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Spanwise Aero-Optical Measurements in a Subsonic 
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Aero-optical distortions of a subsonic boundary layer in a spanwise direction were 
experimentally investigated at different spatial resolutions. From these data, convective speeds 
were extracted as a function of distance from the wall and were found to agree with mean 
velocities, measured using a hot-wire. Deflection angle power spectra were also presented and 
analyzed. Several methods were introduced to mitigate corrupting effects, influencing 
deflection angle spectra. True OPDrms and qrms profiles were computed and the influence of 
spatial resolution on the accuracy of the measurements was identified and discussed. A 
constant, A, was proposed to exist between OPDrms and qrms that was found to decrease linearly 
from a value at the wall of A=15, to A=5 at y/d=0.4 where it remains constant for the remainder 
of the boundary layer. Finally, Sutton’s linking equation was implemented to extract spanwise 
correlation lengths, Lz. The spanwise correlation length was found to linearly increase 
throughout the full boundary layer. With known Lz and the A-constant, qrms data can be used 
to non-intrusively extract urms profiles.  

I.  Introduction 
OR turbulent flows, the turbulent structures cause density fluctuations which in turn alter the 
speed of light passing through the region spatially as well as temporally. This issue is 

generally referred to as the aero-optic problem [1,2] and has been one of the hindrances in 
furthering our capacity for using lasers on airborne platforms. Understanding the temporal and 
spatial turbulent fluctuations in a given flow would allow using lasers for high-speed and secure 
communication across hundreds of miles or as precision targeting systems for military purposes. 
It also provides a valuable insight into fundamental dynamics and properties of turbulent flows, as 
information about turbulent structures is “imprinted” onto the laser beam. 

The aero-optic problem is a direct result of the relationship between index-of-refraction, n, and 
density of air, ρ, via the Gladstone-Dale constant, KGD (which is approximately 2.27×10-4 m3/kg 
in air for visible wavelengths of light) by, 

  (1) 
where both index-of-refraction and density are functions of space and time. Unsteady turbulent 
structures in a flow will vary the index-of-refraction, deflect, distort and scatter the focused laser, 
and decrease the intensity of the beam at distances far away from the emitting device. To determine 
the extent to which turbulent density fluctuations effect the propagation of light, an Optical Path 
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Length (OPL) is defined as the integral of the index-of-refraction of a medium along the physical 
length traversed by a ray of light. Since index-of-refraction and density are related via Equation 
(1), OPL can be expressed as 

  (2) 

where z is the direction of beam propagation. The resulting deviation from the space-average OPL 
can then be expressed as the Optical Path Difference (OPD),  

 , (3) 
where the overbar denotes spatial averaging.  

Turbulent boundary layers are always present on an airborne platform and affect the outgoing 
laser beam even in the absence of point-and-track turrets. They are also one of the important 
fundamental flows with complex dynamics. Aero-optical properties of boundary layers have been 
extensively studied both experimentally [3 and references therein, 4, 5], and numerically [6].  

In previous studies [4, 5, and 7] the laser beam was propagated through the boundary layer 
either in a wall-normal direction or close to it, so the aero-optical effects were integrated along the 
beam, thus losing information about wall-normal variation of various boundary layer properties. 
In this study, the laser beam was transmitted in a spanwise direction in order to study this wall-
normal variation. 

A high-speed Shack-Hartmann wavefront sensor (WFS), was used to measure temporal-spatial 
variation of aero-optical distortions. As aero-optical distortion convect with turbulent structures, 
cross-correlating aero-optical aberration between two or more nearby spatial points provides a 
direct measurement of a convective speed of the structures [3,6,7,8]. By sending the laser beam in 
the spanwise direction, the flow velocity and density statistics of a turbulent boundary layer as a 
function of the wall normal distance can be directly and non-intrusively measured. Thus, wavefront 
sensors can be used as complimentary sensors, which, combined with traditional sensors like hot-
wires and PIV, can gain a deeper understanding of the nature of turbulent structures. In this study, 
hot-wire measurements were taken at the same location as the beam, for comparison purposes. 

For any wavefront sensor, integrated density is essentially the variable that is measured. There 
are very few other direct methods of obtaining density profiles besides measuring temperature and 
pressure at every point of interest. One of these is the use of acetone seeding and laser induced 
fluorescence [9]. This method has been proven to be effective yet carries with it a number of issues 
regarding calibration. Because of sensitivity to the density field only, any optical-based sensors, 
including wavefront sensors have a unique potential. Sutton [10] derived a theoretical formulation 
of a “linking equation” between turbulence quantities and OPDrms. In a simplified form, it is given 
as, 

𝑂𝑃𝐷$%&' = 2𝐾+,' ∫ 𝜌$%&' (𝑠)𝛬3(𝑠)
4
5 𝑑𝑠,                   (4) 

where OPDrms is the spatial root-mean square of OPD over an aperture, ρrms is the root-mean-
square density fluctuations, and Λρ is the density correlation length along the beam propagation, s. 
This equation has been validated both experimentally [3,5] and numerically [6,8]. Typically, the 

( ) ( ) ( )[ ] .1,,,,,,,,OPL dztzyxKdztzyxntyx
b

a
GD

b

a
òò +== r

( ) ( ) ( )txtxtx ,OPL,OPL,OPD !!! -=

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
N

O
T

R
E

 D
A

M
E

 o
n 

Ju
ne

 2
3,

 2
02

0 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

02
0-

32
35

 



3 
 

laser beam passes the boundary layer in the wall-normal direction and some estimates should be 
made to calculate the density variation along the beam [3,5]. However, by passing the beam in the 
wall-parallel direction, where the wall-normal direction, y, is constant, both the density 
fluctuations and the correlation length in the spanwise direction, LZ(y), are constant along the beam 
and Eq. (4) becomes 

.     (5) 
This allows for direct measurements of the product 𝜌$%&' (𝑦)Λ:(𝑦) as a function of the distance 
from the wall and gaining a further insight into the density structure in turbulent boundary layers.  

II.  Classical Convective Velocity 
Convective velocity is typically computed using a time-delayed two point correlation between 

flow parameters at two spatial locations in the streamwise direction [18, 19, 20]  The resulting 
time delay, coupled with the known separation between points, yields a velocity describing how 
flow parameters convect downstream. Embedded in this calculation is the assumption that the 
individual flow parameters remain coherent enough to be correlated. This assumption, known as 
Taylor’s Frozen Flow hypothesis, has been the topic of much scrutiny and examination [21, 22] 

It has been assumed in the past that the convective velocity and the local mean velocity are 
interchangeable. While this may work as a first guess, recent studies [21] have revealed that this 
is not strictly the case. Two factors have been linked to the discrepancy between the convective 
and the local mean velocities, namely a wall normal location and a streamwise wavelength, λx. It 
is likely that these two factors are connected or at the least, it is difficult to separate their influence, 
however we will attempt to discuss them separately.  

Del Alamo and Jimenez [21, 23], in their computational work on channel flows, found that the 
convective velocity near the wall appears to asymptote to a non-zero constant. In addition, while 
decomposing the convective velocity into large and small wavelengths revealed that the largest 
wavelengths convect at a nearly constant velocity independent of wall normal location and the 
small wavelengths generally follow the mean velocity everywhere except near the wall. In a similar 
study using PIV, LeHew et al [24] found agreement with the results of Del Alamo and Jimenez. 
Even though there is a wavelength dependence, there remains a discrepancy between the 
convective and the local mean velocities right next to the wall. This near wall deviation begins 
near the bottom of the log region, and interestingly, is still left unexplained.  

As to the wavenumber dependence, the results of Del Alamo and Jimenez show that the 
convective velocity increases with λx near the wall and decreases with λx away from it. The point 
of this transition where the convective velocity matches the local mean velocity was suggested by 
Chung and McKeon [25] to be coincident with the large scale streamwise energy peak in the log 
region. Jimenez [26] showed that the correlation height of eddies in a channel is roughly 
proportional to the magnitude of their wall-parallel wavelength, and that it reaches the half-width 
of the channel for the global modes. This is consistent with both observations that small eddies 
move with the local mean velocity and that the convection velocity of the global modes is roughly 
proportional to the bulk velocity Ub. 

LyyKyOPD ZrmsGDrms )()(2)( 222 L= r
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As was mentioned at the outset of this section, Taylor’s frozen flow hypothesis establishes a 
link between the frequency, f, and streamwise wave number, kx =2p /lx. In essence, this requires 
that the turbulence is frozen or evolves on a timescale much larger than the advective one, such 
that the conversion from space to time (or vice versa) can be made by using the local mean velocity 
as the convection velocity. To correct the velocity discrepancy, Del Alamo and Jimenez [21] and 
Moin [22] suggest using resolved spectral information in either space or time and on a local 
derivative in the other. This approach seeks to minimize the variance in the total derivative and as 
a result retains the frequency/wavenumber dependence of the convective velocity. 

III. Experimental Setup 
Wind tunnel tests were conducted to firstly understand the optimal operating parameters for 

spanwise optical deflection angle measurements. What is the necessary sampling frequency and 
spatial resolution to properly resolve optical distortions? What types of corrupting influences 
should one expect when collecting data? Can those corrupting influences be mitigated or removed? 
Second, these tests were conducted to understand what types of information can be learned about 
the flow from optical measurements, for example, the skin friction coefficient or spanwise 
correlation length. Lastly, the main purpose of this paper is to illustrate how to directly relate non-
intrusive optical measurements to velocity measurements.  

All measurements were conducted in the Whitefield facility at University of Notre Dame. The 
Whitefield facility is a Mach 0.6 closed-circuit wind tunnel powered by a 1750 horsepower 
variable RPM AC motor. It can be run at variable speeds at very low turbulence levels (< 0.4%). 
The tunnel has three interchangeable test sections that are each 9 m in length with 1 m2 square 
cross sections. Each of the four sides have three windows that are 0.61 m2 which are designed to 
give flexible optical access to the tunnel. The windows have the additional flexibility of being 
interchanged with aluminum inserts that can be used for mounting test models or other test section 
geometry. The boundary layer development plate used in this research is constructed of aluminum 
and elevated into the freestream using a series of 12 inch tall leg supports. The downstream end of 
the plate has an adjustable angle flap to establish a desired pressure gradient (in this study, a zero 
pressure gradient was used). The plate has a 0.5 inch gap between it and the wall on either side in 
an effort to minimize the influence of corner vortices on optical measurements [17]. 

A CTA hot-wire was used to map the boundary layer created by the plate and establish a 
baseline for further optical measurements. The hot-wire was calibrated in the range of Mach 
numbers 0.1 – 0.4, and the data was found to be in good agreement with a standard King’s Law 
Fit [11]. To calibrate the hot-wire, the tunnel was run at known speeds and voltage data from 
anemometer were collected. A best fit of the data when plotting voltage versus the known velocity 
yields the King’s Law constants A and B for n = 0.5. After the calibration, time series of the 
streamwise velocity were measured at 51 wall-normal locations with the sampling frequency of 
30 kHz for 30 sec. From the velocity data, both mean and fluctuating velocity profiles were 
extracted. The skin friction velocity, ut, needed to compute the inner units, was calculated from Cf  
as . The skin friction coefficient, Cf, in turn, was computed from ReQ using the / 2fu U Ct ¥=
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second Coles-Fernholz 2 relation with modified constants  [13]. 

Several characteristics of the studied boundary layer are provided in Table 1. 
 

Table 1: Boundary layer parameters.   

Mach 
Number 

Boundary Layer 
Thickness (d) 

Free Stream 
Velocity, U¥ 

Friction 
Velocity, 

ut  
Req Reτ H factor 

0.3 25 mm 100.8 m/s 3.2 m/s 19,975 5,517 1.33 
 
The Shack-Hartmann WFS was used to measure spatially and temporally resolved deflection 

angles. WFS uses a collimated beam to interrogate the flow. The laser beam was expanded to a 
50-mm beam and forwarded through the boundary layer in the spanwise direction, as shown in 
Figure 1. After being reflected back by the return mirror along the same way it came and increasing 
the signal by a factor of two, the returned beam was split off and forwarded onto the high-speed 
camera, a Phantom v1610. Data were collected by the camera at a variety of sampling frequencies 
from 130 kHz up to 311 kHz. To provide different spatial resolutions, different sets of re-imaging 
lenses were used. A full list of all test cases and related parameters is shown in Table 2.  The 
camera had a 38 mm focal length, with a 70 x 60 lenslet array attached, which splits the incoming 
beam into a rectangular array of smaller beams and focuses each of them onto the sensor. Knowing 
the instantaneous dot position’s displacement from the center, ∆x or ∆y, and the focal length of 
the lenslet array, the temporal deflection angle at different wall-normal locations, θ(x, y, t) = ∆x/f, 
were reconstructed using a small angle approximation as shown in Figure 2. 
 
Table 2: Experimental test cases and associated parameters.   

Test Case Mach 
Number 

Wall-normal Extent and 
Spatial Resolution (in 

parenthesis) in Outer Units 
(d) 

Wall-normal Extent and 
Spatial Resolution (in 

parenthesis) in Inner Units 
(+) 

Sampling 
Frequency 

1 (high 
resolution) 0.35 0.12d (D=0.012d) 680+ (D+ = 68) 311 kHz 

2 (medium 
resolution) 0.3 0.19d (D=0.019d) 1090+ (D+ = 109) 311 kHz 

3 (low 
resolution) 0.3 0.48d (D=0.048d) 2740+ (D+ = 274) 311 kHz 

4 (low 
resolution) 0.3 1.06d (D=0.048d) 6042+ (D+ = 274) 130 kHz 

Hotwire 0.3 1.2d (D=0.01d) 6840+ (D+ =57) 30 kHz 
  

[ ]22 2.604ln(Re ) 4.127fC q= +

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
N

O
T

R
E

 D
A

M
E

 o
n 

Ju
ne

 2
3,

 2
02

0 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

02
0-

32
35

 



6 
 

 
Figure 1. Schematic of a Shack-Hartmann wavefront sensor in a double-pass measurement 

configuration.  

 

Figure 2. Calculating the deflection angles in a lenslet array due to abberated wavefronts.  

 In an effort to accurately measure the wall normal distance of the first row of dots, the beam 
was aligned with the lenslet array so that the peak intensity of the first row of dots was half the 
intensity of the row above. If each dot is produced from light entering a square aperture centered 
at the dot location, clipping half of the light from entering the aperture using the wall edge should 
result in the wall being located at exactly the location of the dot. Therefore, the row of half intensity 
dots is the wall location and the full intensity dots of the row above are the first row of data. 

IV.  Calculating Convective Velocity 
Spatially-temporally-resolved optical wavefronts were used to compute convective speeds at 

different wall-normal locations using the two-point cross-correlation method. From the measured 
deflection angles, the spectra of the streamwise component of the deflection angles, , were 
computed for each lenslet sub-aperture. A critical assumption is made in calculating the convective 

( )fq̂
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velocity from  spectra, namely the frozen flow assumption. This assumption allows the 
deflection angle spectra between two parallel beams, separated by a small distance, Δ, in the flow 
direction, to be correlated and a convective time delay, τ, between two signals to be calculated. 
Thus, the convective velocity can be experimentally calculated from the argument or the phase of 
the spectral cross correlation, , where  and  denote the Fourier 

transforms of the time series of deflection angles from the upstream and downstream beams, 
respectively, and the star denotes the complex conjugate. Knowing the phase slope, the convective 
speed can be calculated as Uc = Δ/τ, where the time delay τ is computed from the slope of the 
argument, However, an advantage of the Shack-Hartmann sensor is that it 
has multiple points in the streamwise direction that can be correlated many times, the so-called 
multi-point cross-correlation method [7]. For example, a data set has 10 points in the stream wise 
direction. These 10 points can be each correlated with their neighbor for 9 unique correlations. In 
addition, each point can be correlated with the point two away for 8 more unique correlations. This 
process can be stretched as far as the number of available streamwise points but to not push the 
boundaries of the frozen flow assumption between points, this current analysis limits the 
multicorrelations to the first 4 seperations.  

The phase slope however, is unfortunately not always uniquely defined. For example, take a 
sample of phase data from the low spatial resolution case plotted in Figure 3. It is almost always 
the case that below 1 kHz, mechanical vibrations dominate the signal and result in little to no 
coherence in the phase. As a result, the slope needs to be practically computed apart from this 
influence. However, small variations in slope in this region have led to large differences in the 
computed convective velocity. The cause behind these subtle variations is still not fully understood 
but it is suspected that different scale structures at a given height in the boundary layer convect at 
different speeds and these scales occupy particular frequency bands. This presents a difficulty 
when computing convective velocity because there is no obvious way to sort these subregions of 
the phase plot as they are neither consistent in the wall normal direction or in the streamwise 
direction. This leaves two options: either one manually computes convective velocity for each 
individual frequency band for 100 (at minimum) lenslet correlations, or one maximizes the 
frequency bounds of the slope fitting algorithm to include everything except the low end corruption 
and have a composite calculation that lumps together all the subtle slope variations. Option one 
would no doubt result in a very interesting analysis of density scale evolution in the boundary 
layer, but option two is the more robust due to averaging out the smaller variations. However, due 
to the inclusion of hotwire measurements in this study, the mean profile is known and can be used 
in the reverse to understand which frequency bands have a slope that is consistent with a convective 
velocity equal to the mean velocity. 

 

( )fq̂

)(ˆ)(ˆ)( *
21 fffS JJ= ( )f1̂J ( )f2Ĵ

.2/)]([ pt=dffSdArg
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Figure 3. Sample phase plot illustrating low end corrupting influences and subtle slope 
inconsistencies.  
 

This analysis was used to generate the convective velocity profiles in Figure 4. In addition, this 
brought to light the influence of spatial resolution and the related aperture effects on the turbulence 
scales that are most visible. It has been shown in [3] that increasing aperture acts as a low-pass 
filter and the frequency bounds used to generate the profiles Figure 4 follow this trend. The high 
spatial resolution data required frequency bounds between 20 and 40 kHz to match the phase slope 
of the hotwire profile, whereas the low spatial resolution data (illustrated in Figure 3) needed 
bounds of 5 to 12 kHz.  

The log region of the profile is of particular interest. If the slope of the log region matches the 
hotwire mean profile, the friction velocity, ut, can still be extracted non-intrusively. Figure 5 shows 
the comparison of mean and convective velocity data sets, along with the theoretical line in the 
inner units, . The slope of the convective velocity profile matches 
that of the hotwire profile well. The tapering of the profiles to a constant near the wall has been 
observed by several other researchers [21, 22, 24] yet it would appear in our case to be dependent 
on the spatial resolution. The low spatial resolution data appears to taper to a u+ of 20 where the 
medium and high spatial resolution data tapers to a u+ of 18.5. It is suspected that the low spatial 
resolution case is unable to accurately resolve the small scales, which move slower than the large 
scales, and results in a higher convective velocity at the point nearest the wall. 

Overall, convective speeds inside the log-region, extracted from the deflection angle data, are 
correctly measured. Thus, the velocity profiles, extracted non-intrusively using the spanwise 
optical set-up, can be used to extract the friction velocity, ut, and the skin friction coefficient, Cf, 
via the Clauser method.  

 

CyuUU +×=º ++ )ln(/1/ kt
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Figure 4. Convective velocity profiles for all data sets (solid) and hotwire mean profile (dashed) for 
comparison.  

 

Figure 5. Convective velocity profiles in inner units.  
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V.  Analysis of Optical Spectra 
Power spectra of the deflection angles at different wall-normal locations were calculated and 

presented in Figure 6. The power spectra of the local deflection angles can be used to provide an 
insight into the scale and magnitude of density structures as a function of wall normal location. 
Figure 6 shows how the shape and magnitude of the power spectra evolve throughout the boundary 
layer for the low resolution data. Very close to the wall, the amplitude is at a local minimum and 
the peak is centered at a higher frequency of Std = 2.5. This peak occurs consistently at Strouhal 
number 2 to 2.5 near the wall up to y/d = 0.15, that is inside the log-region, with a power spectra 
magnitude roughly 20% of the maximum found in boundary layer at y/d = 0.5. Moving away from 
the wall into the outer region, for y/d = 0.15 to 0.5, the amplitude increases and the peak location 
shifts to lower frequencies, which corresponds to larger structures in this region. The high 
frequency end of the spectra, corresponding to the smaller structures, has a minimal effect on 
optical distortions due to the wavefront power spectrum and deflection angle power spectrum 
being related through the convective velocity and a factor of (2pf)2. The bulk of the distortions are 
due to larger, lower frequency structures in the outer region of the boundary layer, above y/d=0.5 
that all have a characteristic size of d, corresponding to a Strouhal number of 1. The decrease in 
magnitude above y/d=0.5 is again due to the reduction in density fluctuations as the boundary layer 
location approaches the freestream. The trends in the spectra in the current study are consistent 
with those of previous findings [16,17]. It should be noted that the low end proportionality to ~f 2, 
which results in a finite wavefront spectrum as frequency approaches 0, is not observed which 
indicates significant corrupting influences.  

 

 

Figure 6. Deflection angle power spectra evolution through the boundary layer with peak locations.  

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
N

O
T

R
E

 D
A

M
E

 o
n 

Ju
ne

 2
3,

 2
02

0 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

02
0-

32
35

 



11 
 

 
As will be shown in the following section, deflection angle power spectra form the basis for 

computing true or uncorrupted OPDrms. The significant low end corruption that was observed in 
Fig. 6, drastically changed computed OPDrms. In an effort to mitigate this corruption, a method 
developed by Smith et al. [7] was utilized. The method uses several spatial correlations of data at 
varying separations, similar to the method mentioned in the previous section, to split the spectrum 
into a convective portion and a stationary portion. Equation 6 shows the decomposition of the cross 
correlation, S(Dx,f): 

𝑆(Dx, f) = 〈𝜃@(𝑥, 𝑓)𝜃@∗(𝑥 + Dx, 𝑓)〉 = F𝜃@G(𝑓)F
'
+ F𝜃@H(𝑓)F

'
exp	('LMNDO

PQ
)     (6) 

where 𝜃@G is the stationary spectra, 𝜃@H is the convective (traveling) spectra, and 𝑈S is the convective 
velocity at that location in the boundary layer. With multiple correlations, this equation is 
overdetermined and a least squares solution can be obtained at each frequency for 𝜃@G and 𝜃@H. For 
a detailed analysis of this method, see the discussion in [7]. 

 In theory, the stationary portion would contain all the corrupting elements due to mechanical 
vibration, optical components, or electronic interference and could then be thrown out. The 
remaining convective spectrum would be the true spectrum due to the flow itself. This multipoint 
analysis has been used successfully even with severely undersampled data that had good spatial 
resolution.  

In the current work, the multipoint decomposition was used with somewhat mixed success. A 
sample of this decomposition is shown in Figure 7. It can be seen that the low end build up was 
completely isolated from the convecting portion and the theoretical slope was recovered. However, 
the least squares solution consistently resulted in a convective spectrum that was larger in 
magnitude than the total spectrum. The reason for this is still not known and currently is under 
investigation. The potential consequences of this issue are discussed in the following sections.  

 

Figure 7. Power spectra decomposition using Eq. 6.  
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 Two additional methods were utilized in the current work to mitigate the deflection angle 
spectral corruption. The first was simply replacing the spectral content below a Strouhal number 
of 1 with the theoretical slope of f 2. While this greatly increased the consistency of the OPDrms 
calculation, there still remains a significant drop off in spectral content at the high end of the 
spectrum compared to the theoretical f-4/3 slope. This drop off most strongly impacts the calculation 
of qrms and should be removed if possible. A simple model was used by Smith et al. [27] to 
approximate the shape of deflection angle power spectra. The model was adapted to the current 
study so that power spectra can be reconstructed with only the peak amplitude, the peak Strouhal 
number, and Req. The model is as follows, 

F𝜃@FNMT
'

= F𝜃@FUVWX
' Y.[

GT\,]^_`
a b GT\

cde
f.ag	hi\
hi\,]^_`

j
g/lm

'

𝑒𝑥𝑝 p−r GT\st
u.[Y	vVw

x.xyaz
'
{.                      (7) 

The benefit of this equation is that it drastically reduces the complexity of removing the corrupting 
influences at both the high and low end of the spectrum and simply uses peak quantities in the 
middle of the spectrum. Figure 8 shows spectra from four different data sets at a constant height 
in the boundary layer as well as the Eq. 7 model fit. The model fit captures the central portion of 
the spectrum excellently but fills out the spectrum at both ends.  

 

Figure 8. Convecting power spectra using Eq. 6 and model fit. 

 In addtion to highlighting how the model performs, Figure 8 also shows the spectral influence 
of optical magnification. The medium and high spatial resolution data deviate slightly from each 
other at a Strouhal number of about 14 but are more or less collapsed. The low spatial resolution 
data sets drop off far sooner at a Strouhal number of 3. The effects of this will be discussed in more 
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depth in future sections but for the present, qrms is greatly reduced for the low spatial resolution 
cases. In addition, because this falloff is so drastic, it actually skews the spectral peak to lower 
Strouhal numbers and thus yields a slight increase in OPDrms.  

VI. Computing uncorrupted OPDrms from Deflection Angles 
 One issue in analyzing directly the wavefronts is that they in practice are always affected or 
corrupted by the aperture size, the so-called aperture effects, see [3]. One way to go around this 
problem is to study the statistics of the local deflection angles instead. To compute uncorrupted 
OPDrms, deflection angle spectra at each wall-normal location were integrated along the spanwise 
direction as, 

.                                               (8) 

As was mentioned previously, due to the factor of f 2 in the denominator, this equation is highly 
sensitive to the shape of the low end spectrum. Any contamination is dramatically amplified and 
OPDrms estimate becomes completely unreliable. Thankfully, the methods discussed in the 
previous section were able to significantly reduce the impact of low end contamination. In 
addition, the factor of f 2 also renders anything above a Strouhal number of 2 or 3 to be 
inconsequential towards OPDrms. While it is important for other reasons to have a clean upper end 
of the spectrum, the OPDrms calculation is largely insensitive to any high end contamination.  
 In Section V it was shown that increasing optical magnification skewed the spectral peak to 
lower Strouhal numbers as well as increased the high end spectral drop off rate. The high end 
spectral differences are inconsequential for the OPDrms calculation but the amplitude of the lower 
half of the model fit is determined by the spectral peak location. Equation 8 was used to compute 
OPDrms profiles throughout the boundary layer and Figure 9 shows these profiles for the various 
test cases. The influence of magnification rate can be seen clearly in the first 20% of the boundary 
layer where the low spatial resolution cases have slightly larger OPDrms values. Apart from the 
near wall discrepancy, Figure 9 shows the bulk of optical distortions residing between y/d=0.4 and 
0.8, consistent with previous studies [3, 4, 7]. 
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Figure 9. OPDrms profiles computed using  Eq. 9. 

VII.  Link Between qrms and OPDrms 
 One of the goals of quantifying optical distortions in the spanwise direction of the boundary 
layer is to establish a non-intrusive optical method, the results of which can be used to extract 
velocity-related statistics. As was mentioned in the Introduction, a link needs to be established 
between qrms and uncorrupted or true OPDrms and from there to velocity statistics. By means of 
Equation 8, we have an independent calculation of OPDrms that is free of aperture contamination 
that can be used to that end.  
 Using the spectral integral definition of r.m.s. and assuming spectral self-similarity in the 
deflection angle power spectra at a given height in the boundary layer, it can be shown that a 
constant exists linking qrms and OPDrms. This constant is only dependent on the wall normal 
location, the boundary layer thickness, and the local convective velocity profile.  

𝐴(𝑦) = }~��(�)
��,~��(�)

PQ(�)
P�

𝛿                                                       (9) 

 Using experimental data for different spatial resolution cases, wall normal profiles for qrms 
were computed and are plotted in Figure 10. Since the defect in the lower spatial resolution data 
is a shift in the location of the spectral peak rather than a change in amplitude, in Figure 10 there 
is better collapse across all test cases. This is due to the integral definition of r.m.s. being sensitive 
only to the “area under the curve” which in turn is determined by the peak amplitude and not the 
peak Strouhal value. In contrast to the OPDrms profile in Figure 9, the larger values of the qrms 
profile are closer to the wall, centered on y/d=0.2. This means that smaller, near wall structures 
contribute most to qrms while larger outer structures contribute most to OPDrms.  
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Figure 10. Wall normal qrms profiles. 

 Combining Figures 9 and 10 with Eq. 9 yields the profiles for A-constant in Figure 11. With 
larger relative OPDrms and smaller relative qrms, the low spatial resolution data has a much lower 
A-value than the medium and high spatial resolution data in the region closer to the wall, y/d < 0.2. 
However, because this effect can be traced back to the high end spectral drop off in the low spatial 
resolution data, the A-constant value near the wall is believed to be better estimated using the 
medium and high spatial resolution data. At the wall it reaches a value of A = 15 and decreases 
somewhat linearly to a value of A = 5 at y/d=0.4 where it remains constant for the upper half of 
the boundary layer. This profile will form the link to connect qrms to true OPDrms. 
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Figure 11. A-constant profiles computed using  Eq. 9. 

VIII. Link Between OPDrms and urms 
 Returning now to the spanwise form of Sutton’s linking equation (Eq. 5), we have a 
relationship between true OPDrms and rrms connected through known constants and an unknown 
spanwise correlation length, Λ: . The link between rrms and urms can be achieved using the Strong 
Reynold’s Analogy. The accuracy and applicability of the SRA has been investigated previously 
[5] and at least for the case of an adiabatic boundary layer, it was demonstrated to work well. For 
a detailed derivation of the following relation, see the discussion in [5, 17] but rrms can be 
computed from urms as: 

r$%&
' (𝑦) = r�

' (𝛾 − 1)'𝑟'𝑀�
� � P

P�
�
'
(�~��
��
)'                                (10) 

where r¥ is the free stream density, 𝛾 is the ratio of specific heats, and r is the recovery constant 
taken to be 0.89. With Eq. 10, we now have the last piece to connect qrms and urms, however, the 
spanwise correlation length is still unknown. At this point, hotwire velocity data can be used from 
one end, spanwise optical deflection angles from the other, and where they meet in the middle 
should be the missing spanwise correlation length, Lz(y).  
 Beginning with the hotwire data, pre-multiplied velocity power spectra are plotted in Figure 
12. The peak location is consistent with other canonical boundary layers at a y+=200, lx+=25,000 
[22] however the relatively small boundary layer thickness prevented from fully resolving the peak 
in the viscous sublayer. Confident in the validity of the hotwire measurements, urms profiles were 
computed and using Eq. 10, rrms profiles were computed. Comparing the OPDrms and rrms profiles 
through the linking equation, Eq. 5, yields the spanwise correlation length plotted in Figure 13. 
The first observation is that despite the above-discussed problems with the low spatial resolution 
data that caused a lack of collapse previously (Figures 10 and 11), there still appears to be a decent 
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collapse between all four test cases. In addition, the profile appears to be linear for the majority of 
the boundary. It is consistent with the Townsend’s attached eddy hypothesis, which states that the 
eddy size increases linearly with the distance from the wall, at least up to the end of the log-region 
[9].  

 

Figure 12. Hotwire Pre-multiplied energy spectra. 

 

Figure 13. Computed spanwise correlation lengths, Λ:(𝑦).  
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IX.  Conclusions 
Experimental measurements of aero-optical distortions in the subsonic boundary layer along 

the spanwise direction were presented and discussed. A Shack-Hartmann wavefront sensor was 
used to record temporal sequences of deflection angles imposed on a laser beam. By cross-
correlating time series of deflection angles in a streamwise direction, convective speeds of aero-
optical structures were extracted at different distances from the wall. The convective speeds were 
found to vary significantly, depending on a selected frequency band. Using the hotwire velocity 
profile as a guide, frequency bands were identified where the convective velocity was equal to the 
mean velocity. It was found that lower spatial resolution data required lower frequency bands than 
higher spatial resolution data. Plotted in inner units and using the extracted frequency bands, the 
convective and hot-wire velocity slopes collapsed in the log-region. This indicates that the WFS 
can be used to measure the convective velocities inside the log-region and non-intrusively estimate 
the skin friction coefficient, using the Clauser method. 

Deflection angle power spectra at different wall-normal locations were also presented and 
analyzed. It was shown that significant contamination existed at both the low and high end of the 
spectrum. Several methods were presented to remove these contaminating effects and a model was 
introduced to replicate the spectrum with only the peak Strouhal number, peak amplitude, and Req 
as input parameters. It was then shown that low spatial resolution was responsible for the high end 
drop off in spectra and the effect was strong enough to shift the spectral peak to lower Strouhal 
numbers.  

True OPDrms profiles, free of corrupting aperture effects, were then computed from the 
corrected deflection angle power spectra. The computation was shown to be highly sensitive to the 
low end shape and magnitude of the spectrum. Because of this, the low spatial resolution data had 
an artificially high OPDrms compared to the medium and high spatial resolution data. The peak in 
the OPDrms profile was observed to occur between y/d=0.4 and 0.8. The same spatial resolution 
effect had less of an impact on qrms, however there was still a slight reduction in qrms for the low 
resolution data. To connect qrms and OPDrms, the A-constant was introduced and computed. It was 
shown that the A-constant has a value of A=15 at the wall and decreases linearly to A=5 at y/d=0.4 
where it remains constant for the remainder of the boundary layer.  

Using the Strong Reynold’s Analogy and Sutton’s linking equation, it was shown that urms can 
be used to compute rrms which can then be used to compute OPDrms, and vice versa. However, the 
spanwise correlation length is an unknown quantity in the linking equation. Using both hotwire 
velocity data and optical OPDrms data, the spanwise correlation length was extracted as a function 
of distance from the wall. Collapse was found across all test cases and the spanwise correlation 
length was observed to increase linearly moving away from the wall. With the A-constant and the 
spanwise correlation length, Lz, qrms can be used to compute OPDrms, OPDrms can be used to 
compute rrms, and rrms can finally be used to compute urms. 

These experiments have shown that a non-intrusive wavefront sensor could be used as valuable 
complimentary sensor in measuring the properties of velocity and density structures in turbulent 
flows.  One obvious limitation of this non-intrusive measurement technique is that it calculates the 
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velocity and density properties averaged along the laser beam, thus limiting flows of interest to 
spanwise-uniform flows. However, the non-intrusive nature of the technique might be very useful 
in conducting measurements at high supersonic and hypersonic speeds, where there are many 
difficulties of using intrusive-type sensors.  
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