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The chordwise, unsteady pressure difference field for harmonically oscillating airfoils operating in the attached

flow, light dynamic stall, and deep dynamic stall regimes has beenmodally decomposed to identifywell-definedmodal

structures that persist across a vast parameter space of pitching parameters (i.e., reduced frequency, mean angle of

attack, and oscillation amplitude). The pressure difference fields were acquired at a chord Reynolds number and

Mach number ofRec � 1.12 × 106 andM∞ � 0.2, respectively, demonstrating results applicable to rotorcraft flight

conditions. Notably, only fourmode shapes were required to reconstruct the aerodynamic loads anywhere within the

parameter space. Likewise, the samemode shapes showed a remarkable ability to reconstruct the aerodynamic loads

of other (non-native) airfoil geometries with a similar precision. The parametric modal decomposition outlined

provides a foundation to elucidate the physics of the dynamic stall phenomenon as well as reduced-order modeling

techniques for the aerodynamic loading.

Nomenclature

Cm = quarter-chord pitching moment coefficient
Cn = normal force coefficient
Cp = pressure coefficient
c = chord length, m
d = modal coefficient
f = pitching frequency, Hz
k = reduced frequency; 2πfc∕U∞
M = Mach number
p = pressure, mbar
Rec = chord-based Reynolds number; cU∞∕ν
RMP = relative magnitude parameter
s = span, m
T = oscillation period, s
t = time, s
U = mean velocity, m∕s
u = fluctuating velocity, m∕s
x = dimensional chordwise coordinate, m
_α = pitch rate, deg/s
α = angle of attack, deg
α0 = mean angle of attack, deg
α1 = oscillation amplitude, deg
γ = specific heat ratio
η = correlation value
λ = eigenvalue
ξ = nondimensional chordwise coordinate; x∕c
ψ = mode shape

Subscripts

airfoil = on airfoil surface
i, j, n = index counter

inv = calculated inviscid value
rms = root-mean-square value
sp = stall penetration
ss = static stall value
steady = steady flow condition value
unsteady = unsteady flow condition value
∞ = freestream

Superscripts

l = on airfoil lower surface
u = on airfoil upper surface
� = fluctuation with respect to steady, viscous value
# = spatially integrated value

I. Introduction

W ITH its long-standing influence on the rotorcraft, wind energy,
and turbomachinery communities, the problem of dynamic

stall continues to cultivate new investigations concerning the physical
mechanisms underlying the process. These are motivated by attempts
to better understand, model, and control its aerodynamic influence
on airfoils. This flow phenomenon is characterized as the unsteady
separation evolution inwhich stall is delayed as a lifting surface rapidly
exceeds its static stall angle of attack. Associated with such a motion
trajectory are the initiation, growth, detachment, and convection of a
large, coherent, vortical structure that forms near the airfoil leading
edge that is known as the dynamic stall vortex. The emergence of this
flow structure introduces large fluctuations in the pressure field and
consequently develops nonlinear aerodynamic loadings, exhibiting
large excursions with respect to typical static aerodynamic behavior.
These nonlinear aerodynamics often result in impulsive loading of the
mechanical system, leading to the excitation of aeroelastic instabilities
and reduced fatigue life of critical components [1].
Despite being the topic of an extensive body of research spanning

the past six decades, the dynamic stall process remains to be fully
understood and accurately predicted for arbitrary airfoil motions and
geometries. Ericsson and Reding [2] stated that, “only if the unsteady
stall mechanism is understood can an ‘analytic extrapolation’ to full
scale [rotors] be made with confidence,” conveying the importance
and difficulty of predicting the unsteady process. Historically,
theoretical modeling of unsteady aerodynamics is limited to attached
flow cases such as the classical solutions contributed by Theodorsen
[3], Wagner [4], and von Kármán and Sears [5]. Because of the
difficulties found in accurately and consistently predicting the stall
process, engineering efforts for the design of advanced airfoil
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sections rely heavily on experimentally driven, semi-empirical
models. Examples include the Leishman–Beddoes [6], the ONERA
[7], and the Goman–Khrabrov [8,9] models, which have system
coefficients and time-delay parameters that are tuned by regression
fitting with experimental results for steady and dynamic pitching of
the airfoil under investigation. These models have proven to be
computationally faster and less expensive than full computational-fluid-
dynamics simulations [10].However, they require the experimental data
that are beingpredicted, or at thevery least,minimal unsteady testing for
all airfoils considered. In this sense, the models are “postdictive” in
nature. To continue the advancement of rotor blade technology, it is
desirable to have a dynamic stall model that is computationally robust
and requires few input parameters to describe the airloads for the
geometry under consideration. Additionally, it is important in model
development to distinguish betweengeneric aspects of the dynamic stall
process and those that are geometry specific.
In light of these shortcomings, this paper will demonstrate a modal

decomposition of an airfoil surface pressure field that results in a
robust low-order representation of the dynamic stall phenomenon in
terms of the pressure response on the airfoil surface, providing the
foundation for an efficient reduced-order model. The model basis is
developed using parametric modal decomposition (PMD) [11,12],
which not only allows the unsteady surface pressure field of an airfoil
to be accurately reconstructed but also provides a framework for
additional in-depth analysis of the dynamic stall phenomenon using
sparsedata-basedmachine learning techniques toextract parsimonious,
nonlinear dynamical system representations [13–16].
The remainder of this paper is organized as follows. Section II

presents the formulation for the parametric modal decomposition.
The experimental setup is found in Sec. III. Results for the modal
decomposition are found in Sec. IV. And Sec. V discusses the
conclusions drawn from the results with suggestions for future work.

II. Parametric Modal Decomposition

Parametric modal decomposition (PMD) expresses a multidimen-
sional function in modal form where the leading coefficients contain
the parameter space dynamics, and the mode shapes form an optimum
reduced basis, fromwhich the dynamical systemmay be reconstructed
with the least amount of modes compared to any other basis. Consider
the cycle-averaged pressure on an airfoil, p�ξ; α; k; α0; α1�, where
ξ � x∕c is the nondimensional chordwise location, α is the angle of
attack, k � πfc∕U∞ is the reduced frequency (a ratio of convective to
imposed pitch motion time-scales), α0 is the mean angle of attack, and
α1 is the amplitude of the cyclic pitch motion. The pressure field is
expressed in terms of an expansion of purely spatial orthonormal
modes ψ i�ξ� that provide an optimal representation of the pressure
field over the given parameter space,

p�ξ; α; k; α0; α1� �
X
i

di�α; k; α0; α1�ψ i�ξ�; kψ ik2 � 1 (1)

The modes are optimum in the sense that they reconstruct the
pressure fieldwith theminimal number ofmodes. The dynamics of the
pressure field within the parameter space is embodied in the modal
coefficients di. The coefficients are obtained from the orthogonality
condition of the spatial modes,

di�α; k; α0;α1� �
Z
Ωξ

�p�ξ; α; k; α0; α1� ⋅ ψ i�ξ�� dξ (2)

where Ωξ represents the domain ξ ∈ �0; 1�.
The spatial modes are obtained from solving the following integral

eigenvalue problem

Z
Ωξ

hp�ξ; α; k; α0;α1� ⋅ p�ξ 0; α; k; α0; α1�iψ�ξ 0� dξ 0 � λψ�ξ� (3)

where hp�ξ;α; k; α0; α1� ⋅ p�ξ 0; α; k; α0; α1�i � R�ξ; ξ 0� is the auto-
correlation function, averagedover theparametric space (α,k,α0,α1), of
p�ξ; α; k; α0;α1� and λ is the corresponding eigenvalue [17].Modes are
prioritized according to their relative energy ER by comparing
respective eigenvalues, where ER � λi∕

P
j λj.

This technique is similar to proper orthogonal decomposition
(POD),where a spatiotemporal data set is spectrally decomposed into
time varying coefficients and spatial mode shapes. However, PMD
differs from POD in that the modal coefficients carry information
concerning the entirety of a multidimensional parameter space and
may be viewed with respect to any given parameter whereas POD is
usually applied to a signal at a fixed point in the parameter space. For
example, previous applications of POD to dynamic stall investigations
[18–20] have focused on the reduction of velocity fieldmeasurements,
obtained using particle image velocimetry (PIV), to identify flow
features associated with the phenomenon at a fixed parameter space
location (i.e., fixed Mach number, mean angle of attack, oscillation
amplitude, and frequency). In contrast to conventional POD, the PMD
approach provides modes that are globally optimized across the full
parameter space (α, k, α0, α1) of the reported experiments.

III. Experimental Setup

All experiments were performed in the Mach 0.6 closed-return
wind tunnel located at the University of Notre Dame. A top-down
schematic view of thewind tunnel is shown in Fig. 1 alongwithmany
of its key features. The flow is drivenby a 1.3MW(1750hp) variable-
rotation-frequency ac motor that turns a 2.44-m-diam (8-ft-diam),
high-solidity, two-stage fan. At a given flow speed, equilibrium
temperature is achieved by actively cooling the turning vanes
downstream of the fan via 4.44°C (40°F) water. The flow is then
conditioned by a 12.7-cm-thick (5-in.-thick) honeycomb wall of
0.635 cm (0.25 in.) nominal diameter followed by five #28 wire

Fig. 1 University of Notre Dame Mach 0.6 wind tunnel, top view.
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screens leading to a 6∶1 inlet contraction. The resulting freestream
turbulence intensity level of the empty tunnel is urms∕U∞ ≈ 0.05%.
The tunnel has three interchangeable test sections, of which one

has been retrofitted to accommodate unsteady, pitching airfoil
experiments. This test section is depicted in Fig. 2 along with the
pitching mechanism. A more detailed description of the test section
internal structure is shown in Fig. 3. Airfoil models are mounted
between two 1.905-cm-thick (0.75-in.-thick) aluminum splitter
plates having elliptical leading edges and tapered trailing edges. The
airfoil models are fixed to oscillate about their quarter-chord position. Each sideof anairfoilmodel is fittedwith a1.27-cm-thick (0.5-in.-thick)

Lexan end plate (rotating disk), which is housed inside the splitter plate
and secured with an aluminum enclosure, creating a labyrinth seal.
Instrumentation cables are carried out of the test section opposite the
pitching mechanism, whereas the pitching motion is driven through a
drive shaft, connected to the mechanism. The drive shaft and wire shaft
are both supported by passing through ball bearings housed in
aluminum casings that are secured to the test section floor and located
just outside of each splitter plate. The bearing houses facilitate the
transmission of aerodynamic loads to the test section.
The pitching mechanism, constructed in partnership with Bell

Helicopter, is a unique dual-input walking beam design that allows
two-degree-of-freedom motion to be prescribed on the airfoil test
article. A detailed, labeled view of the pitching mechanism is shown
in Fig. 4. The adjustable pitch link is used to control themean angle of
attack α0 by varying its length. Oscillation amplitude, provided by
each flywheel input, is controlled by offsetting the respective spindle
placement from the center using theAcme threads. Thewalking beam
acts as a mechanical adder of the two frequency and amplitude inputs
from the two flywheels, to produce complex pitching trajectories at
the torque tube connection. Each flywheel is driven by a Marathon
7.457 kW (10 hp) Black Magic 420 VAC motor. Dynapar internal
encodersmonitored byYaskawaF-7 drives provide rotation-frequency
control independently for each motor. For the purposes of this
experiment, only single-frequency pitching motions were considered.
To achieve a single-frequency output, brakes are applied to the second
flywheel (right), and only the first motor (left) is driven.

A. Airfoil Models

Three different airfoil test articles were used throughout the course
of the experiments. The considered geometries are a NACA 23012
and two custom designs denoted PA1 and PA2. Details regarding the
essential geometric characteristics of the airfoils are provided in
Table 1. Each airfoil model was constructed from three high-strength
aluminum (Al 7075-t6) pieces as shown in Fig. 5. This design
facilitated the proper installation of flush-mounted unsteady pressure
transducers and safe internal storage of transducer cables while
maintaining a rigid housingwith hydrodynamically smooth surfaces.
To lower the inertial loading, improve the stability of the system, and

Fig. 2 Dynamic stall test section and pitching mechanism.

Fig. 3 Test section internal pitching structure.

Fig. 4 Pitching mechanism detail.

Table 1 Airfoil characteristics

Airfoil
Leading-edge
radius,%c

Thickness,
%c

Camber,
%c

Leading-
edge mode

αss,
deg

NACA23012 1.581 12.00 1.8 —— 14.3
PA1 0.589 9.98 1.9 Tripped 13.0
PA2 0.987 11.43 2.2 Tripped 13.2
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provide wire paths, two large spanwise sections were removed from
the internal mass. Each model chord length was set at c � 0.254 m
(10 in.) and had a span of s � 0.3556 m (14 in.) to operatewithin the
test section splitter plates as previously described. These dimensions
result in a maximum blockage of ≤5% at the maximum angles of
attack encountered in the experiments, making their effect negligible.
The NACA 23012 model is depicted in Fig. 6, showing the spanwise
cutouts, wire storage, and instrumentation installation. A similar
approach was used for the construction of the other airfoil models.

B. Instrumentation

1. Surface Pressure

Unsteady surface pressure was measured along the midspan of
each airfoil model using 31–33 high-frequency response, absolute
pressure transducers manufactured by Kulite and Endevco as shown
in Table 2. The measurable pressure range for the Kulite transducers
was 0–1723 mbar (0–25 psia) with a frequency response up to
240 kHz. Likewise, the Endevco transducers exhibited a pressure
range of 0–1034 mbar (0–15 psia) with a frequency response up to
180 kHz. The transducers were positioned along the chord using a
cosine distribution described as

ξn � 1 − cos

�
nπ

2N

�
(4)

where N � 16, n � 0; 1; : : : ; N − 1, and ξn is the nondimensional
chord station of the pressure transducer (N � 15 on the NACA
23012). The last pressure port was located at ξ16 � 0.981
(ξ15 � 0.975 on the NACA 23012) due to both the finite thickness of
the sensor and the sharp trailing edge of the airfoil geometries.

2. Freestream Pressure

The freestream static and total pressure aremeasured approximately
1 m (3.28 ft) upstream of the center of the splitter plate assembly via a
pitot static probe. Each output of the probe is connected to an
independent Setra model 270 high-accuracy, absolute, barometric
pressure transducer. The Setra model 270 transducers used have an
accuracy of�0.03% Full Scale (FS) with a 0.027% FS linearity. The
measurable pressure range is 600–1100 mbar (8.70–15.95 psi).

3. Angle of Attack

The instantaneous angle of attack was monitored by connecting the
wire shaft (Fig. 3) to a PositekRIPSP500 inductive rotary sensor, fixed
to the tunnel outerwindow.The sensor has a linear output of 0–5Vover
the range 0–60 deg. The output has a frequency response greater than
10 kHz and a noise level less than 0.02% Full Scale Output (FSO).

C. Data Acquisition

The analog pressure signals were low-pass, anti-alias filtered at
2.5 kHz before being amplified and DC offset to provide the highest
signal-to-noise ratio possible. All pressure (freestream and surface)
and angle-of-attack signals were then simultaneously digitized at a
sampling frequency of fs � 5 kHz by a Microstar Laboratories
DAP5380a and three MSXB 028 simultaneous sampling boards,
which offer 12-bit resolution. The digitized time-series data were then
stored for post-processing.

IV. Results

Experiments were performed on each of the airfoils listed in Table 1
in a parameter space that encompassed unsteady attached flow, light
stall, and deep stall regimes at M∞ � 0.2 and Rec � 1.12 × 106. In
each case, the surface pressure fieldwas decomposed using PMDwith
the objective of discerning both common and disparate features of
dynamic stall across the full parameter space. Throughout this analysis
the aerodynamic loads are considered as a compliment assisting in the
physical interpretation of PMD mode shapes. The two loads used are
the normal force and the quarter-chord pitchingmoment described in a
nondimensional form as

Cn �
Z

1

0

�Cl
p − Cu

p� dξ (5)

Cm �
Z

1

0

��Cl
p − Cu

p� ⋅ �0.25 − ξ�� dξ (6)

respectively,where the superscripts indicate the lower (l) and upper (u)
surfaces of the airfoil. The pressure coefficient Cp is defined as

Cp � 2

γM2
∞

�
Ps;air foil

P∞
− 1

�
(7)

Fig. 5 Three-piece airfoil construction.

Fig. 6 NACA 23012 model.

Table 2 Pressure transducer details

Chord station Pressure sensor

Number xn∕c Manufacturer Type Diameter, mm (in.)

0 0.0000 Kulite XCL-062-25A 1.60 (0.066)
1a 0.0030 Kulite XCL-062-25A 1.60 (0.066)
2 0.0055 Kulite XCL-062-25A 1.60 (0.066)
3 0.0219 Kulite XCL-062-25A 1.60 (0.066)
4 0.0489 Kulite XCL-093-25A 2.40 (0.095)
5 0.0865 Kulite XCL-093-25A 2.40 (0.095)
6 0.1340 Kulite XCL-152-25A 3.80 (0.152)
7 0.1910 Kulite XCL-152-25A 3.80 (0.152)
8 0.2569 Kulite XCL-152-25A 3.80 (0.152)
9 0.3309 Kulite XCL-152-25A 3.80 (0.152)
10 0.4122 Kulite XCL-152-25A 3.80 (0.152)
11 0.5000 Kulite XCL-152-25A 3.80 (0.152)
12 0.5933 Kulite XCL-152-25A 3.80 (0.152)
13 0.6910 Endevco 8515C-15 6.35 (0.250)
14 0.7921 Endevco 8515C-15 6.35 (0.250)
15 0.8955 Endevco 8515C-15 6.35 (0.250)
16 0.9810 Endevco 8515C-15 6.35 (0.250)

aNot on the NACA 23012.
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where γ is the specific heat ratio,M∞ is the freestreamMach number,
Ps;air foil is the airfoil surface pressure, and P∞ is the freestream
static pressure. A modal contribution to the aerodynamic loads will be
defined in Sec. IV.B.

A. Change of Reference Frame

A change in reference frame is first applied to view the unsteady
surface pressure field over the pitching airfoil as a perturbation to
the steady, attached flow pressure field. That is, the steady, viscous
pressure field, obtained from static measurements, is removed from
the experimental dataset. Here, steady refers to a collection of static
measurements taken at multiple angles of attack.
To assess the validity of the steady experimental results, the Cn

values from two previous experiments involving a NACA 23012
produced by NACA [21] (open squares) and Leishman [22] (crosses)
are also displayed in Fig. 7. The Reynolds number of the current
experiment is Rec � 1.12 × 106. Similarly for the NACA and
Leishman experiments, this value was Rec � 1.6 × 106. Here,
excellent agreement is realized in the normal force coefficient slope
∂Cn∕∂α, for all three experiments, and the stall angle of the current
experiment matches that realized in Leishman’s work.
The pressure field calculated from a static Smith–Hess panel

method (corrected for viscous effects via static experimental results
in the fully attached flow regime) is removed from the experimentally
acquiredunsteadypressure fields, leaving theunsteady surfacepressure
coefficients defined as

C�
p�ξ; α; _α� ≡ Cp�ξ; α; _α� − Cp;static�ξ; α� (8)

By moving to this reference frame, the PMD analysis produces
spatial modes of theC�

p field that represent, by definition, perturbations
from the static, attached flow pressure field. As such, this field will
account for both separation and unsteady effects.
The process of changing the reference frame has been illustrated

using the NACA 23012 airfoil due to the large body of literature that
supports the current experimental results, which is not available for
the custom airfoils used in this work. However, it should be noted that
moving to this frame is a generic procedure that can be calculated for
any arbitrarily chosen airfoil geometry.

B. ψ-Mode Calculation

This section presents the application of PMD to the PA2 airfoil.
Table 3 provides the pitchmotion parameters used for each experiment
involving the PA2 geometry. Here, the pitching amplitude and the
freestream Mach number have been fixed at α1 � 8 deg and
M∞ � 0.2, respectively. This corresponds to a chord Reynolds
number of Rec � 1.12 × 106. Likewise, each experiment listed in
Table 3 consists of∼100 pitching cycles,which has been demonstrated
to be adequate for achieving stationary statistics [23]. The resulting

flow regime produced for each experiment is designated in Table 3 as
attached flow pitching (AF), light stall (LS), and deep stall (DS).
Because the aerodynamic loads during attached flow pitching are well
understood from analytical techniques [3–5], the cases here are
weighted based on the number of experiments in the LS and DS
regimes where leading-edge vortices and large, unsteady pressure
fluctuations exist.
Typically, low-ordermodelsof dynamic stall focus on reconstructing

the aerodynamic loads for a given pitching trajectory [24]. For this
reason, it is advantageous to consider the pressure difference field
associated with the calculation of the aerodynamic loads, that is,
ΔC�

p�ξ;α; _α;k;α0�≡Cl�
p �ξ;α; _α;k;α0�−Cu�

p �ξ;α; _α;k;α0�. This pres-
sure difference field is the kernel of the integration defining both the
normal force loading and the quarter-chord pitchingmoment as defined
in Eqs. (5) and (6), respectively. Using this pressure field should
produce a more rapidly converging reconstruction of the aerodynamic
loads compared to the decomposition of the full pressure field C�

p as
discussed by McCroskey [25].
The pressure difference field ΔC�

p collection assembled from the
experiments in Table 3 is decomposed into parameter-independent,
purely spatial, orthogonal ψ modes [ψ � ψ�ξ�] as was demonstrated
for the surface pressure field in Eq. (1). Each ψ mode contributes to
the aerodynamic loads as

C�
n;i
PMD

�α; _α� � di�α; _α�
Z

1

0

ψ i�ξ� dξ|������{z������}
C#
n;i

(9)

C�
m;i
PMD

�α; _α� � di�α; _α�
Z

1

0

�ψ i�ξ� ⋅ �0.25 − ξ�� dξ|��������������������{z��������������������}
C#
m;i

(10)

Here, C#
n;i and C#

m;i are the spatially integrated normal force and
quarter-chord moment contributions, respectively. Notice that these
values are constants regardless of the position within the parameter
space. The magnitude of each modal contribution to the total
aerodynamic loads is then the modal coefficient di modulated by the
spatially integrated value, C#

n;i or C
#
m;i. Although the ΔC�

p modes are
ordered by their respective eigenvalues, λi (i.e., the scale of themodalFig. 7 Comparison of static Cn.

Table 3 PA2 parameter cases (α1 � 8 deg,
M∞ � 0.2, U∞ ≈ 70 m∕s, Rec � 1.12 × 106)

Case number α0, deg k Type

1 7 0.020 AF
2 7 0.050 AF
3 7 0.075 AF
4 8 0.020 LS
5 8 0.050 LS
6 8 0.075 LS
7 9 0.020 LS
8 9 0.050 LS
9 9 0.075 LS
10 10 0.020 LS
11 10 0.050 LS
12 10 0.075 LS
13 11 0.020 LS
14 11 0.050 LS
15 11 0.075 LS
16 12 0.020 DS
17 12 0.050 DS
18 12 0.075 DS
19 13 0.020 DS
20 13 0.050 DS
21 13 0.075 DS
22 14 0.020 DS
23 14 0.050 DS
24 14 0.075 DS
25 15 0.020 DS
26 15 0.050 DS
27 15 0.075 DS
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coefficients di), the modal contributions to the aerodynamic loads
may rearrange their order of significance due to the imposed
modulation of the integrated mode shapes. To demonstrate, consider
the relative magnitude percentage (RMP), defined as

RMP � λi ⋅ jC#
x;ijP

j
λj ⋅ jC#

x;jj
× 100% (11)

and the suggested ψ i-mode ordering based on the respective RMP
values. The j ordering tells where the ith mode should be due to the
modulated eigenvalue magnitude as shown in Table 4.

Table 4 shows a very rapid convergence for each aerodynamic
load with greater than 99% of the signal energy (calculated as the
cumulativeRMP) represented in just the first two and first fourmodes
forC�

n andC
�
m, respectively. In fact, retaining only the first twomodes

yields anRMPof 99.7% forC�
n and 97.8% forC�

m. Based on theRMP,
only two modes are rearranged from the PMD eigenvalue ordering
when considering the normal force reconstruction and none are with
the quarter-chord moment.
Figure 8 uses themodal eigenvalue i ordering to show the first four

ψ mode shapes, modal coefficients, and modal aerodynamic load
contributions. In each subfigure of the modal coefficients and
aerodynamic loads, three cases representing attached flow pitching
(α0 � 6.7 deg, k � 0.020), light stall (α0 � 9.7 deg, k � 0.050),
and deep stall (α0 � 13.9 deg, k � 0.078) are depicted as functions
of nondimensional time t∕T, where T is the airfoil oscillation period.
Examining the aerodynamic load coefficientsC�

n andC
�
m, it is quite

remarkable that the first two modes ψ1 and ψ2 appear to be the sole
significant contributors to both loads for all pitching regimes (i.e.,
attached flow pitching, light stall, and deep stall). Also, the third and
fourth modes ψ3 and ψ4 supply additional information for the
quarter-chord moment reconstruction but appear to be of minimal
contribution to the normal force. This result suggests that the

Table 4 PMD eigenvalues and aerodynamic load
contribution parameters

Parameter ψ1 ψ2 ψ3 ψ4 ψ5

Cn RMP, % 97.48 2.19 0.12 0.17 0.02
Order [j] 1 2 4 3 5
Cm RMP, % 90.69 7.11 0.97 0.96 0.16
Order [j] 1 2 3 4 5

Fig. 8 PA2ΔC�
p ψ-mode load contributions: attached flow,α0 � 6.7 deg,k � 0.020 (dashed line); light stall,α0 � 9.7 deg, k � 0.050 (dotted line); and

deep stall, α0 � 13.9 deg, k � 0.078 (solid line).
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dynamic stall phenomenon, as viewed from the pressure difference
field, can primarily be decomposed into two linearly independent
contributing factors, which has obvious benefits in obtaining a low-
order dynamic stall model.
The first mode ψ1 appears to describe the loss of suction pressure

in the leading-edge region during airfoil pitch-up. Based on the
growth of the modal coefficient d1 during pitch-up (t∕T � 0 → 0.5)
and decay during pitch-down (t∕T � 0.5 → 1.0), it is clear that the
suction pressure in the near leading-edge region (as a perturbation of
the calculated attached flow value) is severely degraded as the angle
of attack increases in incidence. The idea of suction pressure loss is
further supported by the contributions of ψ1 to the normal force and
quarter-chord pitching moment, where each decreases to a large
negative value as the angle of attack rises. In a similar manner, on the
airfoil pitch-down (t∕T > 0.5), mode 1 describes a more gradual
reestablishment of leading-edge suction as both C�

n�t∕T;ψ1� and
C�
m�t∕T;ψ1� increase from large negative values and approach zero

at the end of the cycle.
The second mode shape ψ2 exhibits a large suction pressure

loading that peaks in the vicinity of the midchord and, therefore,

is likely responsible for describing the pressure difference response
due to the presence of the aft-propagating dynamic stall vortex.
Supporting this claim, the modal coefficients d2 for both the light
and deep stall cases show a similar functional form, whereas the
attached flow pitching trajectory (a casewhere no vortex is expected
to exist) is fundamentally different. Likewise, evidence of the
dynamic stall vortex is generally realized by the introduction of
large fluctuations in the quarter-chord pitching moment due to the
vortex’s aftward propagation over the airfoil. These fluctuations
are seen in the quarter-chord pitching moment contributions
C�
m�t∕T;ψ2� for light stall and deep stall and not for attached

flow pitching, which again suggests that ψ2 is associated with the
dynamic stall vortex. The ψ2 mode serves to generate a large nose-
down pitching moment perturbation as evidenced by C�

m�t∕T;ψ2�
that coincides with augmentation of the normal force as evidenced
by C�

n�t∕T;ψ2�. This impulsive negative pitching moment is
the primary source of high control loads limiting operational
performance and contributes to airframe vibration, which reduces
fatigue life of major components during the retreating blade stall
event on helicopter rotors.

Fig. 9 PA2 deep stall aerodynamic load reconstruction. Label definition in text. Approximation plots: phase-averaged experimental data (solid line),
standard deviation (shaded area). Difference plots:�5%maximum amplitude (shaded area).
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C. Aerodynamic Load Reconstruction

To demonstrate the efficiency of the PMD in capturing the
unsteady aerodynamics across the parameter space, aerodynamic
load reconstructions are considered using the mode shapes showing
the largest contributions (i.e., ψ1, ψ2, ψ3, and ψ4). As an example,
Figs. 9 and 10 depict the reconstructions of the normal force (top) and
quarter-chord pitching moment (bottom) for a deep stall case
(α0 � 13.9 deg, k � 0.078) and light stall case (α0 � 9.7 deg,
k � 0.050), respectively. Note that these loads are the full
representation with the calculated static attached flow component
[Cp;static�ξ; α� in Eq. (8)] included. The rows labeledCx�α�approx show
the phase-averaged experimental data as a solid line with the shaded
area representing experimental standard deviation while the PMD
approximation is shown as a dash-dotted line. Likewise, Cx�α�diff
gives the difference between the phase-averaged experimental values
and the PMD approximation to investigate which parts of the
trajectory have deficiencies. The upstrokemotion is a dashed line, the
downstroke motion is a dotted line, and the shaded region represents
�5% of the load maximum amplitude (C�

x jmax − C�
x jmin). The

abscissa of each subfigure represents the values of stall penetration
angle of attack αsp � α − αss, where αss is the static stall angle of
attack.
The one mode approximation using ψ1 captures the overall shape

of each load trajectory. In Fig. 9, the lift slope change that occurs
toward the top of the pitch trajectory that has typically been
associated with the existence of the dynamic stall vortex is not
captured with just ψ1. Likewise, the sharp nose down pitching
moment associated with the aft advection of the dynamic stall vortex
is not realized. This behavior corroborates themode shape analysis in
Sec. IV.B that suggested ψ1 accounts primarily for the leading-edge
suction pressure loss.
Adding ψ2 to the approximations results in a nearly exact

reconstruction of the normal force for both the deep and light stall
cases. This result should be anticipated from the modal contributions
di, shown in Fig. 8, where only the first two modes contribute to the
normal force calculation. Likewise, the quarter-chord pitching
moment is well approximated for both cases, capturing the large
nose down moment due to the dynamic stall vortex. The largest

Fig. 10 PA2 light stall aerodynamic load reconstruction. Label definition in text. Approximation plots: phase-averaged experimental data (solid line),
standard deviation (shaded area). Difference plots:�5%maximum amplitude (shaded area).
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discrepancies are seen to be on the upstroke near the top of the
pitching trajectory for the deep stall case and case at the beginning of
the downstroke motion for the light stall case. These two locations in
the pitching trajectory both occur after the minimum quarter-chord
pitching moment in the pitching trajectory. One way to interpret this
result is that the final two modes, ψ3 and ψ4, serve to describe the
airfoil surface pressure response to the ejection of the dynamic stall
vortex into the wake. Adding these final two modes to the
reconstructions demonstrates an exceptional approximation for both
the normal force and quarter-chord pitching moment.
To quantify the efficiency of the four-mode reconstruction across

the parameter space, the approximation error is calculated using the
following metric:

Errorapprox �
1

Nt

� PNt

i�1 βi
C�
x �k; α0�jmax − C�

x �k; α0�jmin

�
× 100% (12)

where Nt is the number of time steps in the ensemble averaged
trajectory, C�

x is the load under consideration (x � n, m), and

βi�
8<
:
���C�

x �ti;k;α0�−
PNPMD

j�1 C�
x;j
PMD

�ti;k;α0�
��� if > std�C�

x �ti;k;α0��;
0 if <� std�C�

x �ti;k;α0��
(13)

Here, NPMD indicates the number of modes used for the
approximation. The term βi is simply the magnitude of the difference
between the experimental data and the approximated result at the
current ensemble averaged time stamp. However, if this difference is
less that the experimental standard deviation at this time stamp, then
βi is set to 0, meaning that the approximation falls within the range of
uncertainty of the experimental data. The resulting approximation
error percentage is shown in Fig. 11 for both aerodynamic loads in all
experimental cases. The abscissa for each subfigure is the collection
of mean stall penetration angle of attack α0 − αss for the pitching
cases. Likewise, the symbols within each plot differentiate the three
different reduced frequencies k considered, i.e., k � 0.020 (crosses),
k � 0.050 (open squares), and k � 0.076 (filled circles). Viewing the
error percentage in this way shows the effect of reduced frequency
and stall regime on the approximation.
It becomes immediately obvious that the normal force is very well

approximated across the entire parameter spacewith only twomodes

ψ1 and ψ2. Using this two-mode approximation, the error is below
3% for all cases. Once again, the addition ofψ3 andψ4 does not affect
the normal force approximation significantly, partly due to the fact
that the two-mode approximation represents the experimental data
so well.
The approximation error behavior for the quarter-chord pitching

moment is not immediately as intuitive. Using only the first modeψ1,
the reduced frequency shows a minimal effect compared to the
normal force one-mode approximation, whereas there is a distinct
correlation with the mean angle of attack. Adding the second mode
ψ2 results in a dramatic decrease in error for nearly every case except
for the lowest mean angles of attack, which correspond to attached
flowpitching. Interestingly, the quasi-steady (k � 0.020) cases exhibit
larger error than the unsteady cases with increasing magnitude as the
mean angle of attack grows. With the exception of the k � 0.076,
α0 � 8 deg case, every two-mode approximation has an error below
9%. Further reductions in error are realizedwith the introduction of ψ3

and ψ4, where the dependence on reduced frequency and mean angle
of attack is nearly removed.
The general trend of larger error for the pitching moment

coefficient at low stall penetration angles (i.e., α0 − αss < −5 deg)
was originally thought to be an artifact of the experimental weighting
toward stalled configurations in the PMD ψ-mode calculation (see
Table 3). To investigate the validity of this claim, PMDψ modeswere
calculated using only the experimental configurations in each of the
respective stall regimes: attached flow pitching (AF), light stall (LS),
and deep stall (DS). The resulting ψ-mode shapes are shown in
Fig. 12 where a correlation value comparing the mode shape to the
PA2 ψ modes used thus far (indicated as “FULL”) is calculated as

η �
Z
Ωx

ψ�ξ�FULL ⋅ ψ�ξ��##� dξ; �##� ∈ fAF;LS;DSg (14)

The first two mode shapes for each subset calculation show good
correlation with the FULL data set. However, the correlation of the
higher-order modes significantly decreases for the attached flow
pitching (AF) set, whereas the light stall (LS) and deep stall (DS)
modes maintain a good correlation. The reduced qualitative behavior
of the attached flow pitching subset higher-order modes (3 and 4) is
most likely attributable to two causes: 1) a lack of data to smooth
the behavior, or 2) a lack of coherent, repeatable structures in the
flowfield resulting in a more dissociated mode shape. It is also
interesting to note that, despite being well represented in the FULL

Fig. 11 PA2 aerodynamic load reconstruction error, defined in Eq. (12).
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Fig. 13 PA2 aerodynamic load reconstruction error using ψ modes calculated from subsets of the parameter space: attached flow basis (AF), light stall
basis (LS), and deep stall basis (DS).

Fig. 12 PA2 ψ-mode shape comparison of basis calculated from subsets of the parameter space: full experimental set (FULL), attached flow basis (AF),
light stall basis (LS), and deep stall basis (DS).
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Fig. 15 ψ-mode comparison using different airfoil data sets.

Fig. 14 Aerodynamic load reconstructions for the PA1 and NACA 23012 airfoils using the first four PA2 ψ modes. For label definitions, see the text.
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data set calculation, the light stall (LS) mode shapes do not correlate
as well as the deep stall (DS) mode shapes. In fact, the FULL PMD
mode shape set could very well be calculated from only the deep stall
data set without much change in the resulting reconstruction error.
Figure 13 shows the resulting parameter space reconstruction error

for each subset ψ-mode calcuation (similar format to Fig. 11). As
expected from inspection of themode shapes, theψ modes calculated
from only the attached flow pitching (AF) subset do a poor job of
reconstructing the light and deep stall normal force and quarter-chord
pitching moment. However, notice that the four-mode reconstruction
of the quarter-chord pitching moment error in the attached flow
pitching regime (α0 − αss < −5 deg) is no better than the deep stall
reconstruction, indicating (at least for the amount of data available to
calculate the AF ψ modes) that the error is not associated with
parameter space weighting. The light stall (LS) ψ-mode calculation
performs well in reconstructing the normal force throughout the
parameter space; however, the quarter-chord pitching moment is not
well constructed in the deep stall regime (α0 − αss > −1 deg). Only
the deep stall (DS)ψ-mode calculation reconstructs the entirety of the
parameter space, for both the normal force and quarter-chord pitching
moment, to the same level of fidelity as the FULL ψ-mode

construction, which was to be expected from inspection of the
correlation coefficients in Fig. 12.

D. ψ-Mode Reconstructions for Nonnative Geometries

The generic applicability of the derived ψ modes to describe
dynamic stall for other airfoil geometries is investigated in this section.
To do this, the pressure difference fields acquired from the PA1 and
NACA 23012 airfoils are projected onto the PA2 ψ modes to evaluate
the respective aerodynamic load reconstructions. Figure 14 shows the
four-mode (ψPA2

1 ,ψPA2
2 ,ψPA2

3 ,ψPA2
4 ) aerodynamic load reconstructions

for the PA1 and NACA 23012 airfoils in the light stall and deep stall
environments as indicated. The first and second rows represent the
normal force and quarter-chord pitching moment reconstructions,
respectively.Theabscissa of each subfigure is the stall penetration angle
of attack αsp. Perhaps somewhat unexpectedly, the reconstructions
demonstrate a remarkable ability to represent the experimental data
despite significant differences in the geometric parameters of the airfoil
shapes (Table 1). It should also be noted here that the PA1 has a tripped
leading-edge boundary layer similar to the PA2; however, the NACA
23012 results are for a natural transition behavior.

Fig. 16 NACA 23012 deep stall (α0 � 15.7 deg, k � 0.104) aerodynamic load reconstruction using the PA2 ψ modes.
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The excellent reconstruction behavior of the PA1 andNACA23012
aerodynamic loads using a nonnative ψ-mode set (PA2) suggests that
the pressuredifference fieldmayhave a similar structurewith respect to
PMD for the dynamic stall phenomenon regardless of the airfoil
geometry.
Figure 15 shows a comparison of the first four ψ-mode shapes

calculated for each airfoil geometry data set: PA2, PA1, and NACA
23012. As in Fig. 12, the η correlation value has been assigned using
the PA2 ψ modes as reference. The final column of subfigures shows
an overlay of themodes from each airfoil. Here, the first twomodes in
all cases show an excellent correlation indicating common features of
the dynamic stall process for all the airfoil geometries. Mode 3
exhibits a qualitative similarity across the different geometries;
however, the correlation value suggests a quantitative disagreement.
It appears that the reduction in correlation is due to a disagreement in
the chordwise location of the aft suction peak. PA2 has its peak
around η � 0.6, whereas the peak for PA1 is around η � 0.85. In
contrast, the NACA 23012 produces more of a suction pressure
plateau, resulting in the lowest correlation value. The fourth mode
shape is significantly different for each geometry, showing hardly any
qualitative similarities. The dissimilar behavior of the fourth mode
across the geometries is perhaps expected from the earlier PA2

analysis that suggested it may account for secondary flow structures,
which may well be more geometry specific.
To further examine the modal reconstruction convergence with

nonnative ψ modes, the NACA 23012 deep stall configuration
(α0 � 15.7 deg, k � 0.104) in Fig. 16 is expanded in a format
similar to the PA2 aerodynamic load reconstruction in Fig. 9.Because
of the correlation of modes 1 and 2 across the geometries, it is
observed that the normal force reconstruction maintains a rapid
convergence regardless of the airfoil from which the ψ modes are
calculated. Similarly, the quarter-chord pitching moment still
exhibits a four-mode convergence, despite the fact that the fourth
mode has little correlation between the geometries.
Finally, the PA2 deep stall case (α0 � 13.9 deg, k � 0.078) of

Fig. 9 is reconstructed using the nonnative NACA 23012 ψ modes as
shown in Fig. 17. As with the nonnative NACA 23012 reconstruction,
the PA2 aerodynamic load reconstruction demonstrates a remarkable
convergence, showing no significant discrepancies compared with the
experimental data by the addition of the fourth mode. Although the
normal force reconstruction shows some error on the downstroke with
only twomodes, the values all residewithin the experimental standard
deviation and provide an accurate representation of the aerodynamic
behavior.

Fig. 17 PA2 deep stall (α0 � 13.9 deg, k � 0.078) aerodynamic load reconstruction using the NACA 23012 ψ modes.
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Figure 18 gives the PA2 reconstruction error across the entire
parameter space using the nonnative NACA 23012 ψ modes.
Remarkably, similar trends as gleaned fromFig. 11 for the native PA2
reconstruction are observed. In fact, the two-mode reconstruction is
nearly identical in both trend and error magnitude. The largest
discrepancy is the three-mode quarter-chord pitching moment
reconstruction, in which the error actually increases in most cases
compared to the two-mode reconstruction. The final four-mode
reconstruction has a similar error magnitude for the normal mode
reconstruction, whereas the quarter-chord pitching moment has only
a slightly increased error magnitude compared to Fig. 11. The fourth
mode addition demonstrates the robustness of the PMD technique
where excellent reconstruction of both aerodynamic loads is still
achieved across the parameter space despite the low correlation
between ψPA2

4 and ψNACA23012
4 .

V. Discussion

The parametric modal decomposition (PMD) presented herein has
proven to be robust in the production of basis sets from which the
dynamic stall phenomenon can be efficiently investigated. Key
enabling procedures contributing to the observed efficiency of the
modal aerodynamic load reconstructions include the following:
1) the change of reference frame from the unsteady, viscous pressure
field to the unsteady perturbations around the calculated static
attached flow pressure field; and 2) using the pressure difference field
as opposed to the full surface pressure values. McCroskey [25]
suggested that the pressure difference field would be more forgiving
with respect to perturbations in the flowfield compared to the full
surface pressure field, where in the currently investigated cases
produced mode shapes that more or less correlated across the
parameter space.
With these two procedures, the pressure difference field collection

across a large rangeof operating conditions and airfoil geometrieswere
decomposed using PMD to produce mode sets that provided optimal
aerodynamic load and surface pressure field reconstruction throughout
the parameter space. The extracted mode shapes were even able to
reconstruct the pressure difference fields of nonnative airfoils (i.e.,
airfoils from which the mode shapes were not calculated).
Based on the results presented herein, it is conjectured that a two-

mode approximation is sufficient for reconstructing the unsteady
aerodynamic loads across all considered dynamic stall regimes
regardless of the airfoil geometry. This conjecture requires further
research for the modal structure of airfoils with varying static stall
behavior. Namely, the three airfoils investigated in this study all
exhibited leading-edge stall, whereas the modal behavior of

trailing-edge stall airfoils is currently unknown. If true, this
conjecture suggests that the dynamic stall phenomenon has a
consistent structure with respect to the pressure difference field
that is agnostic to the airfoil geometry. The presented parametric
modal decomposition provides a low-order basis from which the
dynamic stall phenomenon can be further investigated through the
modal coefficients.
An additional recommendation for further investigation is to

conduct a dynamical systems analysis of the modal coefficients
across the parameter space for both native and non-native ψ-mode
calcuations. Despite the pressure difference field being decomposed
into a linear modal basis, themodal coefficients for forced oscillation
inputs all exhibit nonlinear behavior when j _αj > 0. Several nonlinear
system modeling methods exist (e.g., Volterra series, particle filter
methods for nonlinear state-space representations, Koopman analysis,
etc.). These methods offer different lenses through which to view the
modal dynamics. The primary concern of this dynamical system
analysis is to define a way to establish the unsteady modal coefficients
given static airfoil data and a pitching trajectory and to quantify the
limits within which the parameters produce a valid reconstruction.
To support the physical interpretation ofmodes, it is suggested that

conditional sampling (or the recently derived full-state estimation
algorithm [16]) of time-resolved PIV of the external flowfield be
implemented. This technique will elucidate relationships between the
modal structure and nonlinear dynamics with corresponding flowfield
structures. Identifying contributing flowfield parameters will also
provide insight on the appropriate modeling techniques to be
implemented to avoid “black-box” methods.
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