 0.37 0.13
148.5 0.15 0.32 0.12
117.5 0.18 0.33 0.12
127.5 0.19 0.30 0.11
147.9 0.28 0.25 0.09
117.5 0.31 0.22 0.09
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frequencies not associated with the shear-layer dynamics themselves
[6]. The results displayed in Figs. 4 and 5 were obtained using a
numerical sample rate of approximately 33 �s. At each x location,
the PSD was calculated by averaging 20 different data sets, each
containing a series of 2048 consecutive time steps. The PSD plots
and averaged natural optical frequencies for a given set of flowfield
conditions are shown in Fig. 4.

As mentioned earlier, these frequencies can be related to an
average optical coherence length by dividing the convection velocity
by the natural optical frequency:

�n�x� �Uc=fn�x� (9)

As each coherent vortical structure passes through one of the small-
aperture lasers, the beam undergoes one full cycle of beam jitter
corresponding to one full wavelength of optical coherence length
[13]. This means that optical coherence length, as defined in Eq. (9),
is a measure of the statistical on-average streamwise size of large-
scale vortical structures passing through the laser beam (i.e., spacing
between large-scale structures). Figure 6 shows a plot of the optical
coherence length versus downstream distance from the splitter plate.

Similar to vorticity thickness (Fig. 3), which provides ameasure of
the shear layer’s thickness in the vertical/normal direction, the
unforced shear-layer structures also experience a linear growth rate in
the streamwise direction. However, when comparing Figs. 3–6, a
difference between the growth rate values in these two directions is
evident. This particular shear-layer case produces a numerical optical
coherence growth rate of 0.37 compared with a numerical vorticity
thickness growth rate of 0.131. Several shear-layer cases were
simulated with varying upper and lower stream velocities to further
investigate this difference in growth rates. Each case was simulated
using a rectangular grid with 0.005 m spacing in the x and y
directions. Time averaging was calculated using a sample size of
approximately 8000 time steps given an approximate time step of
33 �s. Each jitter signal was evaluated at a single location in space,
simulating an “infinitesimal” small-aperture beam. Time-averaged
vorticity thicknesses and time-averaged optical coherence lengths
were numerically computed to determine the relationship between
these two measures of structure size. Figure 7 shows a plot of the
numerical vorticity thickness growth rate versus numerical optical
coherence length growth rate. A linear fit was used to determine the

factor relating these two shear-layer measures, for which the norm of
the residuals was approximately 0.026.

As seen in Fig. 7, the unforced shear-layer structures grow at a rate
approximately 3.18 times greater in the streamwise direction as
compared with the normal direction. Therefore, the optical
coherence length closely defines the measure of vorticity thickness,
with a factor of 3.18 being the relationship between the coherence
length in the x direction (related to vortex spacing) and the shear-
layer thickness in the normal, or y, direction (related to vortex size). It
is important to notice that this factor of 3.18 is larger than the factor of
1.5–2.0 found in Brown and Roshko [3], who described the rela-
tionship between coherent-structure scale size, �!, in a shear layer
and the visual shear-layer thickness, �vis. This difference is
attributable to fact that the natural optical frequencydefined inEq. (8)
is essentially a measure of the vortex spacing in the x direction rather
than the visual shear-layer thickness. The factor of 3.18 agrees with
results given in [3,8], in which it is noted that a shear layer’s large-
scale structures are typically spaced a distance of approximately
3 times the shear layer’s thickness at each respective x location.

Fig. 7 Numerically computed optical coherence length growth rate

versus vorticity thickness growth rate given varying upper and lower

stream velocities.

Fig. 6 Optical coherence length versus downstream distance for an

unforced shear layer, where uU � 261:04 m=s and uL � 34:7 m=s.

Fig. 5 Downstream distance, x, from the splitter plate versus natural

optical frequency, fn, for an unforced shear layer, where uU �
261:04 m=s and uL � 34:7 m=s.

2302 NIGHTINGALE, GORDEYEV, AND JUMPER

D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

N
ot

re
 D

am
e 

on
 A

pr
il 

10
, 2

01
3 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.3
42

44
 



The results shown in Fig. 7 are listed in Table 1 along with their
respective convective velocities and velocity ratios. On average, both
the optical coherence length growth rate and the vorticity thickness
growth rate increase as the ratio of lower stream velocity to upper
stream velocity decreases. In other words, as the difference in
velocity between the upper and lower streams increases, so do the
rates at which the large-scale structures grow, as well as the spacing
between them.

Although a density ratio, s, of 1.0 has been assumed throughout
this numerical study, it seems reasonable that the form of the well-
established vorticity thickness growth rate equation [Eq. (3)] [3,17],
would also be relevant for optical coherence length growth rates.
Therefore, optical coherence growth rate may be predicted by

�n

x
� C�

�1 � R��1� s12�
�1� Rs12�

(10)

where the new constant,C�, is equal to 0.27 (this valuewas obtained
by multiplying the vorticity thickness constant [3] by the scaling
factor of 3.18 derived earlier). As already noted, theDVMcommonly
overpredicts a shear layer’s growth rate; therefore, a numerical
correction factor is needed to compare the analytical optical coher-
ence length growth rate [Eq. (10)] with the numerically computed
growth rates. A correction factor of 0.86 was computed based on the
numerical results given in Table 1 and the analytically calculated
growth rates using Eq. (10) (assuming a density ratio of 1.0). Apply-
ing this correction factor to Eq. (10), the predicted optical coherence
length for the shear-layer case studied earlier (Fig. 6) was computed
and plotted against the numerically computed growth rate. Figure 8
shows good correspondence between the analytical optical coher-
ence growth rate of 0.36 and the numerical optical coherence growth
rate of approximately 0.37.

For applications in which optical (nonintrusive) measuring
techniques are more appropriate, optical coherence length provides a
means of analyzing and characterizing the shear layer’s flow
dynamics. It also affords a linkbetween the commonly used thickness
characteristics and optical characteristics of the shear layer. Such a
relationship becomes beneficial when analyzing the optical response
of a shear layer to forcing described in the following section.

Response of the Weakly Compressible Model to Forcing

A recent numerical study by Freund and Wei [18] and an
experimental investigation byRennie et al. [19] showed that themost
effective means of forcing a shear layer is to displace the edge of the
splitter plate in the direction normal to its surface. In the case of the
discrete-vortex code, forcing was simulated by inserting the first
vortex into the shear layer displaced from the splitter-plate edge in the
vertical, y, direction by an amount

d�t� � A sin�2�fft� �� (11)

A range of frequencies and amplitudes were applied to several
different shear-layer cases to establish the response of a shear layer to
forcing as predicted by the weakly compressible model.

Fig. 9 WCMpredictions of vorticity thickness versus downstream distance for a forced shear layer with an upper stream velocity of uU � 261:04 m=s
and a lower stream velocity of uL � 34:7 m=s: a) results for a shear layer forced at a frequency of ff � 650 Hz with varying forcing amplitudes, and

b) results for a shear layer forced at varying frequencies with an amplitude of A� 2:5 mm.

Fig. 8 Natural coherence length versus downstream distance for an

unforced shear layer, where uU � 261:04 m=s and uL � 34:7 m=s.
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Figures 9 and 10 each show two plots of the effect of forcing in
terms of vorticity thickness and optical coherence length,
respectively. The vorticity thickness versus downstream distance
for a shear layer forced with a range of amplitudes given a constant
forcing frequency, ff � 650 Hz, is shown in Fig. 9a, and the shear
layer forced with varying frequencies while maintaining a fixed
amplitude, A� 2:5 mm, is shown in Fig. 9b [per Eq. (11)]. The
obvious effect of forcing is to abruptly increase the shear layer’s
growth rate and then “stabilize” its thickness for a region preceding
the position atwhich the shear-layer thicknesswould have been in the
unforced case; at this point the forced shear layer begins growing at a
rate similar to the unforced shear layer. The shear layer’s spreading
rate is therefore slightly suspended before pairing and continuing to
spread again. Increasing the forcing amplitude moves the sudden
thickening of the shear layer, related to the structure roll up, closer to
the splitter plate. This is in agreement with previous research studies
that measured the growth of shear layers under the influence of
forcing [8,18]. In an experimental study performed by Wygnanski
and Oster, similar trends were observed for a forced mixing layer
[20]; increasing the forcing amplitude resulted in an earlier and
more robust stabilization of the mixing layer, and decreasing the
forcing frequency moved the region of regularization further
downstream.

Figure 10 shows the optical coherence length versus downstream
distance for the same set of varying forcing conditions. It is clear that
the information contained in Figs. 9 and 10 displays similar trends.
The obvious difference is that the vorticity thickness shows a flatter
slope in the “region of regularization” than the optical coherence
length. This is due to the fact that, as the structures evolve and
convect, the spacing between them grows slightly in the flow
direction while retaining approximately the same thickness in the y
direction, thus causing the optical coherence length to maintain a
slight increase with downstream distance in the regularized region.
This can be seen more clearly when studying plots of the shear-layer
loci, the locus of points indicating the locations of the discrete
vortices that define the undulation of the shear layers “contact
surface.” Figure 11 shows two such plots of the shear-layer loci, one
for the unforced shear layer shown in Fig. 11a and the other for the
forced shear layer shown in Fig. 11b.

The results displayed in Figs. 9–11 also agree well with
Wygnanski and Oster’s prediction of a mixing layer’s spatial extent
of regularization. In [20], a regularized region, delineated by an array

of quasi-two-dimensional large-scale vortices that do not interact
with one another, is defined by the locations, x, satisfying the
following inequality:

1< ��ff=Uc�x < 2 (12)

Fig. 11 Single realization of a shear-layer loci simulated using the

weakly compressible model: a) unforced, and b) forced at 650Hzwith an

amplitude of 2.5 mm.

Fig. 10 WCM predictions of optical coherence length versus downstream distance for a forced shear layer with an upper stream velocity of

uU � 261:04 m=s and a lower stream velocity of uL � 34:7 m=s: a) results for a shear layer with ff � 650 Hz with varying forcing amplitudes, and

b) results for a shear layer forced at varying frequencies with A� 2:5 mm.
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where � is a dimensionless velocity ratio defined as

�� �uU � uL�=�uU � uL� (13)

Given the set of parameters simulated in Figs. 9–11, in which the
forcing frequency is equal to 650 Hz, Eq. (12) predicts a regularized
region between 0.3 and 0.6 m downstream from the splitter plate.
This prediction corresponds well with the region of regular coherent
large-scale structures shown in Fig. 11. The optical coherence length
provides a very useful characterization of the shear layer’s growth
rate in terms of its optical properties. It also aids in the selection of the
appropriate forcing frequency necessary to regularize a specified
region within the shear layer.

Conclusions

Numerical two-dimensional high-Mach-number subsonic shear
layers and related optical aberrations were studied using a discrete-
vortex method coupled with the weakly compressible model. The
model was shown to qualitatively and quantitatively match experi-
mentally observed shear-layer evolution and, hence, used to study
the optical characteristics of the unforced and forced free shear layer.
The results reported in this paper demonstrate that optical inter-
rogation of a variable-index-of-refraction shear layer yields similar
information to other methods of documenting the shear layer’s
characteristics. Optical coherence length, a statistical measure of the
on-average large-scale structure size in the streamwise direction,
showed a linear growth rate of approximately 3.18 times that of the
vorticity growth rate. This factor agrees with previously reported
vortex spacing discussions. Because a linear relationship exists
between the shear layer’s vorticity thickness, �!, and its optical
coherence length, �n, optical measurements provide a nonintrusive
means of measuring the shear layer’s local structure size in the x
direction and could be useful when intrusive ways of measuring
thickness are difficult or impossible, as in chemically or thermally
hostile environments (jet-engine exhaust, for example).

This numerical studydemonstrated that it is possible to regularize a
high-Mach-number subsonic shear layer through forcing, corroborat-
ing with previously run experimental investigations. In agreement
withpreviouslypublishedstudies, the forcedshear layerwasshownto
experience an increased growth rate early on, until a region of
stabilized growth was achieved. Within this region of regularization,
large-scale coherent structures retain a relatively constant vertical/
normal sizewhile slightly growing in the streamwise direction.As the
structures convect downstream, a pairing or merging process is
eventually undergone, at which point the forced shear layer begins
growing at a rate similar to the unforced case. Stabilizing the fluid
mechanicsof theshear layeralsoregularized itsopticalcharacteristics.

This study was performed specifically to investigate the applic-
ability of using flow control to regularize the shear layer and its
optical characteristics, with the goal of determining an estimation
model of the emerging aberrated wave front. Such an estimation
model would be used in an alternative AO approach, in which a
prediction of the wave front aberrations would be “fed forward” and
synchronized with the actual shear-layer-induced aberrations using a
phase-locked-loop feedback control scheme.
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