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The performance of an airborne optical system can be degraded by optically-active flows
such as compressible boundary layers, shear layers and shock waves. Recent research shows
that optical performance can also be affected by the local acoustic field, which also needs to be
taken into account in order to determine the deployed performance of a given system. One of
the primary contamination sources of optical wavefronts in wind-tunnel measurements is the
duct acoustic field that forms in the wind-tunnel test section in response to the main fan. This
paper presents an investigation into the impact of tunnel acoustics on wavefront measurements.
The important acoustic modes are determined using theory, and it is shown that the amplitudes
of the important acoustic modes can be determined by examining the spatial frequency content
of a wavefront data at a given temporal frequency.

Nomenclature

Ap = Aperture diameter
c0 = Speed of sound based on average fluid properties
f = Temporal frequency
I = Intensity of light
I0 = Intensity of light in the diffraction-limited case
k = Wavenumber
k0 = Total acoustic wavenumber (k0 = ω/c0)
KGD = Gladstone-Dale constant, 2.27 × 10−4 m3/kg
M = Mach number
n = Index-of-refraction
OPD = Optical path difference
OPDrms = Spatial rms value of an optical path difference
p±m = Acoustic mode coefficient
p0 = Reference pressure for sound pressure level measurements
SR = Strehl ratio
γ = Angle of the beam in the test section
λ = Wavelength of light
Λ = Acoustic wavelength
ξ = Spatial frequency
Ψm(x, y) = Characteristic function of a duct
ω = Angular frequency
′ = Fluctuating quantity of a property
B = Beam coordinate frame
D = Duct coordinate frame
ˆ = Complex quantity of a property
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I. Introduction

A. Aero-Optics

Optical communication and directed energy systems require a tightly focused beam on target in order to meet system
performance objectives. The farfield performance of airborne optical systems can be degraded by the nearfield

flow that becomes optically active at compressible flow speeds. “Aero-optics” is the study of the optical effect of
these nearfield flow disturbances. Examples of important aero-optical flows that have been studied extensively include
boundary layers [1–3], shear layers [4, 5], shock waves [6], and even tip vortices [7]. The effect of acoustic disturbances
on aero-optical measurements has also been shown in both flight testing [8] and ground testing [9]. The Gladstone-Dale
relationship shows how index-of-refraction, n, of a fluid changes with its density, ρ:

n′(®x, t) = KGDρ
′(®x, t), (1)

where KGD is the Gladstone-Dale constant which has a value of approximately 2.27×10−4 m3/kg for light at visible and
near-IR wavelengths and ′ represents the use of fluctuating quantities. The optical aberrations are typically evaluated by
their effect on an interrogating beam of light with a known initial wavefront that passes through the region of interest.
An instrument such as a Shack-Hartman wavefront sensor is used to measure the spatially-resolved integration of the
index-of-refraction over a distance traversed by the light beam:

OPD(x, y, t) =
∫ s2

s1

n′(®x, t)ds, (2)

where OPD is the optical path difference which is the conjugate of the wavefront.
The farfield performance of an airborne optical system can be estimated via the Maréchal approximation:

SR(t) ≡
I(t)
I0
≈ exp

{
−

[
2πOPDrms(t)

λ

]2
}
, (3)

where SR is the Strehl ratio, I(t) is the intensity on target, OPDrms(t) is the spatial root mean square of the OPD at time
t, and λ is the wavelength of the light. The diffraction-limited on target intensity, I0, for a beam with a circular cross
section is given via:

I0 =

(
k Ap2

8z

)2

, (4)

where k is the wavenumber (k = 2π/λ), Ap is the aperture diameter, and z is the distance to the aperture. The Strehl
ratio represents how well an optical system performs versus the diffraction-limited case. Equations 3 and 4 are shown
as a function of wavelength in Figure 1. The left subplot shows how the Strehl ratio decreases significantly as the
wavelength decreases with a constant optical disturbance. The right subplot shows that as the wavelength is decreased
the diffraction-limited performance exponentially increases. These two plots illustrate the aero-optics problem as a
whole, and why there is a desire to transition airborne optical systems to shorter wavelengths to take advantage of the
diffraction-limited performance gain; however, to achieve this the optical disturbance must also be greatly reduced.

B. Duct Acoustics
Acoustic waves are isentropic compression waves that propagate at the speed of sound, c0, in the local medium

[11]. If the acoustic waves are in a fluid with some mean flow, the acoustic waves travel relative to the mean flow such
that the observed speed is u ± c0. The fluctuating pressure, p′, associated with acoustic signal can be measured with a
microphone. A common way of reporting the strength of an acoustic waves is the sound pressure level,

SPL = 20 log10
prms

p0
dB, (5)

where prms is the root-mean-square of the fluctuating pressure and p0 is the reference pressure which is typically defined
as the threshold of human hearing and for air is 20 µPa [12]. The density fluctuation in an acoustic wave can be related
to a pressure fluctuation via the definition of the speed of sound,

c2
0 =

(
∂p
∂ρ

)
s

=
p′

ρ′
. (6)
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Figure 1 Summary of the aero-optics problem. The left plot shows a 95% Strehl Ratio (Equation 3) at 10.6 µm
corresponding to estimates from the ABL program [10]. The right plot show the diffraction-limited on target
intensity (Equation 4) relative to the performance of a 1 µm wavelength beam.

By assuming an inviscid flow with constant mean quantities in both space and time the convecting wave equation
can be derived from the conservation of mass and momentum equations. The convecting wave equation [13],(

1
ω2

∂2

∂t2 −
1 − M2

k2
0
∇2

)
p = 0, (7)

is used to describe duct acoustics with flow in the axial direction of a constant-area duct when the length is
much greater than the cross-sectional dimensions. Using the assumption that the pressure field is separable (i.e.
p(x, y, z, t) = p(x, y)p(z)p(t)), the solution in complex notation is [14]

p̂m(x, t) =
∞∑

m=0
Ψm(x, y)

(
p+m exp

{
− j k+zmz

}
+ p−m exp

{
+ j k−zmz

})
exp { jωt} , (8)

where p±m are the upstream and downstream modal coefficients, k±zm are the axial-wavenumbers in each direction. The
characteristic function of the duct for the mth mode, Ψm(x, y), is an eigen-function solution to the two-dimensional
Helmholtz equation, (

∂2

∂x2 +
∂2

∂y2

)
pxy(x, y) + k2pxy(x, y) = 0. (9)

Solving the Helmholtz equation requires boundary conditions to be placed on the duct walls. A common boundary
condition is for rigid walls that perfectly reflect incident waves,

∇pxy(x, y) · nwall = 0. (10)

There are infinitely many characteristic functions that satisfy Equations 9 and 10 each of which has a characteristic
wavenumber, km, which is the eigen-value of the Helmholtz solution. The wavenumber in the axial direction for a duct
with mean flow is

(k0 ± Mkzm) = k2
m + k2

zm, (11)

where k0 is the total wavenumber (k0 = ω/c0) and kzm is the axial wavenumber. The axial wavenumber will have two
solutions for cases when there is mean flow,

k±zm =
∓Mk0 +

√
k2

0 − (1 − M2)k2
m

1 − M2 . (12)
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Figure 2 Characteristic functions for a rectangular duct for the modes m = 0...2 and n = 0...2.

For the acoustic wave to propagate indefinitely, the quantity under the square root must be greater than or equal to zero.
This results in certain modes only existing above a certain frequency known as the cut-on frequency,

fcuton =
c0

2π

√
(1 − M2)k2

m. (13)

Below this frequency an acoustic mode will be exponentially attenuated as it travels through the duct.
This study will examine a simple rectangular geometry which has a known set of characteristic functions given by

Ψm,n(x, y) = cos
(

mπx
lx

)
cos

(
nπy
ly

)
, (14)

where lx is the duct width or depth and ly is the duct height. For this geometry the modal wavenumber, km, is a
combination of the wavenumber in both the x and y directions,

k2
m = k2

x + k2
y . (15)

Some of the characteristic functions for a rectangular duct are shown in Figure 2.

II. Experimental Results
Wavefront measurements were conducted in the University of Notre Dame White Field Wind Tunnel facility at

Mach Numbers of 0.5 and 0.6 and were previously discussed by Catron [9]. The wind-tunnel test section had high-speed
inserts installed giving cross-sectional dimensions of 31-inches high and 36-inches wide. The wavefronts were recorded
using a double pass setup where a 10-inch diameter beam passed through the test section and was reflected back along
the same path. The beam was re-imaged to a size of 5/8-inch diameter onto the lenslet array of a Shack-Hartman
wavefront sensor with a lenslet pitch of 30-µm on a square grid. This resulted in the wavefront being measured over an
approximately 55-lenslet diameter at a sample rate of 34000-Hz. A Nd-YAG laser at 532-nm was the light source.

The aperture-averaged power spectra of the measured wavefront aberrations are presented in Figure 3. The spectra
for both Mach number cases contain between six and eight obvious peaks that can be associated with acoustic waves
originating from the tunnel fan. The peaks at 459 Hz for M=0.5 and 536 Hz for M=0.6 correspond to the blade-passing
frequency from the tunnel fan with the other peaks representing harmonics of the blade-passing frequency. The
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Figure 3 Power Spectra of the measured wavefront at Mach Numbers 0.5 and 0.6.

blade-passing frequency peaks are by far the most predominant with the sub-harmonic being the second most. The
M=0.6 case shows more broadband noise than the M=0.5 case.

For the rest of the paper only the M=0.6 case will be examined. The dispersion spectra can be seen in Figure 4
which consist of the temporal spectra and two spatial spectra (i.e. horizontal and vertical) of the wavefront data as
computed by,

Sxx =
|FFTn(OPD)|2

N ·
∏

fsamp
, (16)

where FFTn is the N-Dimensional Fourier Transform, N is the total number of sample points, and
∏

fsamp is the
product of the spatial and temporal sample rates. For the analysis in this paper, the OPD array was placed into a larger
array of zeros 2 times larger in the spatial directions and 1.5 times larger in the temporal direction prior to calculating
the fft. The plot on the left shows the component of the optical disturbances that is moving horizontally through the
measurement beam with the top half moving in the direction of the flow and the bottom half moving upstream. The
horizontal dispersion plot has three main features with the first being the significant broadband signal that is convecting
with the flow and is associated with the boundary layer. The second feature is a significant broadband signal that is
moving upstream at u − c0, that will be discussed in detail below. The third feature is the strong vertical “spikes” at the
blade-passing frequency and its harmonics with six strong peaks exhibiting broadband spatial frequencies over the entire
spatial frequency space. Several additional blade-passing frequency harmonics can be observed along the horizontal
spatial frequency axis. The white lines overlaid on the plot represent the acoustic lines associated with various modes
where m = 0. There is noticeable increase in the wavefront signal when each mode cuts-on.

The plot on the right shows the component of the optical disturbances that are moving vertically through the beam
with the top half moving up and the bottom half moving down with the overlaid white lines representing the acoustic
lines. The vertical spectral plot is symmetric about the zero vertical spatial frequency line. The extra spatial content
when a mode cuts-on is noticeable outside of the acoustic lines in both directions. Both horizontal and vertical dispersion
plots show significant spikes at the blade-passing frequency and its various harmonics.

III. Analysis
An analysis of acoustic modes can be made by looking at a single slice of the dispersion array. A slice of the

dispersion array taken at the blade-passing frequency is shown in Figure 5. Most of the spectral content of the slice is
moving upstream (on the negative horizontal spatial frequency side) and is fairly symmetric about the zero vertical
spatial frequency line. To compare with the experimental data in Figure 5, artificial optical wavefronts were generated
by ‘shooting’ a beam through the density field of the acoustic modes given by Equations 8 and 14. The geometry for the
creation of the artificial wavefronts is shown in Figure 6. The duct coordinate frame is centered on the beam entrance to
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Boun
dary

Laye
r

Upstream Moving Disturbances

Figure 4 Dispersion analysis of the wavefronts measured at M=0.6. The left plot shows the spectral content
moving horizontally with modal acoustic lines corresponding to m = 0 and n = 0...30. The right plot shows the
spectral content moving vertically with the acoustic lines shown.

Figure 5 Slice of the dispersion array taken at the blade-passing frequency.
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xD

yD yB

zD

xB

−zB

γ

lx

ly

yo f f

Figure 6 General geometry for calculation presented in this paper.

the duct in the z-direction and positioned on the wall of the duct such the duct lays in positive x and y space. The duct
has a height of ly and a depth of lx . The beam coordinate frame is centered on the beam with the y-axis co-axial to the
y-axis of the duct and the beam propagating along the -z-axis. The angle that the beam goes through the duct is denoted
by γ and represents the rotation of the beam coordinate frame compared to the duct coordinate frame. The xz-planes of
the two coordinate frames are separated by yof f , which in this study is half the height of the duct. Transitioning from
the beam coordinate frame to the duct coordinate frame is a simple rotation about the y-axis after the offset is added to
the beam coordinates. [

xD yD zD
]
=

[
xB yB + yof f zB

] 
cos γ 0 − sin γ

0 1 0
sin γ 0 cos γ

 (17)

The artificial wavefronts were generated by first calculating the complex pressure field with zero phase and time at
and around the blade-passing frequency using Equations 8, 12, and 14. The complex optical path difference for each
pressure field can be determined by integrating across the duct,

�OPD(xB, yB) = KGD

c2
0

∫ lx

0
p̂(xD, yD, zD)dxD . (18)

This complex OPD only contains magnitude and phase information and not temporal information which can be obtained
from the real component of the complex OPD multiplied by exp{ jωt},

OPD(xB, yB, t) = <
(�OPD(xB, yB) exp{ jωt}

)
. (19)

The acoustic modes that are present in the test section at a given frequency can be determined by inserting the frequency
into Equation 13, and is shown graphically for the blade-passing frequency in Figure 7. At the blade-passing frequency
this figure shows that there are only 12 possible acoustic modes that can propagate indefinitely in the test section.
Additionally, for a beam angle of γ = 90◦, the acoustic modes that have an integer number of half wavelengths across the
test section will produce no optical aberrations, since

∫ 1
0 cos(mπx)dx = 0 when m , 0, so that only 4 acoustic modes

actually need to be examined at this frequency. In general this would not be the case at other viewing angles except in the
case where a mode has perfect combination of equal positive and negative pressure fluctuations across the beam path.
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Figure 7 Possible acoustic duct modes for the blade-passing frequency.

Figure 8 Optical aberrations from the four upstream traveling acoustic modes that were examined.

The optical aberrations from the four upstream traveling acoustic modes that were examined are shown in Figure
8. The figure also shows the outline of the measurement beam in relation to the overall duct. As the mode number
increases the axial wavelength also increases for the upstream traveling waves. The opposite is true for the acoustic
waves traveling in the direction of the flow. At the cut-on frequency, the axial wavelengths would be equal for the
upstream and downstream traveling acoustic waves.

A set of spectral slices were next computed at the blade-passing frequency for each unit normal acoustic mode
wavefront for fitting to the experimentally measured spectral slice shown in Figure 5. The results for two different
cases are shown in Figure 9. The two different cases involve acoustic modes produced at one frequency bin or at three
different frequency bins with one being on either side of the frequency being studied. The single frequency bin fit and
the three frequency bin fit appear to be visually identical and very similar to the experimentally measured one in Figure
5. The experimental spectral slice is a bit smoother but this is likely due to the simulated wavefronts being computed
along a single ray at the center of each lenslet instead of being integrated over the entirety of the lenslet. The generated
spectral slices are perfectly symmetric about the ξ = 0m−1 line, while the experimental slice is slightly asymmetric
which could be the result of the beam being slightly off center vertically in the tunnel. The only structure missing from
the generated spectral slices is a plus shaped signal laying along both axes. These could be the result of standing waves
that may have formed in the test section.

The spectral slices scale by the square of the modal coefficient. The resultant coefficient magnitudes for the acoustic
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Figure 9 Best fit dispersion slices for (left) only the blade-passing frequency and (right) the blade-passing
frequency and the frequency bin on either side.

Mode 1 Bin 3 Bins

p−0,0 1.56 0.87
p−0,1 25.86 23.85
p−0,2 1.67 0.42
p−0,3 1.55 1.51
p+0,0 0.58 1.40
p+0,1 1.14 1.91
p+0,2 1.38 0.42
p+0,3 0.37 1.38

Table 1 Acoustic mode coefficient magnitudes at the blade-passing frequency

modes present at the blade-passing frequency are shown in Table 1. For both cases, the upstream traveling p−0,1 acoustic
mode was the most prevalent. There was no pattern when going from one frequency bin to three other than 5 of the 8
modes decreased in magnitude, but these changes were inconsistent in relative magnitude. Trying to account for the
frequency bins having some signal overlap is likely only necessary when computing the actual pressure field instead of
removing the acoustic information from the measured spectral slice. Some of the larger differences in the coefficient
magnitudes maybe due to different starting guesses converging to separate local minima regions. Using spectral slices
to determine modal coefficients only results in the magnitude being known. Phase cannot be computed this way.

IV. Conclusion
This paper has set out a process by which the strength of acoustic duct modes in a wind-tunnel test section can be

estimated from measured wavefronts in the spectral domain. These estimates can be used to statistically correct the
measured duct modes for the optical effect of the tunnel acoustic modes. For the purpose of removing the duct acoustics
from a single spectral slice, only the spectral information of the acoustic modes present at that frequency would be
necessary to compute. In order to recreate a pressure field multiple frequency bins worth of spectral information would
likely need to be considered if the frequency bins are close enough that there could be some overlap in the spectral
domain by the various modes. The recreation of the exact pressure signal would require phase information to be known
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which is beyond the scope of this paper, but the root-mean-square values could be easily determined. The acoustic
equations presented in this paper assume a constant cross-section but by relaxing some of the assumptions needed to
derive the convecting wave equation this method should be extendable to three-dimensional mean flow fields if the
suitable ‘duct’ characteristic functions can be determined.
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